
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Supplementary Material for “Better Training using

Weight-Constrained Stochastic Dynamics”

Overview of the provided supplementary material:

Appendix A: Provides the results necessary to estab-
lish exponential convergence to equilibrium of constrained
overdamped Langevin dynamics (M-7).

Appendix B: Provides discretization schemes and
implementation details for our constrained training algo-
rithms. The discretization schemes for a general constraint
are described in Appendix B.1 for overdamped Langevin
dynamics and in B.2 for underdamped Langevin dynamics.
Our c-CoLA circle constrained algorithm is discussed
in Appendix B.3 (overdamped) and B.4 (underdamped).
Appendix B.5 and B.6 are reserved for our o-CoLA,
orthogonality constraint Langevin dynamics, algorithm
(overdamped and underdamped, respectively).

Appendix C: Illustrates the connection between the
magnitude of the weights, the vanishing/exploding gradient
problem, and the smoothness of the interpolant.

Appendix D: Provides further numerical details and
additional results for our constrained methods.

Notation: the use of (M-...) in references refers to equations
in the main paper.

A. Theory of constrained overdamped

Langevin dynamics

We present here the details of the theory summarized in
Sec. 4. In particular, we provide the key results to establish
the exponential convergence to equilibrium of constrained
overdamped Langevin dynamics Eq. (M-7).

In the first part (Sec. A.1), we derive the underlying SDE
associated with Eq. (M-7), its generator and the invariant
measure ⌫⌃ defined as

d⌫⌃ = Z
�1

e
��V (q)

d�⌃, Z =

Z

⌃
e
��V (q)

d�⌃, (1)

where �⌃ is the surface measure on ⌃. Ergodicity ensures
that averages of observables with respect to ⌫⌃ can be ap-
proximated by time averages of trajectories of Eq. (M-7):
for all test function � 2 C1

c (⌃)

lim
T!1

h�iT = h�i⌫⌃ for a.e. q0 2 ⌃,

h�iT :=
1

T

Z T

0
�(qt) dt, h�i⌫⌃ :=

Z

⌃
�(q) d⌫⌃(q). (2)

Next, in Sec. A.2 we present the Poincaré inequality on a
manifold, which holds under a curvature-dimension assump-

tion: there exists ⇢ > 0 such that

CD(⇢,1) : Ricg + �r2
gV � ⇢g, (3)

in the sense of symmetric matrices, where g is the Rieman-
nian metric, Ricg is the Ricci curvature tensor and r2

gV

is the Hessian of V on the manifold. Under Eq. (3) the
following result holds.
Theorem A.1. Assume that there exists ⇢ > 0 and N > n

such that CD(⇢, N) holds. Then ⌫⌃ satisfies a Poincaré

inequality: there exists a constant L > 0 such that

Z

⌃

���(q)� h�i⌫⌃

��2 d⌫⌃(q)

 1

2L

Z

⌃

��⇧(q)r�(q)
��2 d⌫⌃(q)

8� 2 H
1
(⌫⌃), (4)

where ⇧(q) is the projection onto the cotangent space T
⇤
q ⌃

Eq. (8) and H
1
(⌫⌃) is the space of functions with square

⌫⌃-integrable gradients Eq. (7).

Consequences of Theorem A.1 are the exponential conver-
gence and a central limit theorem (CLT) for the convergence
in Eq. (2)
Corollary A.2. If Eq. (3) holds then

Z

⌃

��E(�(qt) | q0)� h�i⌫⌃

��2 d⌫⌃(q0)  C(�)e
�2L/�t

8� 2 H
1
(⌫⌃), (5)

where C(�) depends only on �. Furthermore we have the

following convergence in law:

p
T
�
h�iT � h�i⌫⌃

�
! N (0,�

2
�) as T ! 1,

where the asymptotic variance �
2
� is bounded as

�
2
�  �

L

R
⌃

���� h�i⌫⌃

��2 d⌫⌃.

Appx. A.3 is dedicated to using the Poincaré inequality to
proving this.

NOTATION

We collect here additional notation needed for this discus-
sion.

Given a measure µ in a space E ⇢ Rd, we associate the
space of square integrable functions

L
2
(µ) =

�
� : E ! R measurable :

Z

E
|�|2 dµ < 1

.

Equipped with the inner product and associated norm

h�, iµ =

Z

E
� dµ, k�kL2(µ) =

q⌦
�,�

↵
,

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

L
2
(µ) is a Hilbert space. We further define the subspace

L
2
(µ) of functions with zero mean by

L
2
0(µ) =

�
� 2 L

2
(µ) : h�iµ = 0

, h�iµ =

Z

E
�dµ,

(6)
as well as the space of functions with square integrable
gradient

H
1
(µ) =

�
� 2 L

2
(µ) : @i� 2 L

2
(µ) 1  i  d

. (7)

For the constraint g : Rd ! Rm, we denote the Jacobian
matrix as G(q) = rT

q g(q) and denote its right pseudo-
inverse by G

+
= G

T
(GG

T
)
�1 (GG

T is invertible if G has
full row rank). We verify that the map

⇧ : Rd ! Rd⇥d
, q 7! ⇧(q) = Id �G

+
(q)G(q), (8)

defines for each q the orthogonal projection onto the cotan-
gent space T

⇤
q ⌃.

⇧q = ⇧(q) : Rd ! Rd
, p 7! ⇧(q)p.

In particular, for all q we have ⇧qp 2 T
⇤
q ⌃ and the matrix

⇧q is symmetric and idempotent: (i.e., ⇧T
q = ⇧q and ⇧

2
q =

⇧q).

A.1. The underlying SDE and the invariant measure

Although presented differently, the results of this section fol-
low closely the treatment of this issue presented in (Lelièvre
et al., 2010).

We define the mean curvature of the manifold as the vector
valued function

H : Rd ! Rd
, q 7!

�
H(q)

�
i
= ⇧jk(q)@j⇧ik(q) (9)

1  i  d,

where ⇧(q) : Rd ! Rd is the projection onto the cotangent
space defined in Eq. (8). We then establish the following
result (proved below).
Lemma A.3. The constrained system Eq. (M-7) can be

rewritten as the following SDE in Rd

dqt = �⇧(qt)rV (qt)dt+
p
2��1 ⇧(qt)dWt

+ �
�1H(qt) dt. (10)

The uniqueness of the invariant measure of Eq. (10) and the
resulting ergodicity result Eq. (2) are proved in (Lelièvre
et al., 2010)[Prop. 3.20] (the proof relies on the divergence
theorem on manifolds).

The generator associated with Eq. (10) is given by

L = �⇧(q)rV (q) ·r+ �
�1H(q) ·r+ �

�1
⇧(q) : r2

.

We verify that L can be written in the following symmetric
form

L = �
�1

div⌃(r⌃)�r⌃V (q) ·r⌃

= �
�1

e
�V (q)

div⌃

�
e
��V (q)r⌃

�
, (11)

where we denote r⌃� = ⇧r� and div⌃ = r⌃ · =Pd
i,j=1 ⇧ij@j i. This expression directly implies that L is

reversible with respect to ⌫⌃:
⌦
L�,

↵
⌫⌃

= ���1
⌦
r⌃�,r⌃

↵
⌫⌃

=
⌦
�,L

↵
⌫⌃
. (12)

Thanks to this expression, we can prove that the measure
⌫⌃ is indeed invariant for Eq.(M-7). Let us introduce the
forward Kolmogorov equation: given a test function � 2
C1
c (⌃)

@tu(t, q) = Lu(t, q) t � 0, q 2 ⌃ u(0, q) = �(q).

The solution to this equation is verified to be u(t, q) =

E(�(qt) | q0 = q) (see the Feynmann–Kac formula)
and is usually denoted as u(t, q) = e

tL
�(q). The mea-

sure ⌫⌃ is invariant if for any t � 0
R
⌃ u(t, q) d⌫⌃(q) =R

⌃ u(0, q) d⌫⌃(q) = h�i⌫⌃ . This is easily verified thanks
to Eq. (12):

d

dt

Z

⌃
u(t, q) d⌫⌃(q) =

d

dt

Z

⌃
e
tL
�(q) d⌫⌃(q)

=

Z

⌃
LetL�(q) d⌫⌃(q) =

⌦
LetL�,1

↵
⌫⌃

= 0.

Proof. Let us write �t as the Itô process

d�t = µ(qt) dt+ �(qt) dWt, (13)

where µ : Rd ! Rm, � : Rd ! Rm⇥d and Wt is the same
Wiener process as in Eq. (M-7). Using this expression in
Eq. (M-7) brings

dqt =
�
�rV (qt)�G(qt)

T
µ(qt)

�
dt

+
�p

2��1I �G(qt)
T
�(qt)

�
dWt,

where we recall the notation for the Jacobian G = rT
q g.

Using Itô formula we find

0 = dg(qt) = G(qt) dq + bt dt

= G(qt)
�
�rV (qt) dt+

p
2��1 dWt �G(qt)

T
d�t

�

+ bt dt, (14)

where bt is the d-dimensional process defined as (omitting
the dependence on qt)

(bt)i =
1

2

�p
2��1I �G

T
�
��p

2��1I �G
T
�
�T

: r2
gi

= �
�1

�gi �
p

2��1

2

�
G

T
� + �

T
G
�
: r2

gi

+
1

2
G

T
��

T
G : r2

gi.

(15)

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

From Eq. (14) yields

d�t =
�
G(qt)G(qt)

T
��1

G(qt)

⇣
�rV (qt) dt

+

p
2��1 dWt

⌘
+
�
G(qt)G(qt)

T
��1

bt dt. (16)

Identifying with Eq. (13) we find
�(q) =

p
2��1(G+

(q))
T , which used in Eq. (15) yields

(bt)i =�
�1
�
�gi �

�
G

T
(G

+
)
T
+G

+
G
�
: r2

gi

+G
T
(G

+
)
T
G

+
G : r2

gi

�
.

As G+
G is symmetric and GG

+
= Im, we obtain

(bt)i = �
�1
�
�gi �G

+
G : r2

gi

�
= �

�1
⇧ : r2

gi. (17)

Inserting Eq. (16) in Eq. (M-7) brings

dqt = �⇧(qt)rV (qt)dt+
p
2��1 ⇧(qt)dWt

�G
+
(qt)bt dt. (18)

To conclude the proof we require the following technical
relations on the mean curvature vector (Eq. (19a) follows
from a direct computation; the proof of Eq. (19b) is direct
but involved and can be found in (Lelièvre et al., 2010))

Lemma A.4. The projection ⇧ and the vector H defined in

Eq. (8) and Eq. (9) satisfy the following equalities

H = (I �⇧)r ·⇧, (19a)

⇧ : r2
gi = �(GH)i 1  i  d, (19b)

Equality Eq. (19a) ensures that ⇧H = 0. Combining Eq.
(17) and Eq. (19b) we can write bt = ���1

GH. Thanks to
these relations and the definition of ⇧, we obtain

�G
+
bt = �

�1
G

+
GH = �

�1
(I �⇧)H = �

�1H.

This equality combined with Eq. (18) proves Eq. (A.3) and
concludes the proof of Lemma A.3.

A.2. Poincaré inequality on a manifold

Poincaré inequalities, also called spectral gap inequalities,
form an important family of functional inequalities in the
theory of Markov diffusion processes. They are the sim-
plest inequalities that provide results on the convergence
to equilibrium. Stronger results can be obtained with the
family of log-Sobolev inequalities, which are at the center
of the Bakry–Émery theory (Bakry & Émery, 1985). We
follow here closely the book (Bakry et al., 2013) on this sub-
ject (more specifically §1.16.2 and sections 4.2, 4.8, C.6).
For the necessary terminology of Riemannian manifolds
we recommend the introductory textbook (Lee, 2018) (the

literature on this topic is vast and contains many works of
high quality).

As presented in (Bakry et al., 2013)[Chap. 4], a Poincaré
inequality can be obtained as a consequence of a curvature-
dimension condition. For the sake of presentation, we in-
troduce this result in the setting of a weighted Riemannian
manifold. Let (M, g) be an n-dimensional Riemannian
manifold, where g is the Riemannian metric. We consider
the diffusion operator

L = �g � hrgW,rg·ig,

where �g denotes the Laplace–Beltrami operator on the
manifold M, rg denotes the Levi–Civita connection (co-
variant derivative) and h·, ·ig denotes the Riemannian metric
(hX,Y ig = g(X,Y) for all vector fields X,Y). We verify
that the associated invariant measure is dµ = Z

�1
e
�W

dµg,
where dµg is the Riemannian measure (Bakry et al.,
2013)[§1.11.3]. For N 2 [n,1], we define the 2-tensor

RicN (L) = Ricg +r2
gW � 1

N � n
dW ⌦ dW.

where Ricg is the Ricci curvature 2-tensor and r2
g denotes

the Hessian operator on M (the case N = n is consid-
ered only if W is constant). In this context, a curvature-
dimension condition CD(⇢, N) for ⇢ 2 R and N � n holds
if and only if (see (Bakry et al., 2013)[C.6])

CD(⇢, N) : RicN (L) � ⇢g, (20)

in the sense of symmetric (0, 2)-tensors (covariant 2-
tensors). In the flat space M = Rn, the condition CD(⇢,1)

reads r2
W � ⇢I , which is nothing but the convexity of

the potential W . Under CD(⇢, N), the measure µ is proved
to satisfy a Poincaré inequality (in (Bakry et al., 2013),
combine Thm 4.8.4 with the discussion in section C.6).
Theorem A.5. (Bakry et al., 2013)[Thm 4.8.4] Under the

curvature-dimension condition CD(⇢, N) with ⇢ > 0 and

N � n, N > 1, the measure µ satisfies the Poincaré

inequality

Varµ(�) = k�� h�iµk2L2(µ)  CP krg�k2L2(µ) (21)

with constant CP =
N�1
⇢N , 8� 2 L

2
(µ) \H

1
(µ).

As the tensor dW ⌦ dW is positive semi-definite, we verify
the monotonicity RicN+M (L) � RicN (L) for any M � 0.
This implies in particular that CD(⇢, N)) CD(⇢,1) for
any N 2 [n,1]. Hence, among all choices of N � n,
CD(⇢,1) is the weaker condition.

Let us now consider this result in the context of the con-
straint manifold ⌃ in Eq. (M-1). We consider the space
Rd with its Riemannian manifold structure given by the
Euclidean metric ḡ(v, w) = v · w for all v, w 2 Rd (for all

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

q 2 Rd, p 2 TqRd is identified with Rd through a canonical
isomorphism). Assuming that g is smooth and that rT

q g has
everywhere full row-rank, ⌃ is a smooth embedded subman-
ifold of Rd of dimension n = d�m (see e.g. (Lee, 2018)).
Furthermore, ⌃ is equipped with the metric induced by ḡ:
for a local parameterization of : U ⇢ ⌃ ! Rd, ḡ is given
locally on U by

ḡ =

dX

i=1

nX

j,k=1

@
i

@xj

@
i

@xk
dx

j
dx

k
=
�
rx rT

x
�
jk

dx
j
dx

k

(22)
We now define the potential W = �V |⌃, where V |⌃ de-
notes the restriction of V to ⌃. Assumption 3 corresponds
then to condition CD(⇢,1) above. Applying Theorem
A.5 we obtain Poincaré’s inequality on the constraint man-
ifold ⌃. We note that for a function � defined on Rd,
the covariant derivative in Rd of �|⌃ on the manifold is
the orthogonal projection of the directional derivative of
� (in the ambient manifold Rd) onto the cotangent space:
rg(�|⌃)(q) = ⇧(q)rq�(q). Furthermore, we note that the
surface measure �⌃ equals the Riemannian measure on the
manifold (compare (Lelièvre et al., 2010)[Rem. 3.4] with
(Lee, 2018)[Prop. 2.41] and Eq. (22)). We thus obtain the
result of Theorem A.1 with constant CP =

1
⇢ =

1
2L .

A.3. Exponential convergence to equilibrium and

central limit theorem

Let us define the norm of a linear operator A : L
2
0(⌫⌃) !

L
2
0(⌫⌃) as

kAkB(L2
0(⌫⌃)) = sup

�2L2
0(⌫⌃)

kA�kL2
0(⌫⌃)

k�kL2
0(⌫⌃)

.

Denote �̄ = �� h�i⌫⌃ 2 L
2
0(⌫⌃). The Poincaré inequality

Eq. (4), rewritten on the subspace L
2
0(⌫⌃), is as follows:

k�̄k2L2
0(⌫⌃) 

1

2L
kr⌃�̄k2L2

0(⌫⌃) 8�̄ 2 L
2
0(⌫⌃) \H

1
(⌫⌃).

(23)
Using the reversibility of the measure Eq. (12), we can
prove the following result (the proof follows the same lines
as (Lelièvre & Stoltz, 2016)[Prop. 2.3], see also (Bakry
et al., 2013)[Thm 4.2.5]).
Lemma A.6. The measure ⌫⌃ satisfies the Poincaré in-

equality Eq. (23) if and only if

ketLkB(L2
0(⌫⌃))  e

�2L
� t
. (24)

Exponential convergence to equilibrium is then directly ob-
tained from Lemma A.6:

ketL�̄kL2
0(⌫⌃)  ketLkB(L2

0(⌫⌃))k�̄kL2
0(⌫⌃)

 e
�2L

� tk�̄kL2
0(⌫⌃). (25)

This inequality implies Eq. (5) (note that e
tLh�i⌫⌃ =

h�i⌫⌃) and thus proves the first assertion of Corollary A.2.

A consequence of the exponential convergence to equilib-
rium Eq. (25) is the following central limit theorem for
time averages h�iT =

1
T

R T
0 �(qt) dt (see also (Kipnis &

Varadhan, 1986)).

Theorem A.7. (Bhattacharya, 1982) If Eq. (25) holds, then

the following convergence in law is satisfied

p
T
�
h�iT � h�i⌫⌃

�
! N (0,�

2
�) as T ! 1,

where the asymptotic variance �
2
� is given by the formula

�
2
� = 2h�̄,�L�1

�̄i with �̄ = �� h�i⌫⌃ .

To quantify the asymptotic variance, we use the following
classical result.

Lemma A.8. (e.g., (Lelièvre & Stoltz, 2016)[Prop. 2.1])

If Eq. (24) holds, then the generator L is invertible and

the resolvent can be expressed as �L�1
=
R1
0 e

tL
dt and

satisfies the bound kL�1kB(L2
0(⌫⌃))  �

2L .

Using Lemma A.8 and Cauchy–Schwartz inequality, the
asymptotic variance in Theorem A.7 can thus be bounded
as

�
2
� = 2

Z

⌃
�̄(�L�1

�̄) d⌫⌃  2kL�1kB(L2
0(⌫⌃))k�̄k2L2

0(⌫⌃)

 �

L
k�̄k2L2

0(⌫⌃).

This estimate completes the proof of the second assertion of
Corollary A.2.

B. Discretization of constrained Langevin

dynamics

We present here the details of the constrained training meth-
ods considered in this paper. Both the overdamped Eq.
(M-7) and underdamped Eq. (M-12) Langevin dynamics are
discretized for the constraints presented in Section 3. We
emphasize that the initialization of each given method must
be done with care: the constrained parameters, the potential
slack variable, as well as their momenta in the underdamped
case, have to satisfy the constraint initially.

Recall the notation introduced in Section 3: ✓ 2 Rn is the
vector of all the parameters of the model, we consider the
variable q = (✓, ⇠) 2 Rd, d = n + n

⇠, where ⇠ 2 Rs is a
slack variable to enforce the potential inequality constraints.
The loss is extended q = (✓, ⇠) as V (q) = LX(✓) (in
particular r⇠V = 0) and constraints are given by a map g :

Rd ! Rm. The parameters are partitioned as ✓ = (✓
u
, ✓

c
),

where ✓u 2 Rnu

are not involved in any constraint while
✓
c 2 Rnc

are.

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

B.1. Discretization of constrained overdamped

Langevin (general constraint)

Following (Lelièvre et al., 2010)[Chap. 3] a simple dis-
cretization of the constrained overdamped Langevin dynam-
ics Eq. (M-7) is given by the iteration qn 2 ⌃ 7! qn+1

defined as

q̄n+1 = qn �rqV (qn)h+

p
2��1hRn,

qn+1 = q̄n+1 �rqg(qn)�n,

where �n 2 Rm is such that g(qn+1) = 0,

(26)

where Rn ⇠ N(0, I) is a vector of iid standard normal
random variable. The first step of Eq. (26), q̄n+1, is an
Euler–Maruyama step for standard overdamped Langevin.
As q̄n+1 in Rd is generally not on the constrained manifold
⌃, the last term is present to project q̄n+1 back onto ⌃,
ensuring g(qn+1) = 0. In particular, for the unconstrained
parameter we have rT

✓ug = 0m⇥nu which implies that
✓
u
n+1 = ✓̄

u
n+1 is a standard EM step.

In general, projecting back onto the manifold ⌃, i.e., finding
�n, can be done using root-finding algorithms. Nevertheless,
for certain constraints g the roots can be found explicitly.
This is the case for the circle constraint Eq. (M-2) (see
Section B.3). A potential weakness of method Eq. (26) is
that the projection process can be guaranteed only for small
enough step size h (i.e. q̄n must be close to ⌃). Indeed,
even for the circle constraint if h is too large it might not
be possible to project q̄n+1 back onto the circle following
the direction rqg(qn). See (Lelièvre et al., 2020) for some
discussion of methods to allow computation to be performed
in the large timestep regime.

An alternative method is given by the iteration qn 2 ⌃ 7!
qn+1 2 ⌃ defined as in (Lelièvre et al., 2010)[Chap. 3]

q̄n+1 = qn �rqV (qn)dt+
p

2��1hRn,

qn+1 = q̄n+1 �rqg(qn+1)�n,

where �n 2 Rm is such that g(qn+1) = 0,

(27)

where Rn ⇠ N(0, I) is a vector of iid standard normal
random variable. The projection used in method Eq. (27)
is in general more robust. The circle constraint is a good
illustration of this: while in Eq. (26) we project following
an oblique direction, in Eq. (27) the projection is orthogonal
and always exists (see Section B.3).

B.2. Discretization of constrained underdamped

Langevin (general constraint)

We next consider the discretization of the constrained under-
damped Langevin dynamics Eq. (M-12) where we denote
by p = (p

u
, p

c
, p

⇠
) 2 Rnu+nc+n⇠

the momenta associ-
ated with the configuration q = (✓

u
, ✓

c
, ⇠). Following

(Leimkuhler & Matthews, 2016), the system is split into

A,B,O components Eq. (M-14), where B represents a pro-
jected impulse defined by the loss gradient (restricted to
the cotangent space), O represents a projected stochastic
impulse, and A represents evolution along geodesics (i.e.,
for circle constraints, these are rotations on the circles).

As in the overdamped case, the equality rT
✓ug = 0m⇥nu en-

sures that the unconstrained parameters and their momenta
(✓

u
, p

u
) evolve following the A,B,O steps for unconstrained

underdamped Langevin (see (Leimkuhler et al., 2016)). As
the B and O components only involve a variation in the mo-
mentum pt and because the constraint only involves qt, they
can be solved exactly for any constraint. The A component
involves a variation of the configuration qt and thus cannot
be solved exactly (in law) for any constraint. However, as
this part does not include any force evaluation (which would
require back-propagation to compute the gradient), it can
be approximated cheaply using a few steps of standard well-
known schemes such as SHAKE or RATTLE (see Section
B.6 for orthogonal constraints). Furthermore, for simple
constraints such as the circle constraint Eq. (M-2) the A
component can be solved explicitly (see Section B.4).

Let us present the details of the B and O steps. For con-
venience, let us introduce the following notation for the
variables involved in the constraint w = (✓

c
, ⇠) 2 Rnc+n⇠

and associated momentum p
w
= (p

c
, p

⇠
) 2 Rnc+n⇠

. The
projection onto the cotangent space Eq. (8) is then as

⇧(q) = Id �
✓
0 0

0 ⇧w(q)

◆
, (28)

with ⇧w =

✓
g
T
✓cH

�1
g✓c g

T
⇠ H

�1
g✓c

g
T
✓cH

�1
g⇠ g

T
⇠ H

�1
g⇠

◆
,

where we have denoted the partial Jacobians by g✓c =

rT
✓cg 2 Rm⇥nc

, g⇠ = rT
⇠ g 2 Rm⇥n⇠

and the matrix
H = g✓cg

T
✓c + g⇠g

T
⇠ 2 Rm⇥m.

B component. Given q0, p0 2 T
⇤
⌃ and a time t > 0

qt = q0, pt = p0 � trqV (q0)�rqg(q0)(µt � µ0),

where µt is such that pt 2 T
⇤
qt⌃ (i.e., it satisfies the con-

straint 0 = rqg(qt)pt). Note that as q0, p0 satisfy the con-
straints we have µ0 = 0. Projecting onto the cotangent
space T

⇤
qt⌃ = T

⇤
q0⌃ and using ⇧(q0)rqg(q0) = 0 and

p0 = ⇧(q0)p0, we obtain

pt = ⇧(qt)pt = ⇧(q0)
�
p0 � trqV (q0)�rqg(q0)µt

�

= p0 � t⇧(q0)rqV (q0).

The B step is thus obtained for a chosen stepsize h > 0 as:
given qn = (✓

u
n, ✓

c
n, ⇠n) 2 ⌃ and

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

pn = (p
u
n, p

c
n, p

⇠
n) 2 T

⇤
qn⌃

(B, gen.)

✓
u
n+1 = ✓

u
n, ✓

c
n+1 = ✓

c
n, ⇠n+1 = ⇠n,

p
u
n+1 = p

u
n � hr✓uLX(✓n),

p̄
c
n+1 = p

c
n � hr✓cLX(✓n), p̄

⇠
n+1 = p

⇠
n,

✓
p
c
n+1

p
⇠
n+1

◆
= ⇧w(wn)

✓
p̄
c
n+1

p̄
⇠
n+1

◆
,

where wn =

✓
✓
c
n

⇠n

◆

(29)

O component. Similarly as for the B part, the O part can
be solved exactly in law for any constraint. Given q0, p0 2
T

⇤
⌃ and a time t > 0, we have

qt = q0,

pt = p0 � �

Z t

0
pt dt+

p
2�⌧

Z t

0
dWt �rqg(q0)⌫t,

where ⌫t ensures that pt 2 T
⇤
qt⌃. Projecting to the cotangent

space T
⇤
qt⌃ = T

⇤
q0⌃ as before, we obtain

pt = ⇧(qt)pt

= p0 � �

Z t

0
⇧(q0)pt dt+

p
2�⌧⇧(q0)

Z t

0
dWt.

We thus recognize that pt is an Ornstein–Uhlenbeck process:

pt
law
= ⇧(q0)

�
e
��t

p0 +
p
⌧(1� e�2�t)R

�

with R ⇠ N(0, Id), where the equality holds in law.

The O step is thus obtained for a chosen stepsize h > 0

as: given qn = (✓
u
n, ✓

c
n, ⇠n) 2 ⌃ and pn = (p

u
n, p

c
n, p

⇠
n) 2

T
⇤
qn⌃

(O, gen.)

✓
u
n+1 = ✓

u
n, ✓

c
n+1 = ✓

c
n, ⇠n+1 = ⇠n,

p
u
n+1 = e

��h
p
u
n +

q
⌧(1� e�2�h)R

u
,

p̄
c
n+1 = e

��h
p
c
n +

q
⌧(1� e�2�h)R

c
,

p̄
⇠
n+1 = e

��h
p
c
n +

q
⌧(1� e�2�h)R

⇠
,

✓
p
c
n+1

p
⇠
n+1

◆
= ⇧w(wn)

✓
p̄
c
n+1

p̄
⇠
n+1

◆

where wn =

✓
✓
c
n

⇠n

◆
,

(30)
and R

u
, R

c, and R
⇠ are independent standard normal ran-

dom variables.

B.3. Circle constraint, overdamped Langevin

(c-CoLA-od)

We consider here the circle constraint Eq. (M-2), for which
the partial Jacobians are computed as

rT
q g =

�
rT

✓ug,rT
✓cg,rT

⇠ g
�
2 Rm⇥(nu+nc+m)

,

@✓u
j
gi = 0, @✓c

j
gi = 2✓

c
i �ij , @⇠jgi = 2⇠i�ij , (31)

where �ij is the Kronecker delta.

For this constraint, the projection step in Eq. (26) can be
computed explicitly. Indeed �n can be found by solving the
m quadratic equations 0 = gi(q̄n+1�rqg(qn)�n) 1  i 
m. The (potential) two roots of each equation corresponds
to the (potential) two projections of q̄n+1 onto the circle
following the direction rgi(qn) = 2(✓

c
n,i, ⇠n,i). When

two roots are found, we may select the one closest to the
point of origin (✓

c
n,i, ⇠n,i). However, if the point to project

(✓̄
c
n+1,i, ⇠̄n+1,i) is too far away from the circle, this oblique

projection may not be possible (i.e., the quadratic equation
has no real root).

For the circle constraint, method Eq. (27) thus leads to a
more robust projection process. Indeed, as rgi(qn+1) =

2(✓
c
n+1,i, ⇠n+1,i), the direction of the projection is now or-

thogonal to the circle. To find an expression for the orthogo-
nal projection P of a point (✓̄1, ⇠̄1) on the circle, it is easier
to use a geometrical approach than to find the Lagrange
multipliers:

(✓1, ⇠1) = P (✓̄1, ⇠̄1) =
�
ri cos(↵), ri sin(↵)

�
,

where ↵ = arctan

⇣
⇠̄1
✓̄1

⌘
. We obtain the following dis-

cretization of the overdamped Langevin with circle con-
straints. We initialize the parameters of the neural net-
work using standard PyTorch initialization (Paszke et al.,
2017; He et al., 2015), i.e., U(�1/

p
Nin, 1/

p
Nin), where

Nin is the number of inputs to a layer. The auxiliary vari-
ables ⇠i corresponding to the constrained parameters ✓ci
are initialized to obey the constraint (✓

c
i)

2
+ ⇠

2
i = r

2
i .

For a chosen stepsize h > 0 and given a configuration
qn = (✓

u
n, ✓

c
n, ⇠n) 2 ⌃, one step of the method is defined

by qn+1 = (✓
u
n+1, ✓

c
n+1, ⇠n+1) 2 ⌃ as

✓
u
n+1,i = ✓

u
n,i � h@✓u

i
LX(✓n) +

p
2��1hR

u
i ,

✓̄
c
n+1,i = ✓

c
n,i � h@✓c

i
LX(✓n) +

p
2��1hR

c
i ,

⇠̄n+1,i = ⇠n,i +
p
2��1hR

⇠
i ,

↵n,i = arctan

⇠̄n+1,i

✓̄
c
n+1,i

!
,

✓
c
n+1,i = ri cos(↵n,i),

⇠n+1,i = ri sin(↵n,i),

(32)

where Ru
i , R

c
i , R

⇠
i are independent standard normal random

variables.

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

B.4. Circle constraint, underdamped Langevin

(c-CoLA-ud)

We provide here the full discretization of the underdamped
Langevin dynamics in the case of the circle constraint Eq.
(M-2).

A component. For the circle constraint we can solve the
A step explicitly. First recall that as rT

✓ug = 0, the uncon-
strained parameters ✓u are obtained with a standard A step
of the unconstrained underdamped Langevin. Let us then
focus on solving the constrained components: we denote
w = (✓

c
, ⇠), p

w
= (p

c
, p

⇠
). Then for 1  i  m the A step

in Eq. (M-14) corresponds to the constrained ODEs

ẇi = p
w
i

ṗ
w
i = �2�iwi

|✓ci |2 + |⇠i|2 = r
2
i , ✓

c
i p

c
i + ⇠ip

⇠
i = 0.

(33)

As these constrained ODEs are uncoupled, let us drop the
specification of the index i. By assumption, we are given
initial conditions that satisfy the constraint (w0, p

w
0) 2 T

⇤
⌃.

Solving the second order ODE ẅ = �2�w, we find that any
solution has the form wt = R

2�
t w0, where R

!
t is a rotation

matrix with angular speed ! given with its time derivative
as

R
!
t =

✓
cos(!t) sin(!t)

� sin(!t) cos(!t)

◆
,

Ṙ
!
t = !

✓
� sin(!t) cos(!t)

� cos(!t) � sin(!t)

◆
.

Computing the momentum p
w
t = ẇt = Ṙ

!
t w0, and using

the properties of R!
t we verify that wt, p

w
t satisfy the con-

straints in Eq. (33) (k.k denotes the Euclidean norm in R2

and · the dot product):

kwtk2 = kR!
t w0k2 = kw0k2 = r

2
,

wt · pwt = w
T
0 (R

!
t)

T
Ṙ

!
t w0 = 0.

We still have to find the angular speed ! = 2� such that
the momentum p

w
t is consistent with its initial value pw0 (we

denote w0 = (✓
c
0, ⇠0) and p

w
0 = (p

c
0, p

⇠
0)):

p
w
0 = Ṙ

!
0w0 , p

c
0 = !⇠0 and p

⇠
0 = �!✓c0.

We thus find that

⇠0p
c
0 � ✓

c
0p

⇠
0 = !

�
|⇠0|2 + |✓c0|2

�
= !r

2

, ! =
1

r2

�
⇠0p

c
0 � ✓

c
0p

⇠
0

�
.

We have thus found an explicit expression for the solution
of the A component for circle constraints Eq. (33).

To complete the B and O steps given in Eq. (29) and Eq.
(30), we need an explicit expression for the projection ⇧w

in Eq. (28) (using Eq. (31), recall that m = n
c
= n

⇠):

⇧w(w) =

✓
Im �D

11 �D
12

�D
12

Im �D22

◆
,

where D
kl 2 Rm⇥m are the diagonal matrices defined as

D
11
ii =

|✓ci |2
|✓ci |2 + |⇠i|2

, D
12
ii =

✓
c
i ⇠i

|✓ci |2 + |⇠i|2
,

D
22
ii =

|⇠i|2
|✓ci |2 + |⇠i|2

.

Assuming that w = (✓
c
, ⇠) satisfies the constraint, the pro-

jection of (p̄c, p̄⇠) is thus computed as

✓
p
c

p
⇠

◆
= ⇧w(w)

✓
p̄
c

p̄
⇠

◆
,

where
p
c
i = p̄

c
i �

✓
c
i

r
2
i

�
✓
c
i p̄

c
i + ⇠ip̄

⇠
i

�
1  i  m,

p
⇠
i = p̄

⇠
i �

⇠i

r
2
i

�
✓
c
i p̄

c
i + ⇠ip̄

⇠
i

�
1  i  m.

Note that in the B step Eq. (29), the above expressions can
be simplified by combining the simple definition of (p̄cn, p̄⇠n)
with the constraint

0 =
�
rT

g(q)p
�
i
= 2
�
✓
c
i p

c
i + ⇠ip

⇠
i

�
.

We provide below the explicit updates for the A, B and
O components for circle constraints. We initialize the pa-
rameters of the net using standard PyTorch initialization
(Paszke et al., 2017; He et al., 2015). The auxiliary vari-
ables ⇠ corresponding to the constrained parameters ✓c are
initialized to obey the constraint (✓c)2 + ⇠

2
= r

2, so that
q0 = (✓

u
0 , ✓

c
0, ⇠0) 2 ⌃. The momenta, pu, pc, and p

⇠, are
generated in the same manner as for standard SGD with
momentum in PyTorch, i.e., as equal to the initial gradients.
Subsequently, the momenta belonging to the constrained
variables pc and to the auxiliary variables p⇠ are projected
using ⇧w, so that p0 = (p

u
0 , p

c
0, p

⇠
0) 2 T

⇤
q0⌃. For a stepsize

h > 0 we obtain

(A)

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

✓
u
n+1,i = ✓

u
n,i + hp

u
n,i,

!i =
1

r
2
i

�
⇠n,ip

c
n,i � ✓

c
n,ip

⇠
n,i

�
,

✓
c
n+1,i = cos(!ih)✓

c
n,i + sin(!ih)⇠n,i,

⇠n+1,i = � sin(!ih)✓
c
n,i + cos(!ih)⇠n,i,

p
u
n+1,i = p

u
n,i,

p
c
n+1,i = !i

�
� sin(!ih)✓

c
n,i + cos(!ih)⇠n,i

�
,

p
⇠
n+1,i = �!i

�
cos(!ih)✓

c
n,i + sin(!ih)⇠n,i

�
,

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

(B)

8
>>>>>>>><

>>>>>>>>:

✓
u
n+1 = ✓

u
n, ✓

c
n+1 = ✓

c
n, ⇠n+1 = ⇠n,

p
u
n+1 = p

u
n � hr✓uLX(✓n),

p̄
c
n+1,i = p

c
n,i � h

⇣
1� 1

r
2
i

|✓cn,i|2
⌘
@✓c

i
LX(✓n),

p̄
⇠
n+1,i = p

⇠
n,i + h

1

r
2
i

✓
c
n,i⇠n,i@✓c

i
LX(✓n),

(O)

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

✓
u
n+1 = ✓

u
n, ✓

c
n+1 = ✓

c
n, ⇠n+1 = ⇠n,

p
u
n+1 = e

��h
p
u
n +

q
��1(1� e�2�h)R

u
,

p̄
c
n+1 = e

��h
p
c
n +

q
��1(1� e�2�h)R

c
,

p̄
⇠
n+1 = e

��h
p
c
n +

q
��1(1� e�2�h)R

⇠
,

p
c
n+1,i =

⇣
1�

|✓cn,i|2

r
2
i

⌘
p̄
c
n+1,i �

1

r
2
i

✓
c
n,i⇠n,ip̄

⇠
n+1,i,

p
⇠
n+1,i = �

✓
c
n,i⇠n,ip̄

c
n+1,i

r
2
i

+

⇣
1� |⇠n,i|2

r
2
i

⌘
p̄
⇠
n+1,i,

where R
u
, R

c, and R
⇠ are vectors of independent standard

normal random variables.

B.5. Orthogonality constraint, overdamped Langevin

dynamics (o-CoLA-od)

We present here a particular discretization of the constrained
overdamped Langevin dynamics Eq. (M-7) for the orthogo-
nality constraint Eq. (M-4).

For notational convenience, we present the updates for the
weight matrix W

` of a given layer `. The updates for the
biases are standard Euler–Maruyama steps such as given for
✓
u in Eq. (32).

Referring to Eq. (M-4), we denote

Q = W
`
, r = n

`
, s = n

`�1 if n`�1  n
`
,

Q = (W
`
)
T
, r = n

`�1
, s = n

` otherwise.
(34)

so that Q 2 Rr⇥s. With this notation, the constraint Eq.
(M-4) is g(Q) = 0 where

g : Rr⇥s ! Rs⇥s
, g(Q) = Q

T
Q� Is. (35)

Recall that due to symmetry, the matrix equality g(Q) = 0s

corresponds to s(s + 1)/2 constraints. We compute the
partial derivative

@Qklgij(Q) = �liQkj + �ljQki (36)
1  i, j, k  s, 1  l  r.

In particular, if ⇤ is an s⇥ s symmetric matrix, we verify
that

sX

i,j=1

@Qklgij(Q)⇤ij = 2
�
Q⇤
�
kl
.

We thus obtain the natural matrix form of the constrained
dynamics Eq. (M-7): Qt : (0,1) ! Rr⇥s solves

dQt = �rQV (Qt) dt+
p
2��1 dWt �Qt d⇤t,

g(Qt) = 0,
(37)

where
�
rQV

�
ij

= @QijV = @W `
ij
LX (or @W `

ji
LX) and

Wt is a Wiener process in Rr⇥s. Furthermore the process
⇤t has values in the s ⇥ s symmetric matrices and is the
Lagrange multiplier corresponding to the s(s + 1)/2 con-
straints.

Applying discretization scheme Eq. (26) to Eq. (37), we
obtain the iteration step Qn 2 ⌃ 7! Qn+1 2 ⌃ given by

Q̄n+1 = Qn � hrQV (Q) +

p
2��1hRn,

Qn+1 = Q̄n+1 �Qn⇤n,
(38)

where ⇤n is a symmetric s ⇥ s matrix s.t. g(Qn+1) = 0

and Rn 2 Rr⇥s is a matrix of independent standard normal
random variables.

Note that the projection step in Eq. (38) requires to solve
a non-linear system. Following a similar technique as de-
scribed in (Leimkuhler & Reich, 2004)[Chap. 8], we derive
a quasi-Newton scheme for that task. Using the fact that Qn

satisfies the constraint we verify that

Q̄
T
n+1Qn = Is � hrQV (Qn)

T
Qn +

p
2��1hR

T
nQn.

The constraint g(Qn+1) = 0 thus reads

0 =
�
Q̄n+1 �Qn⇤n

�T �
Q̄n+1 �Qn⇤n

�
� Is

=
�
Q̄

T
n+1Q̄n+1 � Is

�
� 2⇤n +O(

p
h), (39)

where O(
p
h) denotes a matrix whose 2-norm has orderp

h. Solving for ⇤n, we find

⇤n =
1

2

�
Q̄

T
n+1Q̄n+1 � Is

�
+O(

p
h).

Neglecting the terms of order
p
h and higher, we obtain

the following quasi-Newton scheme: setting Q
(0)

= Q̄n+1,
repeat the iteration

Q
(k+1)

= Q
(k) �Qn⇤

(k)
, (40)

where ⇤
(k)

=
1

2

�
(Q

(k)
)
T
Q

(k) � Is

�
,

until the process reaches convergence and set Qn+1 =

Q
(k+1). To assess whether convergence has been reached, a

tolerance on the 2-norm of ⇤(k) can be assigned: k⇤(k)k 
TOL. However in practice, to ensure that the process ends
and to avoid undesirable overhead we typically prefer to
either combine this stopping criterion with a limit for the
number K of iterations, or use a fixed number of iterations

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

K. Note that estimate Eq. (39) ensures that a small number
of iterations K is sufficient for the constraint to be satisfied
up to a small error.

The initialization for the constrained weights is performed
following (Saxe et al., 2013), which is an built-in option in
PyTorch. Other parameters are initialized using the standard
PyTorch initialization (Paszke et al., 2017; He et al., 2015)
unless otherwise indicated. Constraints are applied layer-
wise, where for convolutional layers with weight tensors
of the size nl ⇥ nl�1 ⇥ nh ⇥ nw (where nh and nw are
the height and width of the kernel) the weight matrices are
reshaped as nl ⇥ nl�1nhnw. For CNNs these reshaped
matrices are typically rectangular. If they are thin, but long
(i.e., nl > nl�1nhnw) we apply the constraint WT

W = I ,
but if they have more columns than rows we apply the
constraint WW

T
= I .

B.6. Orthogonality constraint, underdamped Langevin

(o-CoLA-ud)

To discretize the underdamped Langevin constrained dynam-
ics, we need the orthogonal projection ⇧ onto the cotangent
space T

⇤
Q⌃. As the constraint Eq. (35) is given in a matrix

form, using the formula Eq. (8) is not very convenient so
we will rather derive ⇧ from its projection property.

Using Eq. (36), we find that for 1  i, j  s

0 =

sX

k=1

rX

l=1

@Qklgij(Q)Pkl = (P
T
Q+Q

T
P)ij ,

which leads to the following convenient expression for the
cotangent space

T
⇤
Q⌃ =

�
P 2 Rr⇥s | PT

Q+Q
T
P = 0s

.

Now, given P̄ 2 Rr⇥s we want to find a symmetric s ⇥ s

matrix ⇤ such that P = P̄ �Q⇤ belongs to T
⇤
Q⌃, i.e.,

0s = P
T
Q�Q

T
P = P̄

T
Q+Q

T
P̄ � ⇤Q

T
Q�Q

T
Q⇤.

This equation is easily solved for Q 2 ⌃ and we find ⇤ =
1
2 (P̄

T
Q+Q

T
P̄). We obtain the following expression for

the projection onto the cotangent space:

⇧Q : Rr⇥s ! Rr⇥s
,

P̄ 7! ⇧QP̄ = P̄ � 1

2
Q(P̄

T
Q+Q

T
P̄).

We then verify that ⇧Q is indeed a projection onto the
cotangent space T

⇤
Q⌃ (i.e., ⇧QP̄ 2 T

⇤
Q⌃ 8P̄ 2 Rr⇥s

and ⇧
2
Q = ⇧Q) and that this projection is orthogonal

with respect to the Frobenius inner product on Rr⇥s (i.e.,
hP̄ �⇧QP̄ , P i = 0, where hA,Bi = tr(A

T
B)).

A component. For the orthogonal constraint, the A

component in Eq. (M-14) can only be solved approximately.
A simple yet efficient discretization of A is the RATTLE
scheme (see e.g. (Leimkuhler & Reich, 2004)[Chap. 8]):

Qn+1 = Qn + hPn+1/2,

Pn+1/2 = Pn �Qn⇤n+1/2

where ⇤n+1/2 is s.t. QT
n+1Qn+1 = Is,

Pn+1 = Pn+1/2 �Qn+1⇤n+1

where ⇤n+1 is s.t. QT
n+1Pn+1 + P

T
n+1Qn+1 = 0s.

(41)
Denoting ⇤̄n+1/2 = h⇤n+1/2, P̄n+1 = Pn+1/2 and using
the projection operator ⇧Q, Eq. (41) can be rewritten as

Q̄n+1 = Qn + hPn,

Qn+1 = Q̄n+1 �Qn⇤̄n+1/2

where ⇤̄n+1/2 is s.t. QT
n+1Qn+1 = Is (use Eq. (40)),

P̄n+1 = Pn � 1

h
Qn⇤̄n+1/2, Pn+1 = ⇧Qn+1 P̄n+1.

(42)
As in the overdamped case, we may now use the quasi-
Newton scheme Eq. (40) for the projection step (to approx-
imate ⇤̄n+1/2). Using K iterations of the quasi-Newton
scheme Eq. (40) (i.e., Qn+1 = Q

(K)), we verify that
�Qn⇤̄n+1/2 satisfies

�Qn⇤̄n+1/2 =

K�1X

k=0

Qn⇤
(k)

=

K�1X

k=0

Q
(k+1) �Q

(k)

= Q
(K) �Q

(0)
= Qn+1 � Q̄n+1,

so that P̄n+1 = Pn +
1
h (Qn+1 � Q̄n+1).

We obtain the following full discretization of the under-
damped Langevin dynamics with orthogonality constraint.
The initialization for the constrained weights is performed
following (Saxe et al., 2013). Corresponding momenta are
initialized as the initial gradients (equivalently to standard
PyTorch initialization) and subsequently projected using
P0 = P̄0 � 1

2Q0(P̄
T
0 Q0 + Q

T
0 P̄0). The A,B,O steps are

then given as:

(A, OG)

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

Q̄n+1 = Qn + hPn, Q
(0)

= Q̄n+1,

for k = 0 to K � 1:

Q
(k+1)

= Q
(k) �Qn⇤

(k)
,

where ⇤
(k)

=
1

2

⇣�
Q

(k)
�T

Q
(k) � Is

⌘
,

Qn+1 = Q
(K)

,

P̄n+1 = Pn +
1

h

�
Qn+1 � Q̄n+1

�
,

Pn+1 = ⇧Qn+1 P̄n+1 = P̄n+1

� 1

2
Qn+1

⇣
P̄

T
n+1Qn+1 +

�
Qn+1

�T
P̄n+1

⌘
.

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

(B, OG)

8
>>>>><

>>>>>:

Qn+1 = Qn,

P̄n+1 = Pn � hrQV (Qn),

Pn+1 = ⇧QnPn+1

= P̄n+1 �
1

2
Qn

⇣
P̄

T
n+1Qn +

�
Qn

�T
P̄n+1

⌘
,

(O, OG)

8
>>>>>><

>>>>>>:

Qn+1 = Qn,

P̄n+1 = e
��h

Pn +

q
��1(1� e�2�h)Rn,

Pn+1 = ⇧Qn P̄n+1

= P̄n+1 �
1

2
Qn

⇣
P̄

T
n+1Qn +

�
Qn

�T
P̄n+1

⌘
,

where Rn is a matrix of independent standard normal ran-
dom variables.

C. Feedforward neural network notations and

gradients (backpropagation)

Given a dataset X = {xi, yi}Ni=1, where xi 2 Rdin

, yi 2
Rdout

, we want to construct an interpolant of the relation
xi 7! yi. For this task, we choose a feedforward neural
network (NN) with L+1 layers (i.e., L parametrized layers,
L is the depth). For 1  `  L we denote the width of layer
` as d` (d0 = d

in, dL = d
out). The parameters of the NN at

layer ` are given by the weights and biases

W
` 2 Rd`⇥d`�1

, b
` 2 Rd`

1  `  L.

For notational convenience, let us stack the parameters in a
vector

✓
`
=

✓
✓
`
W

✓
`
b

◆
, ✓

`
b = b

` 2 Rd`

,

✓
`
W = vect(W

`
) =

0

B@
W

`
e1

...
W

`
ed`�1

1

CA 2 Rd`d`�1

.

In particular ✓` 2 Rn`

, where n
` is the number of pa-

rameters in layer `, n`
= d

` ⇥ d
`�1

+ d
`. The vector

of all parameters is denoted ✓ = (✓
1
, . . . , ✓

`
) 2 Rn, where

n =
PL

l=1 n`.

Each layer 1  `  L is equipped with an activation

function '
`
: Rd` ! Rd`

, which is is applied component
wise: '`

i(x) = �
`
(xi), for some �` : R ! R. In each layer

1  `  L, we define the following functions

a
`
: Rn`⇥d`�1

! Rd`

, a
`
(✓

`
, z

`�1
) = W

`
z
`�1

+ b
`
,

z
`
: Rn`⇥d`�1

! Rd`

, z
`
(✓

`
, z

`�1
) = '

`
(a

`
(✓

`
, z

`�1
)),

to which we associate the following shorthand notation

a
`
✓` = a

`
(✓

`
, ·) : Rd`�1

! Rd`

,

z
`
✓` = z

`
(✓

`
, ·) : Rd`�1

! Rd`

.

We verify that the map ✓` 7! a
`
(✓

`
, z

`�1
) can be written as

a
`
(✓

`
, z

`�1
) =

�
(z

`�1
)
T ⌦ Id`

�
✓
`
W + ✓

`
b

=
�
(z

`�1
)
T ⌦ Id` , Id`

�
✓
`
,

where Id denotes the identity matrix in Rd and for z 2
Rs, zT ⌦ Id = (z1Id, . . . , zsId

�
. We then introduce the

intermediate classifiers as p0(x) = x and

p
`
: Rn⇥d0

! Rd`

, p
`
(✓, x) = z

`
✓` � · · · � z1✓1(x),

1  `  L, for which we use the shorthand p
`
✓ = p

`
(✓, ·).

The (final) classifier is then the function p✓ = p
L
✓ : Rdin !

Rdout

.

To train the NN on the dataset X , we define the loss function

as

LX : Rn ! R LX(✓) = �
NX

i=1

D
�
p(✓, xi), yi

�
,

where D = D(ŷ, y) : Rdout ⇥ Rdout ! R is a function
that measures the discrepancy between ŷ and y. In a simple
classification case, dout = 1 and D is chosen to be the cross-
entropy. All the commonly used training method require the
computation of the gradient of the loss function given as

r✓LX : Rn ! Rn

r✓LX(✓) = �
NX

i=1

rŷD
�
p(✓, xi), yi

�
r✓p(✓, xi).

Expression for the gradient of the loss

(backpropagation)

Recall that we denote the Jacobian matrix of a function
f : Rn ! Rm as the map rT

f : Rn ! Rm⇥n defined as
(rT

f)ij = @jfi. Given two functions f : Rm1 ! Rm2

and g : Rm2 ! Rm3

the chain rule implies the Jacobian
matrix of the composition g � f satisfies

rT
(g � f) : Rm1

! Rm3⇥m1

,

x 7! rT
(g � f)(x) = rT

g
�
f(x)

�
rT

f(x).

We compute the partial Jacobians of aj(✓j , zj�1
) as

rT
✓ja

j
: Rnj

⇥ Rdj�1

! Rdj⇥nj

,

rT
✓ja

j
(✓

j
, z

j�1
) =

�
(z

j�1
)
T ⌦ Idj , Idj

�
, (43)

and

rT
zj�1a

j
: Rnj

⇥ Rdj�1

! Rdj⇥dj�1

rT
zj�1a

j
(✓

j
, z

j�1
) = W

j
. (44)

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

The partial Jacobians of zj(✓j , zj�1
) are then

rT
✓jz

j
: Rnj

⇥ Rdj�1

! Rdj⇥nj

,

rT
✓jz

j
(✓

j
, z

j�1
) = rT

aj'
j
�
a
j
✓j (z

j�1
)
�
rT

✓ja
j
(✓

j
, z

j�1
),

rT
zj�1z

j
: Rnj

⇥ Rdj�1

! Rdj⇥dj�1

,rT
zj�1z

j
(✓

j
, z

j�1
)

= rT
aj'

j
�
a
j
✓j (z

j�1
)
�
rT

zj�1a
j
(✓

j
, z

j�1
),

(45)
where we note that

�
raj'

j
(z)
�
rs

= @t�
j
(zr)�rs (i.e., the

matrix is diagonal).

The partial Jacobians of the classifier are then given by

rT
✓`p(✓, x) = rT

zL�1z
�
✓
L
, p

L�1
✓ (x)

�
· · ·

· · ·rT
z`z

`+1
�
✓
`+1

, p
`
✓(x)

�
rT

✓`z
`
�
✓
`
, p

`�1
✓ (x)

�
,

1  `  L� 1,

rT
✓Lp(✓, x) = rT

✓Lz
L
�
✓
L
, p

L�1
✓ (x)

�
,

(46)
and

rT
x p(✓, x) = rT

zL�1z
L
�
✓
L
, p

L�1
✓ (x)

�

· · ·rT
z1z

2
�
✓
2
, p

1
✓(x)

�
rT

x z
1
�
✓
1
, x
�
. (47)

From (47), replacing the partial Jacobians of zj with the
expressions provided in (45), we obtain

rT
x p(✓, x) = F

L
x W

L · · ·F 2
xW

2
F

1
xW

1
, (48)

where F
j
x is the Jacobian matrix of the activation in the jth

layer, 'j (e.g., if 'j
= ReLU, F j

x is a diagonal matrix with
1 and 0 entries). Constraining the weights moreover has a
direct influence on the smoothness of the interpolant p✓(x).

From (46), replacing the partial Jacobians of zj with the
expressions provided in (45), we obtain

rT
✓Lp✓(x) = F

L
x P

L
x ,

rT
✓`p✓(x) = F

L
x W

L · · ·F `+1
x W

`+1
F

`
xP

`
x,

1  `  L� 1, (49)

where matrices F j
x are defined above and P

j
x is sparse with

repeated entries of pj✓(x) = z
j
✓j � · · · � z1✓1(x). This shows

that as the depth L is increased, the gradient of p✓(x) with
respect to the parameters of any layer is composed of sparse
products of the weights W j . This multiplicative structure
leads to difficulty of DNN training: the multiplication of
small weights ⌧ 1 leads to a low value of the gradient
which in turn has the effect of slowing the training (van-

ishing gradient), while the multiplication of large weights
� 1 leads to a large value of the gradient which affects the
stability of the learning procedure (exploding gradient).

Let us explain the stability in more detail. As training meth-
ods are discretization of a dynamics involving the gradient

r✓LX , the stability of a method is connected to the Lips-
chitz constant L on the statespace E = Rn of the gradient.1
Assuming that LX is twice differentiable, the largest L can
be is

M  sup
✓2E

���max(✓)
��, (50)

where �max(✓) denotes the largest eigenvalue of the Hessian
r2

✓LX(✓). The entries of the Hessian are computed as
�
r2

✓LX(✓)
�
rs

=

NX

i=1

⇣
r✓p(✓, xi)r2

ŷD
�
p(✓, xi), yi

�
rT

✓ p(✓, xi)

⌘

rs

+

doutX

k=1

@ŷkD
�
p(✓, xi), yi

�
@
2
✓r✓spk(✓, xi).

Even without providing the heavy expression of @2✓r✓spk,
using (46) in this expression allow to appreciate the impact
of the magnitudes of the weights and of the depth on the
Hessian and thus on the stability.

D. Additional Numerical Details and Results

We perform all experiments using PyTorch (Paszke et al.,
2017) on NVIDIA DGX-1 GPUs. We compare our con-
strained methods with PyTorch’s SGD with momentum
optimiser. Unless otherwise indicated, we use for SGD
h = 0.1 and mom = 0 (to compare with our constrained
overdamped Langevin method) or mom = 0.9 (to compare
with our constrained underdamped Langevin method). We
use standard PyTorch initialization for all unconstrained
parameters (He et al., 2015; Paszke et al., 2017). Below we
provide implementation details for all our experiments.

D.1. Orthogonality Constraints

A plot of the planar spiral data set binary classification prob-
lem as used to produce Figure 4 and Figure 5 is provided in
Figure D1. The first class of the data set is generated using

x = 2
p
t cos(8

p
t⇡) + 0.02N (0, 1),

y = 2
p
t sin(8

p
t⇡) + 0.02N (0, 1), (51)

where t is drawn repeatedly from the uniform distribution
U(0, 1) to generate data points. The other class of this
dataset is obtained by shifting the argument of the trigono-
metric functions by ⇡. For our experiments we used 500
training data, 1000 test data points and 5% subsampling.

To generate the results presented in Figure 4 and 5 of the
main paper, which show the effect of orthogonality con-

1Recall that the Lipschitz constant of a function h : E ⇢
Rr ! Rs is the smallest constant M such that |f(x)� f(y)| 
M |x� y| for all x, y 2 E, where |.| denotes the Euclidean norm.

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Figure D1. Data set generated using Eq. (51).

straints on this spiral data set (see Fig. D1), we use multi-
layer perceptrons with ReLU activation and binary cross
entropy (BCE) loss. In our experiments we vary the number
of 100-node hidden layers of the multi-layer perceptrons.
To compare the performance of our o-CoLA-od constrained
method with standard SGD we set the temperature ⌧ = 0

and h = 0.1 for all methods to generate Fig. 4. For Fig. 5
we do a grid-search to find the optimal value of the penalty
strength for the orthogonal regularization approach with
respect to the stepsize. In Fig. D2 we show the effect of
using a small temperature perturbation ⌧ = 1e-6. The size
of the temperature parameter was chosen to approximately
match observed fluctuations in the loss function. A more
precise parameterization is left for a subsequent work.

We also applied our orthogonality-constrained methods to
the ResNet-34 architecture on CIFAR-10 image classifi-
cation data (Krizhevsky & Hinton, 2009), see Figure 6.
The input data is pre-processed using random crop (pad=4),
random horizontal flip, and normalization. In this setting,
running SGD with orthogonal initialization worsened the
generalization performance of the resulting net and hence
the standard PyTorch initialization was used for SGD. We
train for 150 epochs and use a batchsize of 128. In Figure
D3 we compare the overdamped variant o-CoLA-od (with
⌧ = 0) to its unconstrained counterpart. We observe that
the use of an orthogonality constraint gives lower test loss
throughout training.

D.2. Circle constraints

For the results shown in Figure 1, Figure 2, Figure 3, and
Table 1 the first class of the data set is generated using

x =
p
t cos(4

p
t⇡) + 0.05N (0, 1),

y =
p
t sin(4

p
t⇡) + 0.05N (0, 1), (52)

where t is repeatedly drawn from U(0, 1). The other class
is obtained by shifting the argument of the trigonometric
functions by ⇡. For our experiments we used 100 training
data points, 2000 test data points and 2% subsampling. We
use a 500-node single hidden layer perceptron, with ReLU
activation and BCE loss. We choose the optimal weight
decay value for SGD through line search. The results in Fig.
3 were obtained by computing the gradient of the predictions
of a trained classifier (after 10,000 epochs) on a 1000x1000
grid using second order accurate central differences.

For our Fashion-MNIST (Xiao et al., 2017) example we
reduce the number of training data samples to 10,000 and
we increase the number of test data samples to 60,000. We
use a 1000-node SHLP with ReLU activation, cross entropy
loss and batchsize 128. Our main result with our circle
constrained approach is presented in Figure 7, the accom-
panying mean test accuracies with standard deviations are:
87.63±0.04% (c-CoLA-ud), 87.39 ±0.06% (SGD), 87.47
±0.38% (SGD with WD = 1e-4), 87.29 ±0.58% (SGD with
WD = 5e-5), 87.45 ±0.06% (SGD with WD = 1e-5). Hyper-
parameters SGD: h = 0.1,mom = 0.8. Hyperparameters
c-CoLA-ud: h = 0.3, � = 1, r0 = 0.05, r1 = 0.1, ⌧ = 0.

In Table D2 we present extensive hyperparameter tests for
the test accuracy and test loss obtained after 400 epochs (av-
eraged over 5 runs) using SGD-m with and without weight
decay (WD). In Figure D4 we show that both the test loss
and the maximum magnitude of the weights of the network
remains small and stable throughout training for our circle
constrained approach, while SGD shows signs of overfitting.

We also evaluate the performance of a small transformer
model (Vaswani et al., 2017) on the Penn Treebank (Mar-
cus et al., 1993) and Wikitext-2 (Merity et al., 2017) data.
The transformer has 2 encoder layers. Each encoder layer
consists of self-attention with 2 heads and a feedforward
network with 200 nodes followed by layer norms. We use
batchsize 1024 for the Penn Treebank data and batchsize
128 for the Wikitext-2 dataset. We present the lowest valida-
tion loss obtained in 200 epochs by SGD-m and our circle
constrained method c-CoLA-ud in Table 2 of the main paper.
In Table D1 we provide a comparison with weight decay.

Table D1. Minimum validation loss on Penn Treebank and
Wikitext-2 using a transformer trained using SGD-m. We found
weight decay set to WD = 1e-4 to give the best results for SGD-
m. In comparison, the transformer trained using c-CoLA-ud ob-
tains a minimum validation loss of 4.81 (Penn Treebank) and 5.09
(Wikitext-2). Using c-CoLA-ud therefore outperforms standard
SGD-m in the case without WD, but does less well than SGD-m
with weight decay, if the magnitude of the weight decay has been
carefully tuned. In contrast, for Fashion-MNIST image data using
a MLP we find that c-CoLA-ud outperforms both SGD-m with
weight decay and SGD-m without weight decay (see Table D2).

Optimizer Penn Treebank Wikitext-2
Without WD

mom = 0.7 4.87 5.13
mom = 0.8 4.83 5.13
mom = 0.9 4.84 5.13

With WD
mom = 0.7 4.84 5.01
mom = 0.8 4.77 5.02
mom = 0.9 4.77 5.02

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Figure D2. The effect of temperature on the performance of the o-CoLA-od optimizer for the 4-turn spiral data set (same set-up as for Fig.
4). MLPs with varying numbers of hidden layers (HL) were trained using o-CoLA-od with h = 0.1 and either ⌧ = 0 (blue line) or ⌧ =
1e-6 (orange line). Results are averaged over 5 runs. The use of temperature is shown to speed up training and often slightly increases the
obtained test accuracies.

70

75

80

85

90

T
ra

in
in

g
 L

o
ss

Te
st

 A
cc

u
ra

cy
 (

%
)

Te
st

 L
o

ss

0 50 100
Epoch

150 0 50 100
Epoch

150 0 50 100
Epoch

150
0.3

0.5

0.7

0.9

0.0

0.4

0.6

0.8

1.0

0.2

o-CoLA-od

SGD

Figure D3. Training loss (left), test loss (middle) and test accuracy (right) of a ResNet-34 trained using SGD vs. o-CoLA-od on CIFAR-10
data, h = 0.1 (averaged over 5 runs). The orthogonality constraint provides modestly higher test accuracy and inhibits overfitting.

Table D2. These results are obtained for the Fashion-MNIST dataset using SGD with momentum to train a 1000-node SHLP. The results
presented in the two right-hand columns are all obtained with weight decay set to 1e-4. We found this value to give the best results for
SGD-m during a hyperparameter search. In comparison to the results for SGD-m shown in this table our circle constrained net reaches test
accuracy 87.63%, with test loss 0.386 without using weight decay (see Figure 7). Hence it outperforms standard SGD with momentum
both with and without weight decay.

no WD with WD
SGD with mom Test Acc. Test Loss Test acc. Test Loss

h = 0.2 mom = 0.8 87.18% 1.06 84.05% 0.696
mom = 0.7 87.38% 0.890 87.0% 0.547

h = 0.1 mom = 0.9 86.97% 1.133 85.35% 0.634
mom = 0.8 87.39% 0.824 87.47% 0.531
mom = 0.7 87.39% 0.750 87.25% 0.517

h = 0.05 mom = 0.95 86.67% 1.226 85.63% 0.623
mom = 0.9 87.33% 0.837 86.24% 0.569
mom = 0.8 87.27% 0.719 87.33% 0.511

Figure D4. Result is obtained for the Fashion-MNIST dataset with the same hyperparameter settings as in Figure 7 of the main paper. We
observe that the maximum absolute size of weights in the output layer of the network (left) and test loss (right) remain small and stable
throughout training for the circle constrained method (c-SGD or c-CoLA-ud). In contrast SGD shows clear signs of overfitting.

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Figure D5. Test loss and test accuracy averaged over 100 runs for constrained approaches with varying levels of additive noise, i.e.,
with different values of the temperature hyperparameter ⌧ . The set-up is the same as for Fig. 1 and Fig. 2 in the main paper, i.e., we
train a 500-node single hidden layer perceptron for a spiral binary classification problem (Eq. (52)). Hyperpar. settings: h = 0.05, 2%
subsampling, r0 = 1, r1 = 5 (see Eq. (M-2)). The best performance is obtained using temperature ⌧ = 5e-5. This is also the temperature
that results in the classifier with the lowest curvature estimate (see Table D3).

D.3. Curvature

It is difficult to establish a commonly agreed defini-
tion of curvature for a boundary that is potentially non-
differentiable at a finite number of points. We computed
our curvature estimates using the method described below
which we suggest is indicative of the curvature of the locally
smoothed classification boundary and allows us to compare
the relative curvature estimates of classifiers trained using
different optimizers.

We evaluate the smoothness properties of our trained classi-
fiers after a fixed number of 10,000 epochs. The curvature
of a level curve �(x, y) = 0 is defined as (Persson, 2006):

 = r · r�
|r�| =

�xx�
2
y � 2�y�x�xy + �yy�

2
x

(�2x + �2y)
3/2

However, since we do not have access to the exact form of �,
we fit a contour to the model’s predictions on a 1000x1000
grid using matplotlib.pyplot.contour, which returns an array
containing the coordinates of points along the contour. We
view these as discrete samples from the parametric curve
(x(t), y(t)). The gradients of these are computed using
second order accurate central differences. This can then
be used to compute the approximate curvature (Gray et al.,
2006):

 =
|x00

y
0 � x

0
y
00|

(x02 + y02)3/2
(53)

Although this results in a rough estimate, by averaging our
results over 100 runs, we suggest this gives us some insight
on relative curvature estimates of classifiers trained using
different optimizers.

In Table D3 and Figure D5 we study the effect of varying the
temperature hyperparameter ⌧ , which controls the additive
noise level (see Eq. (M-7)), on the generalization perfor-
mance and curvature of the resulting classifiers on the spiral
dataset defined by Eq. (52). We show that there appears to
be an ideal choice of temperature (in this case ⌧ = 5e-5),
for which the best generalization performance is obtained
using our circle constrained approach. We also show that
the trained classifier which has the lowest curvature estimate
also obtains the best generalization performance.

Table D3. Same set-up as for Fig. 1, 2, and Figure D5. We present
the mean curvature, standard deviation (std), and maximum (max)
curvature of classifier boundaries obtained using our constrained
approach with different values of the temperature ⌧ . The lowest
curvature is obtained using ⌧ = 5e-5, which also corresponds to
the classifier which obtains the best generalization performance
(see Figure D5). These results are averaged over 100 runs.

Curvature Approximation

⌧ for C-SGLD Mean Std Max
⌧ = 0 9.38 317 5.58 ·105
⌧ = 1e-6 9.01 273 1.63 ·106
⌧ = 5e-6 7.75 166 5.86 ·105
⌧ = 1e-5 7.06 108 4.06 ·105
⌧ = 5e-5 6.08 40.8 1.43 ·105
⌧ = 1e-4 7.62 178 9.47 ·105
⌧ = 5e-4 15.9 850 5.07 ·106

