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Abstract
Transfer learning is essential when sufficient data
comes from the source domain, with scarce la-
beled data from the target domain. We develop
estimators that achieve minimax linear risk for lin-
ear regression problems under distribution shift.
Our algorithms cover different transfer learning
settings including covariate shift and model shift.
We also consider when data are generated from ei-
ther linear or general nonlinear models. We show
that linear minimax estimators are within an ab-
solute constant of the minimax risk even among
nonlinear estimators for various source/target dis-
tributions.

1. Introduction
The success of machine learning crucially relies on the avail-
ability of labeled data. The data labeling process usually
requires extensive human labor and can be very expensive
and time-consuming, especially for large datasets like Ima-
geNet (Deng et al., 2009). On the other hand, models trained
on one dataset, despite performing well on test data from
the same distribution they are trained on, are often sensitive
to distribution shifts, i.e., they do not adapt well to related
but different distributions. Even small distributional shift
can result in substantial performance degradation (Recht
et al., 2018; Lu et al., 2020).

Transfer learning has been an essential paradigm to tackle
the challenges associated with insufficient labeled data (Pan
& Yang, 2009; Weiss et al., 2016; Long et al., 2017). The
main idea is to make use of a source domain with plentiful
labeled data (e.g., ImageNet) and to learn a model that
performs well on the target domain (e.g., medical images)
where few or no labels are available. Despite the lack of
labeled data, we may still use unlabeled data from the target
domain, which are usually much easier to obtain and can
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provide helpful marginal distribution information about the
target domain. Although this approach is integral to many
applications, many fundamental questions are left open even
in very basic settings.

In this work, we focus on the setting of linear regression
under distribution shift and ask the fundamental question of
how to optimally learn a linear model for the target domain,
using labeled data from a source domain and unlabeled data
(and possibly limited unlabeled data) from the target do-
main. We design a two-stage meta-algorithm that addresses
this problem in various settings, including covariate shift
(i.e., when p(x) changes) and model shift (i.e., when p(y|x)
changes). Following the meta-algorithm, we develop es-
timators that achieve near minimax risk (up to universal
constant factors) among all linear estimation rules under
some standard data concentration properties. Here linear
estimators refer to all estimators that depend linearly on
the label vector; these include almost all popular estimators
known in linear regression, such as ridge regression and its
variants. When the second moment matrix of input variables
in source and target domains commute, we prove that our
estimators achieve near minimax risk among all possible
estimators. We also provide a separation result demonstrat-
ing our algorithm can be better than ridge regression by a
multiplicative factor of Õ(d−1/4).

A crucial insight from our results is that when covariate shift
is present, we need to apply data-dependent regularization
that adapts to changes in the input distribution. For linear
regression, this is characterized by the input covariances
of source and target tasks, estimated using unlabeled data.
Our experiments verify that our estimator has significant
improvement over ridge regression and similar heuristics.

1.1. Related work

Different types of distribution shift are introduced in
Storkey (2009); Quionero-Candela et al. (2009). Specif-
ically, covariate shift occurs when the marginal distribu-
tion on P (x) changes from source to target domain (Heck-
man, 1979; Shimodaira, 2000; Huang et al., 2007). Wang
et al. (2014); Wang & Schneider (2015) tackle model shift
(P (y|x)) provided the change is smooth as a function of x.
Sun et al. (2011) design a two-stage reweighting method
based on both covariate shift and model shift. Other meth-
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ods like the change of representation, adaptation through
instance pruning are proposed in Jiang & Zhai (2007). In
this work, we focus on the above two kinds of distribution
shifts. Other distribution shift settings involving label/target
shift (P (y)) and conditional shift (P (x|y)) are beyond the
scope of this paper. Some prior work also focuses on these
settings (See reference therein (Saerens et al., 2002; Zhang
et al., 2013; Lipton et al., 2018)). For instance, Zhang et al.
(2013) exploits the benefit of multi-layer adaptation by a
location-scale transformation on x.

Transfer learning/domain adaptation are sub-fields
within machine learning to cope with distribution shift. A
variety of prior work falls into the following categories.
1) Importance-reweighting is mostly used in the covari-
ate shift (Shimodaira, 2000; Huang et al., 2007; Cortes
et al., 2010); 2) One fruitful line of work focuses on ex-
ploring robust/causal features or domain-invariant repre-
sentations (Wu et al., 2019) through invariant risk mini-
mization (Arjovsky et al., 2019), distributional robust mini-
mization (Sagawa et al., 2019), human annotation (Srivas-
tava et al., 2020), adversarial training (Long et al., 2017;
Ganin et al., 2016), or by minimizing domain discrepancy
measured by some distance metric (Pan et al., 2010; Long
et al., 2013; Baktashmotlagh et al., 2013; Gong et al., 2013;
Zhang et al., 2013; Wang & Schneider, 2014) ; 3) Several
approaches seek gradual domain adaptation (Gopalan et al.,
2011; Gong et al., 2012; Glorot et al., 2011; Kumar et al.,
2020) through self-training or a gradual change in the train-
ing distribution.

Near minimax estimations are introduced in Donoho
(1994) for linear regression problems with Gaussian noise.
For a more general setting, Juditsky et al. (2009) estimate
the linear functional using convex programming. Blaker
(2000) compares ridge regression with a minimax linear
estimator using weighted squared error. Kalan et al. (2020)
considers a setting similar to this work of minimax estimator
under distribution shift but focuses on computing the lower
bound for the linear and one-hidden-layer neural network
under distribution shift. A few more interesting results are
derived by minimizing the generalization error bounds for
distribution shift under various settings (David et al., 2010;
Hanneke & Kpotufe, 2019; Ben-David et al., 2010; Zhao
et al., 2019).

2. Preliminary
We formalize the setting considered in this paper for transfer
learning under the distribution shift.

Notation and setup. Let pS(x) and pT (x) be the marginal
distribution for x in source and target domain. The as-
sociated second-moment matrices are ΣS := EpS [xx>],
and ΣT := EpS [xx>]. Labeled data (x, y) satisfies

EpS [y|x] = EpT [y|x] = f∗(x) and y = f∗(x) + z with
Gaussian noise z ∼ N (0, σ2). We consider both linear
(f∗(x) := E[y|x] = x>β∗) and general nonlinear data
generation model. When the optimal linear model changes
from source to domain we add a subscript for distinction,
i.e., β∗S and β∗T . We use bold (x) symbols for vectors, lower
case letter (x) for scalars and capital letter (A) for matrices.

We observe nS , nT labeled samples from source and
target domain, and nU unlabeled target samples. La-
beled data is scarce in target domain: nS � nT and
nT can be 0. Specifically, data is collected as XS =
[x>1 |x>2 | · · · |x>nS ]> ∈ RnS×d, with xi, i ∈ [nS ] drawn
from pS , noise z = [z1, z2, · · · znS ]>, zi ∼ N (0, σ2).
yS = [y1, y2, · · · , ynS ]> ∈ RnS , yT ∈ RnT and XU ∈
RnU×d are similarly defined). Denote by Σ̂S = X>S XS/nS
the empirical second-moment matrix. The positive part of a
number is denoted by (x)+.

Minimax (linear) risk. In this work, we focus on design-
ing linear estimators β̂ : Rn → Rd,yS → AyS

1 for β∗T ∈
B. Here β∗T is the optimal linear model in target domain
(:= arg minβ Ex∼pT ,z∼N (0,σ2)[(f

∗(x) + z − x>β)2]). 2

Our estimator is evaluated by the excess risk on target do-
main, with the worst case β∗T in some set B: LB(β̂) =

maxβ∗∈B EyS Ex∼pT
(
x>(β̂(yS)− β∗T )

)2

. Minimax lin-
ear risk and minimax risk among all estimators are respec-
tively defined as:

RL(B) ≡ min
β̂ linear in yS

LB(β̂); RN (B) ≡ min
β̂
LB(β̂).

The subscript “N" or “L" is a mnemonic for “non-linear" or
“linear" estimators. RN is the optimal risk with no restric-
tion placed on the class of estimators. RL only considers
the linear function class for β̂. Minimax linear estimator
and minimax estimator are the estimators that respectively
attain RL and RN within universal multiplicative constants.
Normally we only consider B = {β|‖β‖2 ≤ r}. When
there is no ambiguity, we simplify β̂(yS) by β̂.

Our meta-algorithm. Our paper considers different set-
tings with distribution shift. Our methods are unified under
the following meta-algorithm:

Step 1: Construct an unbiased sufficient statistic β̂SS
3 for

the unknown parameter.
Step 2: Construct β̂MM, a linear function of the sufficient

1A ∈ Rd×n may depend in an arbitrary way on XS , nS , or ΣT .
The estimator is linear in the observation yS .

2We do not distinguish linear and affine regression since one could
simply add another constant coordinate to x to take into consider-
ation the intercept part.

3With samples yS , a statistic t = T (yS) is sufficient for the
underlying parameterβ∗ if the conditional probability distribution
of the data yS , given the statistic t = T (yS), does not depend on
the parameter β∗.
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statistic β̂SS that minimizes LB(β̂MM).

For each setting, we will show that β̂MM achieves linear
minimax risk RL. Furthermore, under some conditions, the
minimax riskRN is uniformly lower bounded by a universal
constant times LB(β̂MM).

Outline. In the sections below, we tackle the problem in
several different settings. In Section 3, we design algorithms
with only covariate shift and linear data-generation models
(f∗ is linear) for unsupervised domain adaptation (nT = 0)
in Section 3.1, and supervised domain adaptation (nT > 0)
in Section 3.4. Section 4 is about linear regression with ap-
proximation error (nT = 0 and f∗(x) is a general nonlinear
function). Finally we consider model shift for linear models
(β∗S 6= β∗T ) in Section 5.

3. Covariate shift with linear models
In this section, we consider the setting with only covariate
shift and f∗ is linear. That is, only ΣS (marginal distribution
pS(x)) changes to ΣT (marginal distribution pT (x)), but
f∗ = E[y|x] = x>β∗ (conditional distribution p(y|x)) is
shared.

3.1. Unsupervised domain adaptation with linear
models

We observe nS samples from source domain: yS = XSβ
∗+

z, z ∼ N (0, σ2I) and only some unlabeled samples XU

from the target domain. Our goal is to find the minimax lin-
ear estimator β̂MM(yS) = AyS with some linear mapping
A that attains RL(B) 4.

Following our meta-algorithm, let β̂SS = 1
nS

Σ̂−1
S X>S yS

5

be an unbiased sufficient statistic for β∗:

β̂SS =
1

nS
Σ̂−1
S X>S yS =

1

nS
Σ̂−1
S X>S XSβ

∗ +
1

nS
Σ̂−1
S X>S z.

=β∗ +
1

nS
Σ̂−1
S X>S z ∼ N

(
β∗,

σ2

nS
Σ̂−1
S

)
. (1)

The fact that β̂SS(yS) is a sufficient statistic for β∗ is proven
in Claim 3.9 for a more general case, using the Fisher-
Neyman factorization theorem. We prove that the minimax
linear estimator is of the form β̂MM = Cβ̂SS and then design
algorithms that calculate the optimal C.
Claim 3.1. The minimax linear estimator is of the form
β̂MM = Cβ̂SS for some C ∈ Rd×d.

Warm-up: commutative second-moment matrices. In
order to derive the minimax linear estimator, we first con-

4For linear estimator β̂ = AyS , yS is the only source of random-
ness and A depends on XS , nS , which are considered fixed.

5Throughout the paper Σ̂−1
S could be replaced by pseudo-inverse

and our algorithm also applies when n < d.

sider the simple case when ΣT and Σ̂S are simultane-
ously diagonalizable. We note that under this setting, min-
imax estimation under covariate shift reduces to the well-
studied problem of finding a minimax linear estimator under
weighted square loss (see e.g., (Blaker, 2000)). One could
apply Pinsker’s Theorem (Johnstone, 2011) and get an esti-
mator function and the minimax risk with a closed form:

Theorem 3.2 (Linear Minimax Risk with Covariate Shift).
Suppose the observations follow sequence model yS =
XSβ

∗ + z, z ∼ N (0, σ2In). If ΣT = Udiag(t)U> and
Σ̂S ≡ X>S XS/nS = Udiag(s)U>, then the minimax lin-
ear risk

RL(B) ≡ min
β̂=AyS

max
β∗∈B

E ‖Σ1/2
T (β̂ − β∗)‖2

=
∑
i

σ2

nS

ti
si

(
1− λ√

ti

)
+

,

where B = {β|‖β‖ ≤ r}, and λ = λ(r) is determined
by σ2

nS

∑d
i=1

1
si

(
√
ti/λ − 1)+ = r2. The linear minimax

estimator is given by:

β̂MM =Σ
−1/2
T U(I − diag(λ/

√
t))+U

>Σ
1/2
T β̂SS, (2)

where β̂SS =
1

nS
Σ̂−1
S X>S yS .

Since r is unknown in practice, we could simply view
either r or directly λ as the tuning parameter. We com-
pare the functionality of λ with that of ridge regression:
β̂λRR = arg minβ̂ E

1
2n‖XSβ̂ − yS‖2 + λ

2 ‖β̂‖
2 = (Σ̂S +

λI)−1X>S yS/nS . For both algorithms, λ balances the bias
and variance: λ = 0 gives an unbiased estimator, and a big
λ gives a (near) zero estimator with no variance. The differ-
ence is, the minimax linear estimator shrinks some signal
directions based on the value of ti, since the risk in those
directions is downweighted in the target loss. The estimator
tends to sacrifice the directions of signal where ti is smaller.
Ridge regression, however, respects the value of si. A natu-
ral counterpart is for ridge to also regularize based on t: let
β̂λRR,T = arg min 1

n‖Σ
1/2
T (β− Σ̂−1

S X>S yS)‖2 + λ‖β‖2 =

(ΣT + λI)−1ΣT β̂SS. We will compare their performances
in the experimental section.

Non-commutative second-moment matrices. For non-
commutative second-moment shift, we follow the same pro-
cedure. Our estimator is achieved by optimizing over C:
β̂MM = Cβ̂SS:

RL(B) ≡ min
β̂=AyS

max
β∗∈B

E ‖Σ1/2
T (β̂ − β∗)‖22

= min
β̂=Cβ̂SS

max
‖β∗‖≤r

{
‖Σ1/2

T (C − I)β∗‖22

+
σ2

nS
Tr(Σ

1/2
T CΣ̂−1

S C>Σ
1/2
T )

}
(Claim 3.1)
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= min
τ,C

{
r2τ +

σ2

nS
Tr(Σ

1/2
T CΣ̂−1

S C>Σ
1/2
T )

}
, (3)

s.t. (C − I)>ΣT (C − I) � τI.

Unlike the commutative case, this problem does not have a
closed form solution, but is still computable:
Proposition 3.3. Problem (3) is a convex program and com-
putable in polynomial-time.

We achieve near-optimal minimax risk among all estimators
under some conditions:
Theorem 3.4 (Near minimaxity of linear estimators). When
ΣS ,ΣT commute, or ΣT is rank 1, the best linear estima-
tor from (2) or (3) achieves near-optimal minimax risk:
LB(β̂MM) = RL(B) ≤ 1.25RN (B).

Note that RN ≤ RL by definition. Therefore 1) our estima-
tor β̂MM is near-optimal, and 2) our lower bound for RN
is tight. Lower bounds (without matching upper bounds)
for general non-commutative problem is presented in Kalan
et al. (2020) and we improve their result for the commuta-
tive case and provide a matching algorithm. Their lower
bound scales with d

nS
mini

ti
si

for large r, while ours be-
comes 1

nS

∑
i
ti
si

. Our lower bound is always larger and
thus tighter, and potentially arbitrarily larger when maxi

ti
si

and mini
ti
si

are very different. We defer our proof to the
appendix.

3.2. Connection to ridge regression

From a probabilistic perspective, ridge regression is equiva-
lent to maximum a posteriori (MAP) inference with a Gaus-
sian prior: β∗ ∼ N (0, r2I) (see e.g. Murphy (2012)).
Similarly, instead of considering a worst-case risk that min-
imizes LB(β̂) := maxβ∗∈B EyS ‖Σ

1/2
T (β̂(yS) − β∗)‖2,

one could also study the average setting that minimizes
L̄B := Eβ∗∼N (0,r2I) EyS ‖Σ

1/2
T (β̂(yS) − β∗)‖2 instead.

With distribution shift, the performance is evaluated on ΣT
instead of ΣS . Interestingly with Gaussian prior, this does
not give us a different algorithm other than the original ridge
regression.
Proposition 3.5. The optimal estimator under Gaussian
prior β∗ ∼ N (0, r2I) evaluated on pT is:

β̂ ← arg min
β=AyS

Eβ∗∼N (0,r2I) EyS Ex∼pT
(
x>(β − β∗)

)2
=

1

nS
(
σ2

r2nS
I + Σ̂S)−1X>S yS

≡ arg min
β̂

E
1

2n
‖XSβ̂ − yS‖2 +

λ

2
‖β̂‖2

=(Σ̂S + λI)−1Σ̂Sβ̂SS =: β̂λRR,

when λ = σ2/(nSr
2). Namely, the average-case best linear

estimator with Gaussian prior is equivalent to ridge regres-

sion with regularization strength λ = σ2/nS
r2 : the variance

ratio between the noise distribution and prior distribution.

Even though ridge regression achieves the optimal risk in
the average sense, it could be much worse than the minimax
linear estimator in the worst case. We prove a separation re-
sult on a specific example (that is deferred to the appendix).
Remark 3.1 (Benefit of minimax linear estimator). There
is an example that RL(B) ≤ O(d−1/4LB(β̂λRR)) even with
the optimal hyperparameter λ. 6

Adaptation on the prior distribution. With specific
problems, one should adjust the prior distribution instead of
simply assume β∗ ∼ N (0, r2). If one replaces the prior by
β∗ ∼ N (β̂SS, r

2), one could get another heuristic method:

Proposition 3.6. Let β̂SS be the estimator from ordinary
least square: β̂SS = Σ̂−1

S X>S yS/nS . The optimal estimator
under Gaussian prior β∗ ∼ N (β̂SS, r

2I) evaluated on pT
is:

β̂ ← arg min
β=AyS

Eβ∗∼N (β̂SS,r2I) EyS Ex∼pT
(
x>(β − β∗)

)2
=

1

nS
(
σ2

r2nS
I + ΣT )−1ΣT Σ̂−1

S X>S yS

≡ arg min
β

‖Σ1/2
T (β − β̂SS)‖2 + λ‖β‖2

=(ΣT + λI)−1ΣT β̂SS =: β̂λRR,T ,

when λ = σ2/(nSr
2).

Comparing the closed-form estimator β̂λRR,T := (ΣT +

λI)−1ΣT β̂SS to the original ridge regression β̂λRR := (Σ̂S +

λI)−1Σ̂Sβ̂SS, we could see that this algorithm regularizes
β̂ based on the signal strength from the target distribution,
and it is equivalent to ridge regression by adjusting the prior
distribution to center at β̂SS, the unbiased estimator for the
ground truth β∗. We will compare both methods with our
minimax estimator in the experimental section.

3.3. Minimax linear estimator with finite unlabeled
samples from target domain

In practice, we have finite unlabeled samplesXU ∈ RnU×d,
where we denote the empirical second-moment matrix as
Σ̂U = X>UXU/nU . Let L̂B to denote the worst case excess
risk measured on the observed target samples: L̂B(β̂) =

maxβ∗∈B EyS 1
nU
‖XU (β̂(yS) − β∗)‖2. To find the best

linear estimator that minimizes L̂B, our proposed algorithm
becomes:

Ĉ ←min
τ,C

{
r2τ +

σ2

nS
Tr(CΣ̂−1

S C>Σ̂U )

}
, (4)

6Note this goes without saying that our method can also be order-
wise better than ordinary least square, which is a special case of
ridge regression by setting λ = 0.



Near-Optimal Linear Regression under Distribution Shift

s.t. (C − I)>Σ̂U (C − I) � τI.

Let β̂ = ĈΣ̂−1
S X>S yS/nS . We want to show that in spite of

the existence of estimation error due to the replacement of
ΣT with Σ̂T , our generated β̂ still achieves minimax linear
risk (up to constant multiplicative error).

For simplicity, in this section we assume input samples are
centered: EpS [x] = EpT [x] = 0. This assumption results
in no loss of generality. Since the sample mean is more
sample-efficient to estimate than covariance matrix, one
will be able to first estimate the mean and center the data.
We assume some standard light-tail property on the target
samples:

Definition 3.7 (ρ2-subgaussian distribution). We call a dis-
tribution p,E[p] = 0 to be ρ2-subgaussianwhen there exists
ρ > 0 such that the random vector x̄ ∼ p̄ is ρ2-subgaussian.
p̄ is the whitening of p such that x̄ ∼ p̄ is equivalent to
x = Σ1/2x̄ ∼ p, where Σ = Ep[xx>]. 7

Note that ρ is defined on the whitening of the data. It
doesn’t scale with ‖Σ‖op and should be viewed as universal
constant.

Theorem 3.8. Fix a failure probability δ ∈ (0, 1). Suppose
target distribution pT is ρ2-subgaussian, and the sample
size in target domain satisfies nU � ρ4(d + log 1

δ ). Let
β̂ : yS → ĈΣ̂−1

S X>S yS where Ĉ is defined from Eqn. (4).
Then with probability at least 1 − δ over the unlabeled
samples from target domain, and for each fixed XS from
source domain, our learned estimator β̂(yS) satisfies:

LB(β̂) ≤ (1 +O(

√
ρ4(d+ log(1/δ))

n
))RL(B). (5)

When ΣT commutes with Σ̂S or is rank 1, we have:

LB(β̂) ≤ (1.25 +O(

√
ρ4(d+ log(1/δ))

n
))RN (B). (6)

Similarly all other results in the paper could be extended
to β̂ ← arg min L̂B(·), the estimator obtained with finite
target samples XU .

Remark 3.2 (Incorporating the randomness from source
data). For linear estimators, it naturally considers XS as
fixed and Theorem 3.4 is comparing our estimator with
the optimal nonlinear estimator using the same data XS

from the source domain. In Appendix D, we compare our
estimator with an even stronger linear estimator with infinite
access to pS and show that our estimator is still within
multiplicative factor of it.

7A random vector x is called ρ2-subgaussian if for any fixed unit
vector v of the same dimension, the random variable v>x is
ρ2-subgaussian, i.e., E[es·v

>(x−E[x])] ≤ es
2ρ2/2 (∀s ∈ R).

3.4. Utilize source and target labeled data jointly

In some scenarios, we have moderate amount of labeled data
from target domain as well. In such cases, it is important to
utilize the source and target labeled data jointly. Let yS =
XSβ

∗ + zS , yT = XTβ
∗ + zT . We consider XS , XT as

deterministic variables, Σ̂−1
S X>S yS/nS ∼ N (β∗, σ

2

nS
Σ̂−1
S )

and Σ̂−1
T X>T yT /nT ∼ N (β∗, σ

2

nT
Σ̂−1
T ). Therefore condi-

tioned on the observations yS ,yT , a sufficient statistic for
β∗ is β̂SS := (nSΣ̂S + nT Σ̂T )−1(X>S yS +X>T yT ).

Claim 3.9. β̂SS is an unbiased sufficient statistic of β∗ with
samples yS ,yT . β̂SS ∼ N (β∗, σ2(nSΣ̂S + nT Σ̂T )−1).

Algorithm: First consider the estimator β̂SS = (nSΣ̂S +
nT Σ̂T )−1(X>S yS +X>T yT ). Next find the best linear func-
tion of β̂SS:

β̂MM = arg min
C,τ

r2τ + σ2Tr((nSΣ̂S + nT Σ̂T )−1C>ΣTC),

s.t. (C − I)>ΣT (C − I) � τ.

Proposition 3.10. The minimax estimator β̂MM is of the
formCβ̂SS for someC. When choosingC with our proposed
algorithm and when Σ̂S commutes with Σ̂T and ΣT , we
achieve the minimax risk RL(B) ≤ 1.25RN (B).

4. Covariate shift with approximation error
Now we consider observations coming from nonlin-
ear models: yS = f∗(XS) + z. Let β∗S =
arg minβ Ex∼pS ,z∼N (0,σ2)[(f

∗(x)+z−β>x)2], and sim-
ilarly for β∗T . Notice now even with f∗ unchanged
across domains, the input distribution affects the best lin-
ear model. Approximation error on source domain is
aS(x) := f∗(x)− x>β∗S and vice versa for aT .

Define the reweighting vector w ∈ Rn as wi =
pT (xi)/pS(xi). We form an unbiased estimator via

β̂LS = arg min
β
{
∑
i

pT (xi)

pS(xi)
(β>xi − yi)2}

=(X>S diag(w)XS)−1(X>S diag(w)yS).

Claim 4.1. β̂LS is asymptotically unbiased and nor-
mally distributed with covariance matrix M :=

Σ−1
T Ex∼pT [pT (x)

pS(x) (aT (x)2 + σ2)xx>]Σ−1
T :

√
nS(β̂LS − β∗T )

d→ N (0,M).

Note that large importance weights greatly inflates the vari-
ance of the estimator, especially when pT /pS blows up
somewhere. Therefore here we design the an algorithm to
cope with the inflated variance. Again we want to minimize
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the worst case risk:

min
β̂=Cβ̂LS

max
β∗T∈B

E ‖Σ1/2
T (β̂ − β∗T )‖2

d→min
C

max
‖β∗T ‖≤r

{
‖Σ1/2

T (C − I)β∗T ‖22 +
1

nS
Tr(CMC>ΣT )

}
= min

C

{
‖(C − I)>ΣT (C − I)‖2r2 +

1

nS
Tr(CMC>ΣT )

}
With β̂LS computed beforehand, one could first estimate M
by let M̂ := 1

nS

∑
i Σ−1

T
p2
T (x)

p2
S(x)

(yi − x>i β̂LS)2xix
>
i Σ−1

T .

Therefore our estimator is β̂MM ← Ĉβ̂LS, where Ĉ finds

Ĉ ← arg min
τ,C

{
r2τ +

1

nS
Tr(CM̂C>ΣT )

}
(7)

s.t. (C − I)>ΣT (C − I) � τI.

Claim 4.2. Let B = {β|‖β‖ ≤ r}, and f∗ ∈ F is some
compact symmetric function class: f ∈ F ⇔ −f ∈ F .
Then linear minimax estimator is of the form Cβ̂LS for
some C. When Ĉ solves Eqn. (7), LB(β̂MM) asymptoti-
cally matches RL(B), the linear minimax risk.

By reducing from yS to β̂LS we eliminate n−d dimensions,
and this claim says that X>S yS is sufficient to predict β∗T .
We note that f∗ is more general than a linear function and
therefore the lower bound could only be larger than RN (B)
defined in the previous section.

4.1. Estimating pT (x)/pS(x)

Even though estimating pT (x)/pS(x) might be sample in-
efficient, it only involves unlabeled data and therefore in-
stance weighting related algorithms still attract prior studies
as demonstrated in the related work section. Practical ways
to estimate the density ratio involve respectively estimat-
ing pT and pS (Lin et al., 2002; Zadrozny, 2004), kernel
mean matching (KMM) (Huang et al., 2006)), and some
common divergence minimization between weighted source
distribution and target distribution (Sugiyama et al., 2008;
2012; Uehara et al., 2016; Menon & Ong, 2016; Kanamori
et al., 2011).We propose another simple algorithm that is
very convenient to use.

We conduct regression on the data samples (x, y) ∼ q(x, y)
where qY (y) is Bernouli( 1

2 )8 and qX|Y (x|y = 1) = pT ,
qX|Y (x|y = 0) = pS . Empirically, we will concatenate
XS and XU to form input data and stack 0 ∈ RnS and
1 ∈ RnU as the target vector y.

Proposition 4.3. The optimal function that solves
α ← arg minf Ex,y∼q(f(x) − y)2 satisfies: α(x) =

pT (x)
pS(x)+pT (x) .

8The scalar 1/2 should be adjusted based on the number of unla-
beled samples from source and target domain.

Therefore with proper transformation9 on α one could get
the importance weights. In practice, one might be flexi-
ble on choosing the function class F for estimating α and
sample complexity will be bounded by some standard mea-
sure of F ’s complexity, e.g., Rademacher or Gaussian com-
plexity (Bartlett & Mendelson, 2002). Unlike KMM, this
parametrized estimation applies to unseen data x which
makes cross-validation possible.

5. Near minimax estimator with model shift
The general setting of transfer learning in linear regression
involves both model shift and covariate shift. Namely, the
generative model of the labels might be different: yS =
XSβ

∗
S + zS , and yT = XTβ

∗
T + zT . Denote by δ :=

β∗S−β∗T as the model shift. We are interested in the minimax
linear estimator when ‖δ‖ ≤ γ and ‖β∗T ‖ ≤ r. Thus our
problem becomes to find minimax estimator for β∗T ∈ B =
{β|‖β‖ ≤ r} from yS ,yT .

Algorithm: First consider a sufficient statistic (β̄S , β̄T )
for (β∗T , δ). Here β̄S = Σ̂−1

S X>S yS/nS ∼ N (β∗T +

δ, σ
2

nS
Σ̂−1
S ), and β̄T = Σ̂−1

T X>T yT /nT ∼ N (β∗T ,
σ2

nT
Σ̂−1
T ).

Then consider the best linear estimator on top of it: β̂ =
A1β̄S +A2β̄T . Write ∆ = {δ|‖δ‖ ≤ γ} and LB,∆(β̂) :=

maxβ∗T∈B,δ∈∆ ‖Σ1/2
T (β̂ − β∗T )‖2.

RL(B,∆) := min
β̂=A1β̄S+A2β̄T

LB,∆(β̂)

≤ min
A1,A2

max
‖β∗T ‖≤r,‖δ‖≤γ

{
2‖Σ1/2

T ((A1 +A2 − I)β∗T ‖2

+2‖Σ1/2
T A1δ‖2 +

σ2

nS
Tr(A1Σ̂−1

S A>1 ) (8)

+
σ2

nT
Tr(A2Σ̂−1

T A>2 )

}
(AM-GM)

= min
A1,A2

{
2‖Σ1/2

T ((A1 +A2 − I)‖22r2 + 2‖Σ1/2
T A1‖22γ2

+
σ2

nS
Tr(A1Σ̂−1

S A>1 ) +
σ2

nT
Tr(A2Σ̂−1

T A>2 )

=: rB,∆(A1, A2)} . (9)

Therefore we optimize over this upper bound and reformu-
late the problem as a convex program:

(Â1, Â2)← arg min
A1,A2,a,b

{
2ar2 + 2bγ2

+
σ2

nS
Tr(A1Σ̂−1

S A>1 ) +
σ2

nT
Tr(A2Σ̂−1

T A>2 )

}
s.t.(A1 +A2 − I)>ΣT (A1 +A2 − I) � aI,
A>1 ΣTA1 � bI. (10)

9Apply f(x)→ 1
1/f(x)−1
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Our estimator is given by: β̂MM = Â1β̄S + Â2β̄T . Since
β̂MM is a relaxation of the linear minimax estimator, it is
important to understand how well β̂MM performs on the
original objective:

Claim 5.1. RL(B,∆) ≤ LB,∆(β̂MM) ≤ 2RL(B,∆).

Finally we show with the relaxation we still achieve a near-
optimal estimator even among all nonlinear rules.

Theorem 5.2. When ΣT commutes with Σ̂S , it satisfies:

LB,∆(β̂MM) := max
β∗T∈B,δ∈∆

‖Σ1/2
T (β̂MM − β∗T )‖2

≤27RN (B,∆).

HereRN (B,∆) := minβ̂(yS ,yT ) maxβ∗T∈B,δ∈∆ ‖Σ1/2
T (β̂−

β∗T )‖ is the minimax risk.

We defer the complete proof to the appendix. The main
proof technique is to decompose the problem to 2-d sub-
problems with closed-form solutions and are solvable with
Le Cam’s two point lemma. We include the proof sketch
here:

Proof sketch of Theorem 5.2. For the ease of understand-
ing, we provide a simple proof sketch when ΣS = ΣT
are diagonal. We first define the hardest hyperrectan-
gular subproblem. Let B(τ ) = {b : |βi| ≤ τi} be
a subset of B and similarly for ∆(ζ). We show that
RL(B,∆) = maxτ∈B,ζ∈∆RL(B(τ ),∆(ζ)), and clearly
RN (B,∆) ≥ maxτ∈B,ζ∈∆RN (B(τ ),∆(ζ)). Meanwhile
we show when the sets are hyperrectangles the mini-
max (linear) risk could be decomposed to 2-d problems:
RL(B(τ ),∆(ζ)) =

∑
iRL(τi, ζi). Each RL(τi, ζi) is the

linear minimax risk to estimate βi from x ∼ N (βi + δi, 1)
and y ∼ N (βi, 1) where |βi| ≤ τi and |δi| ≤ ζi. This 2-d
problem for linear risk has a closed form solution, and the
minimax risk can be lower bounded using Le Cam’s two
point lemma. We show RL(τi, ζi) ≤ 13.5RN (τi, ζi) and
therefore:

1

2
LB,∆(β̂MM)

Claim 5.1
≤ RL(B,∆)

Lemma C.2
= max

τ∈B,ζ∈∆
RL(B(τ ),∆(ζ))

Prop C.4.a
= max

τ∈B,ζ∈∆

∑
i

RL(τi, ζi)

Lemma C.6
≤ max

τ∈B,ζ∈∆
13.5

∑
i

RN (τi, ζi)

Prop C.4.b
= 13.5 max

τ∈B,ζ∈∆
RN (B(τ ),∆(ζ))

≤13.5RN (B,∆).

6. Experiments
Our estimators are provably near optimal for the worst case
β∗. However, it remains unknown whether on average they
outperform other baselines. With synthetic data we explore
the performances with random β∗. We are also interested
to investigate the conditions when we win more.

Setup. We set nS = 2000, d = 50, σ = 1, r =
√
d.

For each setting, we sample β∗T from standard normal dis-
tribution and rescale it to be norm r. We estimate ΣT
by nU = 2000 unlabeled samples. We compare our es-
timator with ridge regression (S-ridge) and a variant of
ridge regression transformed to target domain (T-ridge):
β̂λRR,T = arg min 1

n‖Σ
1/2
T (β− Σ̂−1

S X>S yS)‖2 + λ‖β‖2 =

(ΣT + λI)−1ΣT β̂SS.

Covariate shift. In order to understand the effect of co-
variate shift on our algorithm, we consider three types of
settings, each with a unique varying factor that influences
the performance: 1) covariate eigenvalue shift with shared
eigenspace; 2) covariate eigenspace shift with fixed eigenval-
ues10; 3) signal strength change. We also have an additional
200 labeled data from target domain as validation set only
for hyper-parameter tuning.

Model shift. Next we consider the problem with model
shift. We sample a random δ with norm γ varying from 0
to r =

√
d and observe data generated by yS = XS(β∗T +

δ) + zS ∈ R2000, zS ∼ N (0, I) and yT = XTβ
∗
T + zT ∈

R500, zT ∼ N (0, I). We compare our estimator with two
baselines: "ridge-source" denotes ridge regression using
only source data, and "ridge-target" is from ridge regression
with target data.

Figure 1 demonstrates the better performance of our esti-
mator in all circumstances. From (a) we see that with more
discrepancy between ΣS and ΣT , our estimator tends to
perform better. (b) shows our estimator is better when the
signal is relatively stronger. From (c) we can see that with
the increasing model shift measured by γ/r, S-ridge be-
comes worse and is outperformed by T-ridge that remains
unchanged. Our estimator becomes slightly worse as well
due to the less utility from source data, but remains the
best among others. When γ/r ≈ 0.2, our method has the
most improvement in percentage compared to the best result
among ridge-source and ridge-target.

6.1. Experiments with approximation error

Finally, we conduct empirical studies with nonlinear mod-
els. We maintain the same setting as before. We also gener-
ate a small validation dataset from target domain: XCV ∈
R500×50, sampled fromN (0,ΣT ), yCV = f∗(XCV) +zCV,

10We leave this result in appendix since performance appears in-
variant to this factor.
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(a) covariate eigen-spectrum (b) signal strength (c) model shift

Figure 1: Performance comparisons. (a): The x-axis α defines the spread of eigen-spectrum of ΣS : si ∝ 1/iα, ti ∝ 1/i. (b)
x-axis is the normalized value of signal strength: ‖ΣTβ∗‖/r. (c) X-axis is the model shift measured by γ/r. Performance
with standard error bar is from 40 runs.

Figure 2: The x-axis is noise level σ and y-axis is the excess
risk (with approximation error). Performance with standard
error bar is from 40 runs.

with zCV ∼ N (0, σ2I). We choose λi(ΣS) ∝ i, λi(ΣT ) ∝
1/i, and the eigenspace for both ΣS and ΣT are random
orthonormal matrices. (‖ΣS‖2F = ‖ΣT ‖2F = d.) The
ground truth model is a one-hidden-layer ReLU network:
f∗(x) = 1/da>(Wx)+, where W and a are randomly
generated from standard Gaussian distribution. We observe
noisy labels: yS = f∗(x) + z, where zi ∼ N (0, σ2).

Estimating weights pT (x)/pS(x). Since the generated
data samples are Gaussian, the absolute weights for

pT (x)/pS(x) =
√
|ΣS |
|ΣT | exp( 1

2x
>(Σ−1

S − Σ−1
T )x). How-

ever, this absolute value scales exponentially with the norm
of x and can amplify the variance. Meanwhile, when one
multiplies both XS ,yS by 10, the ground truth β doesn’t
change but the absolute value for pT (x)/pS(x) will change
drastically. This discrepancy highlights the importance of
relative magnitudes (among samples) instead of the absolute
value, as noted by Kanamori et al. (2009).

To obtain a relative score, we first estimate the absolute
density ratio α(x) ≈ pT (x)/(pS(x) + pT (x)) following
our algorithm in Section 4.1 with linear regression. We
then uniformly assign the weight wi for each sample by 10
discrete values 1, 2, 3 · · · 10 based on the absolute value of
α(x) and then rescale the reweighting vector properly. We
use the conventional way to adjust the reweighting strength
by using wci , c ∈ [0, 1] and choose c by cross validation.

We implement our method (Eqn. 7) using the estimated
weights as above, and plot the excess risk comparisons in
Figure 2. The baselines we choose are ordinary least square
("OLS" in Figure (2)), ridge regression (Legend is "Ridge")
and weighted least square (Kanamori et al., 2009) (Leg-
end is "Reweighting"; β̂LS in our main text). For ridge
regression, reweighting and our methods, we tune hyperpa-
rameters through cross-validation. All results are presented
from 40 runs where the randomness comes from f∗ and the
eigenspaces of ΣS ,ΣT . From Figure 2 we could see that
reweighting algorithm improves over ordinary least square
but is outperformed by ridge regression due to large variance.
Our algorithm achieves the best performance among others
by appropriately reweighting then reducing the variance.

Experiments on Berkeley Yearbook Dataset To verify
the performance of our algorithm on real-world data, we
conduct an experiment on the Berkeley Yearbook dataset
(Ginosar et al., 2015). We randomly split the data to form
source and target tasks, where the source has 63.2% male
photos and 43.4% male images for the target task. Input
X is gray-scale portraits, and Y is the year the photo is
taken (ranging from 1905 to 2013). We implement our algo-
rithms together with the baselines and estimate the density
ratio from the data. We demonstrate the performance im-
provement in Figure 3. The x-axis is the scalar that adjusts
reweighting strength c defined in the previous paragraph.
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Figure 3: Comparisons on Yearbook Dataset (Ginosar et al.,
2015).

7. Conclusion
We study in depth the minimax linear estimator for linear
regression under various distribution shift settings. We inves-
tigated the optimal linear estimators with covariate shift for
linear models in unsupervised and supervised domain adap-
tation settings, with no or scarce labeled data from the target
distribution. For nonlinear models with approximation er-
ror, we also introduce the minimax linear estimator together
with an easy-to-use density ratio estimation method. We fur-
ther explore some moderate model shift in the linear setting.
Our estimators achieve near-optimal worst-case excess risk
measured on the target domain and, in some circumstances,
are within constant of the minimax risk among all nonlinear
rules. The significant improvement of our estimators over
ridge regression is demonstrated by a theoretical separation
result and by empirical validations even for average case
with random parameters.

In future work, we will extend our algorithm to classification
problems under distribution shift and apply the algorithms
to fine-tuning the last-layer of a deep network.
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