Supplementary Material for ‘“Better Training using
Weight-Constrained Stochastic Dynamics”

Overview of the provided supplementary material:

Appendix A: Provides the results necessary to estab-
lish exponential convergence to equilibrium of constrained
overdamped Langevin dynamics (M-7).

Appendix B: Provides discretization schemes and
implementation details for our constrained training algo-
rithms. The discretization schemes for a general constraint
are described in Appendix B.1 for overdamped Langevin
dynamics and in B.2 for underdamped Langevin dynamics.
Our c-CoLA circle constrained algorithm is discussed
in Appendix B.3 (overdamped) and B.4 (underdamped).
Appendix B.5 and B.6 are reserved for our o-CoLA,
orthogonality constraint Langevin dynamics, algorithm
(overdamped and underdamped, respectively).

Appendix C: Illustrates the connection between the
magnitude of the weights, the vanishing/exploding gradient
problem, and the smoothness of the interpolant.

Appendix D: Provides further numerical details and
additional results for our constrained methods.

Notation: the use of (M-...) in references refers to equations
in the main paper.

A. Theory of constrained overdamped
Langevin dynamics

We present here the details of the theory summarized in
Sec. 4. In particular, we provide the key results to establish
the exponential convergence to equilibrium of constrained
overdamped Langevin dynamics Eq. (M-7).

In the first part (Sec. A.1), we derive the underlying SDE
associated with Eq. (M-7), its generator and the invariant
measure vs. defined as

dvs = Z7 e V(@ 4oy, Z:/e*BV@ dos,, (1)
>

where oy is the surface measure on 3. Ergodicity ensures
that averages of observables with respect to vy, can be ap-
proximated by time averages of trajectories of Eq. (M-7):
for all test function ¢ € C°(X)

lim (¢)r = (¢)uy,
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Next, in Sec. A.2 we present the Poincaré inequality on a
manifold, which holds under a curvature-dimension assump-

tion: there exists p > 0 such that

CD(p,0) : Ricg + BVEV > pg,  (3)

in the sense of symmetric matrices, where g is the Rieman-
nian metric, Ricg is the Ricci curvature tensor and VgV
is the Hessian of V' on the manifold. Under Eq. (3) the
following result holds.

Theorem A.1. Assume that there exists p > 0and N > n
such that CD(p, N) holds. Then vy, satisfies a Poincaré
inequality: there exists a constant L > 0 such that
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where 11(q) is the projection onto the cotangent space ;%
Eq. (8) and H'(vs) is the space of functions with square
vs-integrable gradients Eq. (7).

Consequences of Theorem A.1 are the exponential conver-
gence and a central limit theorem (CLT) for the convergence
in Eq. (2)

Corollary A.2. If Eq. (3) holds then
/2 |E(¢(Qt) | q0) — <¢>y2|2du2(q0) < O(d))e*QL/ﬁt
V(b € Hl(VE)7 (5)

where C(¢) depends only on ¢. Furthermore we have the
following convergence in law:

VT ((6)r —
where the asymptotic variance O'i is bounded as
. 2
0'(225 < %JE |¢* <¢>uz| dvs.

Appx. A.3 is dedicated to using the Poincaré inequality to
proving this.

(Dhvs) = N(0,03) asT — oo,

NOTATION

‘We collect here additional notation needed for this discus-
sion.

Given a measure y in a space X C R?, we associate the
space of square integrable functions

L?(u) = {¢: E — R measurable : / 6| dp < o0}
E

Equipped with the inner product and associated norm

wwmaéww7 1601220y = /(s 0,



L?(11) is a Hilbert space. We further define the subspace
L?(u) of functions with zero mean by

L3(w) = {6 € L) : () =0}, (0} = [E odp,

(6)
as well as the space of functions with square integrable
gradient

H'(u)={peL?(n): 0,0 € L*(p) 1<i<d}. (7)

For the constraint g : RY — R™, we denote the Jacobian
matrix as G(q) = V! g(q) and denote its right pseudo-
inverse by GT = GT(GGT) ™1 (GGT is invertible if G has
full row rank). We verify that the map

II:RY—» R, ¢ 1(g) = I — G (q)Glq), (8)

defines for each ¢ the orthogonal projection onto the cotan-
gent space 7',

I, =I(q) : R 5 RY,  p+s T(q)p.

In particular, for all ¢ we have 1I;p € T3 and the matrix
I1, is symmetric and idempotent: (i.e., IIT = II, and I12 =
I0,).

A.1. The underlying SDE and the invariant measure

Although presented differently, the results of this section fol-
low closely the treatment of this issue presented in (Lelievre
et al., 2010).

We define the mean curvature of the manifold as the vector
valued function

H:RY SR g (H(g), = k(q)0ik(q)  (9)

1<i<d,
where TI(q) : R? — R is the projection onto the cotangent

space defined in Eq. (8). We then establish the following
result (proved below).

Lemma A.3. The constrained system Eq. (M-7) can be
rewritten as the following SDE in R?
dgy = —I(q) VV (qr)dt + /2671 I1(g:)dWVy
+ B H(gr) dt. (10)

The uniqueness of the invariant measure of Eq. (10) and the
resulting ergodicity result Eq. (2) are proved in (Lelievre
et al., 2010)[Prop. 3.20] (the proof relies on the divergence
theorem on manifolds).

The generator associated with Eq. (10) is given by

L=-T(q)VV(q) -V + B "H(q) -V + B TI(q) : V*.

We verify that £ can be written in the following symmetric
form

Lip = B~ divs (V) — VeV (g) - Vet
= 71V divy; (e PV D V5y), (11)
where we denote Vy¢p = 1IV¢ and divy ) = Vg - ¢ =

ZZ =1 ij 0;%;. This expression directly implies that £ is
reversible with respect to vs:

(Lo, 0), =—B"HVso,Vev), =(6,L0), . (12)

Thanks to this expression, we can prove that the measure
vy, is indeed invariant for Eq.(M-7). Let us introduce the
forward Kolmogorov equation: given a test function ¢ €
c(®)

dwu(t,q) = Lu(t,q)t >0, g€ X u(0,q) = ¢(q)-

The solution to this equation is verified to be u(t,q) =
E(¢(q:) | 90 = ¢) (see the Feynmann—-Kac formula)
and is usually denoted as u(t,q) = e*“¢(q). The mea-
sure vy is invariant if for any t > 0 [, u(t,q) dvs(q) =
J5 u(0,q) dvs(q) = (@)uy. This is easily verified thanks
to Eq. (12):

G Letroas@ =5 [ Cowan

- / Le'“¢(q) dvs(q) = (LeF9,1), = 0.
>

Proof. Let us write \; as the It6 process
d)\t = ,u(qt) dt-l—o(qt) th, (13)

where p : RY 5 R™, o : RY — R™*4 and W, is the same
Wiener process as in Eq. (M-7). Using this expression in
Eq. (M-7) brings

dg: =( = VV(g) — G(g)"p(qr)) dt
+ (V2671 — G(a) o (qr)) AW,

where we recall the notation for the Jacobian G = Vng.
Using It6 formula we find

0 =dg(q:) = G(q¢) dg + by dt

= G(q)(— VV(q) dt + /2871 dW; — G(g)TdN,)
+ by dt, (14)

where b, is the d-dimensional process defined as (omitting
the dependence on ¢;)

(b0 = £ (VI T - G7o) (V2B T~ GTo)" : W,
/93—1
=p3"1Ag — 225 (GTO' + O’TG) 1 V3¢
+ %GTUUTG : Vig;.
(15)



From Eq. (14) yields

-1

dA = (Gla)Gla)") ™ Glan) (= IV (ar) at
+ \/Fdwt) + (G(g)G(g)T) "brdt. (16)
Identifying with Eq. (13) we find
o(q) = \/26-1(G(q))T, which used in Eq. (15) yields
(b)) =B (Agi — (GT(GT)T +GTG) : Vg,
+GT(GENHTGETG : Vig).

As Gt G is symmetric and GGT = I,,,, we obtain

(b)i = B~ (Agi — GTG : V?g;) = B71: V3. (17)
Inserting Eq. (16) in Eq. (M-7) brings

dgy = —11(q:)VV (qe)dt + /287 T1(g ) dW,
— G (ge)be dt. (18)
To conclude the proof we require the following technical
relations on the mean curvature vector (Eq. (19a) follows

from a direct computation; the proof of Eq. (19b) is direct
but involved and can be found in (Lelievre et al., 2010))

Lemma A.4. The projection 11 and the vector H defined in
Eq. (8) and Eq. (9) satisfy the following equalities

H=(-T)V-1I,
I: V% =—(GH); 1<i<d,

(19a)
(19b)

Equality Eq. (19a) ensures that II'{ = 0. Combining Eq.
(17) and Eq. (19b) we can write by = —3~'GH. Thanks to
these relations and the definition of II, we obtain

G, =B7IGTGH = BN I - ID)H = B~

This equality combined with Eq. (18) proves Eq. (A.3) and
concludes the proof of Lemma A.3.
O

A.2. Poincaré inequality on a manifold

Poincaré inequalities, also called spectral gap inequalities,
form an important family of functional inequalities in the
theory of Markov diffusion processes. They are the sim-
plest inequalities that provide results on the convergence
to equilibrium. Stronger results can be obtained with the
family of log-Sobolev inequalities, which are at the center
of the Bakry—Emery theory (Bakry & Emery, 1985). We
follow here closely the book (Bakry et al., 2013) on this sub-
ject (more specifically §1.16.2 and sections 4.2, 4.8, C.6).
For the necessary terminology of Riemannian manifolds
we recommend the introductory textbook (Lee, 2018) (the

literature on this topic is vast and contains many works of
high quality).

As presented in (Bakry et al., 2013)[Chap. 4], a Poincaré
inequality can be obtained as a consequence of a curvature-
dimension condition. For the sake of presentation, we in-
troduce this result in the setting of a weighted Riemannian
manifold. Let (M, g) be an n-dimensional Riemannian
manifold, where g is the Riemannian metric. We consider
the diffusion operator

L=A; = (VaW,Vg)g,

where A denotes the Laplace-Beltrami operator on the
manifold M, V denotes the Levi—Civita connection (co-
variant derivative) and (-, -) 4 denotes the Riemannian metric
((X,Y)g = g(X,Y) for all vector fields X,Y"). We verify
that the associated invariant measure is dy = Z _16_Wdug,
where dug is the Riemannian measure (Bakry et al.,
2013)[§1.11.3]. For N € [n, oo], we define the 2-tensor

. , 1
Ricy (L) = Ricg + VoW — mdW ® dW.

where Ricg is the Ricci curvature 2-tensor and V3 denotes
the Hessian operator on M (the case N = n is consid-
ered only if W is constant). In this context, a curvature-
dimension condition CD(p, N') for p € Rand N > n holds
if and only if (see (Bakry et al., 2013)[C.6])

CD(p,N) : Ricn (L) > pg, (20)
in the sense of symmetric (0,2)-tensors (covariant 2-
tensors). In the flat space M = R", the condition CD(p, o)
reads V2W > pI, which is nothing but the convexity of
the potential W. Under CD(p, N), the measure y is proved
to satisfy a Poincaré inequality (in (Bakry et al., 2013),
combine Thm 4.8.4 with the discussion in section C.6).

Theorem A.5. (Bakry et al., 2013)[Thm 4.8.4] Under the
curvature-dimension condition CD(p, N) with p > 0 and
N > n, N > 1, the measure | satisfies the Poincaré
inequality

Var, (@) = 1 = (@ullZ2n) < CrIVedlizgy @D
with constant Cp = %, Vo € L?(u) N H(p).

As the tensor dW ® dW is positive semi-definite, we verify
the monotonicity Ricy .y (£) > Ricy (L) for any M > 0.
This implies in particular that C'D(p, N) = C'D(p, co) for
any N € [n,o00]. Hence, among all choices of N > n,
CD(p, o) is the weaker condition.

Let us now consider this result in the context of the con-
straint manifold ¥ in Eq. (M-1). We consider the space
R? with its Riemannian manifold structure given by the
Euclidean metric g(v, w) = v - w for all v, w € RY (for all



geRY pc Tqu is identified with R? through a canonical
isomorphism). Assuming that ¢ is smooth and that V?; g has
everywhere full row-rank, ¥ is a smooth embedded subman-
ifold of R? of dimension n = d — m (see e.g. (Lee, 2018)).
Furthermore, Y is equipped with the metric induced by g:
for a local parameterization of ¢ : U C ¥ — RY, g is given
locally on U by

oYt O
~ OzJ Oxk

delda® = (V9Viy) ;) dalda®
(22)
We now define the potential W = V|5, where V|5 de-
notes the restriction of V' to . Assumption 3 corresponds
then to condition CD(p, c0) above. Applying Theorem
A.5 we obtain Poincaré’s inequality on the constraint man-
ifold ¥. We note that for a function ¢ defined on R4,
the covariant derivative in R? of ¢|s on the manifold is
the orthogonal projection of the directional derivative of
¢ (in the ambient manifold R?) onto the cotangent space:
V4(dln)(q) = (q)V4é(q). Furthermore, we note that the
surface measure oy, equals the Riemannian measure on the
manifold (compare (Lelievre et al., 2010)[Rem. 3.4] with
(Lee, 2018)[Prop. 2.41] and Eq. (22)). We thus obtaln the
result of Theorem A.1 with constant Cp = % = ﬁ'
A.3. Exponential convergence to equilibrium and
central limit theorem

Let us define the norm of a linear operator A : LZ(vs) —
L3(vs) as

AN 22 (s

A 20, = sup :
IAll5 (23 ws)) 10122 (vs)

¢>EL2 (vs)
Denote ¢ = ¢ — {¢),, € L2(vs). The Poincaré inequality
Eq. (4), rewritten on the subspace L(vs), is as follows:

_ 1 _ _
161720 < ﬁHVE(bHQLg(VE) Vo € Li(vs) N H' (vs).
(23)
Using the reversibility of the measure Eq. (12), we can
prove the following result (the proof follows the same lines
as (Lelievre & Stoltz, 2016)[Prop. 2.3], see also (Bakry
et al., 2013)[Thm 4.2.5]).

Lemma A.6. The measure vs; satisfies the Poincaré in-
equality Eq. (23) if and only if

_9oL
||€t£||B(Lg(uz)) <e R (24)

Exponential convergence to equilibrium is then directly ob-
tained from Lemma A.6:

L L
e Bl 2 ws) < e llszzwsn 191 L2 0s)

<% N0l L2 (s)- (25)

This inequality implies Eq. (5) (note that e**(¢),,. =
(¢) ) and thus proves the first assertion of Corollary A.2.

A consequence of the exponential convergence to equilib-
rium Eq. (25) is the following central limit theorem for
time averages (

=3l @
Varadhan, 1986))

Theorem A.7. (Bhattacharya, 1982) If Eq. (25) holds, then
the following convergence in law is satisfied

(g¢) dt (see also (Kipnis &

VT (&)1 — (D)) — N(0,52)

asT — oo,

where the asymptotic variance O'; is given by the formula

02 =2(p,—L710) with ¢ = ¢ — ().

To quantify the asymptotic variance, we use the following
classical result.

Lemma A.8. (e.g., (Lelievre & Stoltz, 2016)[Prop. 2.1])
If Eq. (24) holds, then the generator L is invertible and
the resolvent can be expressed as — L' = fo ett dt and

satisfies the bound || L~ 1”8([/%(112)) < QBL.

Using Lemma A.8 and Cauchy—Schwartz inequality, the
asymptotic variance in Theorem A.7 can thus be bounded
as

03; = 2/25(—£_1¢3) dvs < 2H‘C_1HB(L%(VZ))H(EH%S(UE)

B2
< Tlelzz0m):

This estimate completes the proof of the second assertion of
Corollary A.2.

B. Discretization of constrained Langevin
dynamics

We present here the details of the constrained training meth-
ods considered in this paper. Both the overdamped Eq.
(M-7) and underdamped Eq. (M-12) Langevin dynamics are
discretized for the constraints presented in Section 3. We
emphasize that the initialization of each given method must
be done with care: the constrained parameters, the potential
slack variable, as well as their momenta in the underdamped
case, have to satisfy the constraint initially.

Recall the notation introduced in Section 3: 6§ € R" is the
vector of all the parameters of the model, we consider the
variable ¢ = (6,¢) € RY, d = n + nf, where £ € R®isa
slack variable to enforce the potential inequality constraints.
The loss is extended ¢ = (6,€) as V(q) = Lx(0) (in
particular V¢V = 0) and constraints are given by a map g :
R? — R™. The parameters are partitioned as § = (6, 6¢),
where §* € R™" are not involved in any constraint while
6¢ € R"™ are



B.1. Discretization of constrained overdamped
Langevin (general constraint)

Following (Lelievre et al., 2010)[Chap. 3] a simple dis-
cretization of the constrained overdamped Langevin dynam-
ics Eq. (M-7) is given by the iteration ¢, € X — @nt1
defined as

Qn+1 = qn — qu(Qn)h + v 26_1h Ry,
dn+1 = Qn+1 - ng(Qn))\m (26)
where \,, € R™ is such that g(¢,+1) = 0,

where R,, ~ N(0,I) is a vector of iid standard normal
random variable. The first step of Eq. (26), Gn+1, is an
Euler—Maruyama step for standard overdamped Langevin.
As G, 41 in R is generally not on the constrained manifold
Y, the last term is present to project g,+1 back onto X,
ensuring ¢(gn+1) = 0. In particular, for the unconstrained
parameter we have VeTug = 0, xn« which implies that
Ohi = O_zﬂ is a standard EM step.

In general, projecting back onto the manifold ¥, i.e., finding
An, can be done using root-finding algorithms. Nevertheless,
for certain constraints g the roots can be found explicitly.
This is the case for the circle constraint Eq. (M-2) (see
Section B.3). A potential weakness of method Eq. (26) is
that the projection process can be guaranteed only for small
enough step size h (i.e. ¢, must be close to ). Indeed,
even for the circle constraint if & is too large it might not
be possible to project g,,+1 back onto the circle following
the direction V,g(g,). See (Lelievre et al., 2020) for some
discussion of methods to allow computation to be performed
in the large timestep regime.

An alternative method is given by the iteration ¢,, € ¥ —
Gn+1 € X defined as in (Lelievre et al., 2010)[Chap. 3]

Gnt1 = qn — VgV (gn)dt + /287 1h R,
gn+1 = qTL—Q—l - ng(Qn+1))\n, (27)
where \,, € R™ is such that g(g,+1) = 0,

where R, ~ N(0,1) is a vector of iid standard normal
random variable. The projection used in method Eq. (27)
is in general more robust. The circle constraint is a good
illustration of this: while in Eq. (26) we project following
an oblique direction, in Eq. (27) the projection is orthogonal
and always exists (see Section B.3).

B.2. Discretization of constrained underdamped
Langevin (general constraint)

We next consider the discretization of the constrained under-
damped Langevin dynamics Eq. (M-12) where we denote
by p = (pp°,pS) € R +n°+7° the momenta associ-
ated with the configuration ¢ = (6%,0¢,¢). Following
(Leimkuhler & Matthews, 2016), the system is split into

A,B,O components Eq. (M-14), where B represents a pro-
jected impulse defined by the loss gradient (restricted to
the cotangent space), O represents a projected stochastic
impulse, and A represents evolution along geodesics (i.e.,
for circle constraints, these are rotations on the circles).

As in the overdamped case, the equality VOTU g = Oy xpnu €n-
sures that the unconstrained parameters and their momenta
(0", p*) evolve following the A,B,O steps for unconstrained
underdamped Langevin (see (Leimkuhler et al., 2016)). As
the B and O components only involve a variation in the mo-
mentum p; and because the constraint only involves g;, they
can be solved exactly for any constraint. The A component
involves a variation of the configuration ¢, and thus cannot
be solved exactly (in law) for any constraint. However, as
this part does not include any force evaluation (which would
require back-propagation to compute the gradient), it can
be approximated cheaply using a few steps of standard well-
known schemes such as SHAKE or RATTLE (see Section
B.6 for orthogonal constraints). Furthermore, for simple
constraints such as the circle constraint Eq. (M-2) the A
component can be solved explicitly (see Section B.4).

Let us present the details of the B and O steps. For con-
venience, let us introduce the following notation for the
variables involved in the constraint w = (6¢,&) € R +nf
and associated momentum p* = (p¢,p¢) € R™“+7° The
projection onto the cotangent space Eq. (8) is then as

0 0
T 771 T -1
: 9o-H " goe 9¢ H gec)
with IT,, = _ _ )
(geTuH Yg¢  gfH ge

where we have denoted the partial Jacobians by gge =
Vglg € Rmxn® ge = Vgg € R™ ™" and the matrix
H = goegge + gege € R™™.

B component. Given gy, pp € T*> and atime t > 0

a: = qo, pe=po — tVqV(q0) — Vag(qo) (1 — po),

where i is such that p; € T;tZ (i.e., it satisfies the con-
straint 0 = V,g(q¢)p:). Note that as go, po satisfy the con-
straints we have po = 0. Projecting onto the cotangent
space T % = Tp¥ and using I1(q0)V,49(q0) = 0 and
po = II(go)po, we obtain

pe=1(q)pr = M(qo) (po — tV4V (00) — Vag(qo)ie)
= po — tIl(q0) V4V (qo)-

The B step is thus obtained for a chosen stepsize h > 0 as:
given ¢, = (0%,05,¢€,) € ¥ and

n’’n’



pn = (P2, p5,05) € T %
9ﬁ+1 = ‘937 92,+1 = 927 §n+1 = fn,
Ppi1 = Pn — hVeuLx (0,),

p’lc'7,+l :p% _hVQCLX(Hn)7 ﬁ;él-i,-l :pia
(B, gen.)

C A C
(%) = ot (%11).
Pri1 Prni1

0C
where w,, = | ."
(&)

O component. Similarly as for the B part, the O part can
be solved exactly in law for any constraint. Given qq, pg €
T*% and a time t > 0, we have

(29)

qt = qo,

t t
Pt = Ppo — 7/ pydt + \/277/ AWy, — Va9(qo)ve,
0 0

where v ensures that p; € T}, 3. Projecting to the cotangent
space T;tZ = T;OE as before, we obtain

pe = (q:)ps

t t
=po— 7/ I(go)ps dt + +/2v711(qo) / dW;.
0 0
We thus recognize that p; is an Ornstein—Uhlenbeck process:

pe 2 T(go) (e "'po + /7(1 — e 270)R)

with R ~ N(0, I4), where the equality holds in law.

The O step is thus obtained for a chosen stepsize h > 0
as: given g, = (0%, 05,&,) € ¥ and p, = (pt, pf, p%) €
%

dn

7Cz+1 = 97017 €n+1 =&n,

Pigr = €l \fr(1 = e RY,
Prer = ¢ M5+ fr(1— e Re,
PR gy

(751) = ot (%)

pn+1

where w,, = (gi) ,
(30)

and R, R°, and RE are independent standard normal ran-
dom variables.

u _pu
n+1 _9n7

(O.gen) g€

B.3. Circle constraint, overdamped Langevin
(c-CoLA-o0d)

We consider here the circle constraint Eq. (M-2), for which
the partial Jacobians are computed as

Va9 = (V5.9 V4eg, Ve g) € R,
9grgi =0, Opegi = 20705, O¢,9i = 2805, (31
where d;; is the Kronecker delta.

For this constraint, the projection step in Eq. (26) can be
computed explicitly. Indeed A,, can be found by solving the
m quadratic equations 0 = ¢;(Gn+1 — Vqg(gn)An) 1 <i <
m. The (potential) two roots of each equation corresponds
to the (potential) two projections of g, onto the circle
following the direction Vg;(gn) = 2(65 ;,&n,:). When
two roots are found, we may select the one closest to the
point of origin (9;’“7;, &n.;). However, if the point to project
(0541 4 Enr1,i) s too far away from the circle, this oblique
projection may not be possible (i.e., the quadratic equation
has no real root).

For the circle constraint, method Eq. (27) thus leads to a
more robust projection process. Indeed, as Vg;(gn+1) =
2(05, 114> &n+1,), the direction of the projection is now or-
thogonal to the circle. To find an expression for the orthogo-
nal projection P of a point (A1, &;) on the circle, it is easier
to use a geometrical approach than to find the Lagrange
multipliers:

(61,&) = P(61,&1) = (ricos(a), rsin(a)),

where o = arctan (%) We obtain the following dis-
cretization of the overdamped Langevin with circle con-
straints. We initialize the parameters of the neural net-
work using standard PyTorch initialization (Paszke et al.,
2017; He et al., 2015), i.e., U(—1/+/Nin, 1/v/Ni, ), where
N;,, is the number of inputs to a layer. The auxiliary vari-
ables ¢; corresponding to the constrained parameters 65
are initialized to obey the constraint (05)? + &2 = r?.
For a chosen stepsize h > 0 and given a configuration
qn = (0%,0¢,&,) € X, one step of the method is defined

ny’n

by In+1 = (9;;+1a 9'2+1>§n+1) €Xas
a1 = n i — h@griuLX(Gn) + /287 1hRY,
H_Z—s-l,i =0, hagicLX(Qn) + V28 1hERS,

Cnt1i =ni + V 2/3_1hR§,

5n+1 i (32)
Qi = arctan 707 ,
n+1,2
92+1,i = r;cos(an,;),

€nt1,i = misin(ay, ;),

where R}, R, Rf are independent standard normal random
variables.



B.4. Circle constraint, underdamped Langevin
(c-CoLA-ud)

We provide here the full discretization of the underdamped
Langevin dynamics in the case of the circle constraint Eq.
(M-2).

A component. For the circle constraint we can solve the
A step explicitly. First recall that as V., g = 0, the uncon-
strained parameters §* are obtained with a standard A step
of the unconstrained underdamped Langevin. Let us then
focus on solving the constrained components: we denote
w = (6°¢),p% = (p°,p°). Then for 1 < i < m the A step
in Eq. (M-14) corresponds to the constrained ODEs

w; = py’
P = —2X\w; (33)
051 + (&> =77, 05p¢ + &pf = 0.

As these constrained ODEs are uncoupled, let us drop the
specification of the index ¢. By assumption, we are given
initial conditions that satisfy the constraint (wg, p§’) € T*X.
Solving the second order ODE w = —2\w, we find that any
solution has the form w; = Rf’\wo, where Ry is a rotation
matrix with angular speed w given with its time derivative
as

= (S )
iy = (TS0 conlen) )

Computing the momentum p}’ = w; = wao, and using
the properties of 2y we verify that wy, py’ satisfy the con-
straints in Eq. (33) (||.|| denotes the Euclidean norm in R?
and - the dot product):

[wil|* = || R wo|* = [lwol|* = 72,
wy - pp = wg(R‘{’)TR‘fwo =0.

We still have to find the angular speed w = 2\ such that
the momentum p;” is consistent with its initial value pg’ (we

denote wg = (6§, &o) and py = (pg,pg)):
Py = RB“wo & ph=wé and pg = —wb.
We thus find that
Eop§ — 0595 = w(|&l* + 1651) = wr?
& w= (Eork — 66rd).

We have thus found an explicit expression for the solution
of the A component for circle constraints Eq. (33).

To complete the B and O steps given in Eq. (29) and Eq.
(30), we need an explicit expression for the projection II,,

in Eq. (28) (using Eq. (31), recall that m = n® = nf):

_ pll _pl2
Hw(w):(lm D D )7

—D2 I, — Dy

where D*! € R™*™ are the diagonal matrices defined as

o2 e,
pu_ 0F e 0&
I e o (1 N | R <

w_ &G

TR+ sl

Assuming that w = (0¢, £) satisfies the constraint, the pro-
jection of (p¢, p¢) is thus computed as

() -ne0 2)

. 05 .
pf=p§—7§(9§pf+€mf) 1<i<m,
where ¢

e i pe = ;
P =7 — (055 +&p]) 1<i<m.

Note that in the B step Eq. (29), the above expressions can
be simplified by combining the simple definition of (p¢,, 75, )
with the constraint

0= (V"g(q)p), = 2(0:p5 + &ipf).

We provide below the explicit updates for the A, B and
O components for circle constraints. We initialize the pa-
rameters of the net using standard PyTorch initialization
(Paszke et al., 2017; He et al., 2015). The auxiliary vari-
ables £ corresponding to the constrained parameters 6¢ are
initialized to obey the constraint (§¢)? + £2 = r2, so that
qo = (0,05,&) € ¥. The momenta, p*, p°, and p¢, are
generated in the same manner as for standard SGD with
momentum in PyTorch, i.e., as equal to the initial gradients.
Subsequently, the momenta belonging to the constrained
variables p° and to the auxiliary variables p¢ are projected
using II,,, so that py = (pg,pg,pg) € T 3. For a stepsize
h > 0 we obtain

u _ pu u
n+1l,0 — an,i + hp'rt,i?

1 . :
Wi = sz(ﬁn,m;,i - Gz,ipﬁ,iy
7
92—&-1,1 = cos(wih)wa + sin(w;h)&, i,

(A)§ &nrri = — sin(w;h)0y, ; + cos(wih)&n i
pZH,i = pg,i?

Pri1i = wi( — sin(wih)efl’i + Cos(wih)fn,i),
—W; ( COS(Wih)efz,i —+ sin(w,;h)fnﬂ;) y

3 _
Pry1: =



u u c c
n+1 — Gna 9n+1 = ena §n+l = fn,

Pri1 = Pn — hVouLx(0n),
_¢ c 1 c
(B) Prn+1,i = Pnyi — h(l - T72|0n,1|2)80fLX(0n)7

~ 1
prJrl,i = pfz,i + h;zercz,ifn,iaf)fLX (0n),
K3

u _ pu c __pc —
n+l — en’ 9n+1 - Hn’ §n+1 - fna

Plyy = e Pl 4\ /BL(1 — e~ R,
Posr = €M 4 /BL(1 — -2 Re
O 55, = e 4+ /p1(1 — =2 RE,

c |2

c _ | n,i
pn+1,i - (1 - 2
L4

1
—c c g
)pn+1,i - r2 97L,i£7L7ipn+l,i7
i

[6nil* -
+<1_ n21 )pi-s-l,m

L5

C AC
3 9n,z‘§n,ipn+1,z‘
Pny1i = — p)

T

where R", R¢, and R¢ are vectors of independent standard
normal random variables.

B.5. Orthogonality constraint, overdamped Langevin
dynamics (0-CoLA-od)

We present here a particular discretization of the constrained
overdamped Langevin dynamics Eq. (M-7) for the orthogo-
nality constraint Eq. (M-4).

For notational convenience, we present the updates for the
weight matrix ¢ of a given layer £. The updates for the
biases are standard Euler—Maruyama steps such as given for
0" in Eq. (32).
Referring to Eq. (M-4), we denote

Q=w¢, r=n’, s=nl"1 ifnt1 <nf

Q=WHT, r=nt"1 s=nt otherwise.

(34)

so that Q € R"*¢. With this notation, the constraint Eq.
(M-4) is g(Q) = 0 where

g: R — RS, 9(Q) =QTQ — I,. (35)

Recall that due to symmetry, the matrix equality g(Q) = O
corresponds to s(s + 1)/2 constraints. We compute the
partial derivative

004 9i5(Q) = 01:Qrj + 61;Qri (36)
1<4,5,k<s, 1<I<r.

In particular, if A is an s X s symmetric matrix, we verify
that

> 00,9 (Q)Ai; = 2(QA),,-

ij=1

We thus obtain the natural matrix form of the constrained
dynamics Eq. (M-7): Q; : (0,00) — R"** solves

dQ: = —VoV(Qy) dt + /2671 dW; — Q1 dAy,
g(Qt) =0,

where (VQV)U = 0q,V = aW;j Lx (or 8WJ¢1LX) and
W; is a Wiener process in R"*#. Furthermore the process
A4 has values in the s X s symmetric matrices and is the
Lagrange multiplier corresponding to the s(s + 1)/2 con-
straints.

(37)

Applying discretization scheme Eq. (26) to Eq. (37), we
obtain the iteration step @), € ¥ +— Qn4+1 € X given by

Qn-‘rl = Qn - hVQV(Q) + V 26_1]7'Rna
Qn+1 - Qn+1 - QnA'ru
where A,, is a symmetric s X s matrix s.t. g(Qn4+1) = 0

and R,, € R"*¢ is a matrix of independent standard normal
random variables.

(38)

Note that the projection step in Eq. (38) requires to solve
a non-linear system. Following a similar technique as de-
scribed in (Leimkuhler & Reich, 2004)[Chap. 8], we derive
a quasi-Newton scheme for that task. Using the fact that @,
satisfies the constraint we verify that

Qr1Qn = I, = hVQV(Qn)"Qu + /28 1hR] Q.
The constraint g(Q,,+1) = 0 thus reads
0= (Qn+1 - QnAn)T(QnJrl - QnAn) - Is
= (@11 Qui1 — L) =20, + O(Vh),  (39)

where O(v/h) denotes a matrix whose 2-norm has order
V'h. Solving for A,,, we find

Ay = 5(Q01Quir — 1) + O(VA)

Neglecting the terms of order v/h and higher, we obtain
the following quasi-Newton scheme: setting Q(¥) = Q,,,1,
repeat the iteration

QU =™ —Q, AW, (40)
((Q(k))TQ(k) - IS)7

where A% =

N =

until the process reaches convergence and set Q11 =
Q("'“). To assess whether convergence has been reached, a
tolerance on the 2-norm of A*) can be assigned: ||A¥)|| <
TOL. However in practice, to ensure that the process ends
and to avoid undesirable overhead we typically prefer to
either combine this stopping criterion with a limit for the
number K of iterations, or use a fixed number of iterations



K. Note that estimate Eq. (39) ensures that a small number
of iterations K is sufficient for the constraint to be satisfied
up to a small error.

The initialization for the constrained weights is performed
following (Saxe et al., 2013), which is an built-in option in
PyTorch. Other parameters are initialized using the standard
PyTorch initialization (Paszke et al., 2017; He et al., 2015)
unless otherwise indicated. Constraints are applied layer-
wise, where for convolutional layers with weight tensors
of the size n; X n;j_1 X np X n, (wWhere nj and n,, are
the height and width of the kernel) the weight matrices are
reshaped as n; X nj_1npn,. For CNNs these reshaped
matrices are typically rectangular. If they are thin, but long
(i.e., ny > ny_1npny) we apply the constraint WTW = 1T,
but if they have more columns than rows we apply the
constraint WW7T = I.

B.6. Orthogonality constraint, underdamped Langevin
(0-CoLA-ud)

To discretize the underdamped Langevin constrained dynam-
ics, we need the orthogonal projection II onto the cotangent
space T¢)X. As the constraint Eq. (35) is given in a matrix
form, using the formula Eq. (8) is not very convenient so
we will rather derive II from its projection property.

Using Eq. (36), we find that for 1 <i7,5 <'s

0= Z Zanzgij(Q)sz = (PTQ+Q"P);;,

k=11=1

which leads to the following convenient expression for the
cotangent space

ToS ={PeR™ | PTQ+Q"P =0,}.

Now, given P € R"*¢ we want to find a symmetric s X s
matrix A such that P = P — QA belongs to TéZ, i.e.,

0s=PTQ-Q"P=PTQ+Q"P-AQTQ — QTQA.

This equation is easily solved for ) € 3 and we find A =
1(PTQ + QT P). We obtain the following expression for
the projection onto the cotangent space:

HQ :RTXS —>RT><S,
_ _ S _
P TlgP =P — 5Q(PTQ +QTP).

We then verify that Il is indeed a projection onto the
cotangent space 13X (ie., llgP € THX VP € R™®
and Hé = Ilg) and that this projection is orthogonal

with respect to the Frobenius inner product on R"** (i.e.,
(P —TlgP, P) =0, where (A, B) = tr(AT B)).

A component. For the orthogonal constraint, the A

component in Eq. (M-14) can only be solved approximately.
A simple yet efficient discretization of A is the RATTLE
scheme (see e.g. (Leimkuhler & Reich, 2004)[Chap. 8]):

Qni1 = Qn +hPyiq/2,
Pn+1/2 = Pn - QnAn-i—l/Q
where A, 11/ is s.t. Q£+1Qn+1 =1,
Poy1=Poy1j2 — Quni1Anta
where A, 1 is s.t. QZHP"H + PnT_HQn_H = 0.
) B (41)
Denoting A, 1/2 = hAy 412, Pay1 = Ppy1/2 and using
the projection operator II, Eq. (41) can be rewritten as

Qn+1 = Qn + hpna
Qn-i—l = Qn-i—l - QnAn+1/2

where An+1/2 is s.t. Q£+1Qn+1 = I, (use Eq. (40)),

Pn—i—l - Pn - %QnAnJrl/Za Pn+1 - HQnJran-i-l-

(42)
As in the overdamped case, we may now use the quasi-
Newton scheme Eq. (40) for the projection step (to approx-
imate A,, s2)- Using K iterations of the quasi-Newton
scheme Eq. (40) (ie., Qi1 = QU), we verify that
—QnA 1o satisfies

K-1 K-1
~Quinirjz =Y QuA® =% QD — W
k=0 k=0

= Q(K) - Q(O) = QnJrl - Qn+17
so that pn+1 = Pn + %(QnJrl — Qn+1)-

We obtain the following full discretization of the under-
damped Langevin dynamics with orthogonality constraint.
The initialization for the constrained weights is performed
following (Saxe et al., 2013). Corresponding momenta are
initialized as the initial gradients (equivalently to standard
PyTorch initialization) and subsequently projected using
Py = Py — £Qo(Py Qo + Qf Py). The A,B,O steps are
then given as:

Qni1=Qn+hP,, QO =Q,1,
fork=0to K — 1:
QWY = Q) — 9, AP,
1
where A(F) = 5 ((Q(’“))TQ(’“) - Is),

Q71,+1 = Q(K)a

_ 1 _
Pn+1 =P, + E(QnJrl - Qn+1)7
Py =Tgq, ., Poy1 = Pon

1 _ _
- iQnJrl (PEHQnH + (Qn+1)TPn+1)~

(A, 0OG)




Qn+1 = Qna

Pot1 =P, —hVoV(Qn),
(B, 0G) Pn+1 = HQﬂ Pn+1

- n+1 Qn( 1Qn (Qn) n+1)

Qn+1 = Qna

Py =e P, + /8711 — e=2h)R,,,
(0, 0G) _

Py =1lg, P

- _n+l - 7Qn( +1Qn (Qn) n+l)

where R,, is a matrix of independent standard normal ran-
dom variables.

C. Feedforward neural network notations and
gradients (backpropagation)

Given a dataset X = {x;,y;}),, where 2; € R"" y; €
R4, we want to construct an interpolant of the relation
x; — y;. For this task, we choose a feedforward neural
network (NN) with L + 1 layers (i.e., L parametrized layers,
L is the depth). For 1 < ¢ < L we denote the width of layer
Casd’ (d° = d™, d¥ = d°"*). The parameters of the NN at
layer ¢ are given by the weights and biases

WleRIXE peRY 1<¢<L.

For notational convenience, let us stack the parameters in a

vector
o' = (9@) ;0L =1 eRY,

Weel
0%, = vect(W*) = e RE4T

Wé€d£—1

In particular ¢ € R™, where n’ is the number of pa-
rameters in layer ¢, n = d* x d*~' + d’. The vector
of all parameters is denoted § = (6',...,6%) € R", where

n= ZzL:1 ng.

Each layer 1 < ¢ < L is equipped with an activation
function ¢° - R Rde, which is is applied component
wise: ©f(z) = ¢*(z;), for some ¢* : R — R. In each layer
1 < ¢ < L, we define the following functions

ol R XA Rd’57 al (0,27 = Wit b,
S RSxdT Rd’f’ 200,27 = L (ah(0°, 2YY),
to which we associate the following shorthand notation

14
— R4,

We verify that the map 6¢ — a’ (6%, 2/~1) can be written as

T ® 14e) 05y + 0
_I)T ® Idev Idz)aea

where I; denotes the identity matrix in R? and for z €

RS, 2T @I, = (#2114, ..., zsId). We then introduce the
intermediate classifiers as p°(x) = x and

0 4

pf . Rnxd N Rd ,

P(8.2) =z o - o zh(a),

1 < ¢ < L, for which we use the shorthand pj, = p*(0, -).
The (final) classifier is then the function py = g‘ (R
Rdout )

To train the NN on the dataset X, we define the loss function
as

N
Ly :R" =R LX(G):—ZD(p(97$i)7yz’),
=1

where D = D(j,y) : R*™ x R™™" — R is a function
that measures the discrepancy between ¢ and y. In a simple
classification case, d°** = 1 and D is chosen to be the cross-
entropy. All the commonly used training method require the
computation of the gradient of the loss function given as

R* - R"

ZVD

VoLx

VoLx (0 (0,2:), i) Vop(0, x;).

Expression for the gradient of the loss
(backpropagation)

Recall that we denote the Jacobian matrix of a function
f:R™ — R™ as the map VT f : R® — R™*" defined as
(VT f)ij = 0;fi. Given two functions [ : R™ — R™’
and ¢ : R™ — R™’ the chain rule implies the Jacobian
matrix of the composition g o f satisfies

3 1
m-Xm
R ,

VTg(f(2)) VT f(x).

Vg o f): R -
V(g o f)() =

We compute the partial Jacobians of a7 (87, 29~1) as

; J j—1 3 J
VEad :RY xRY — R >

Vg (07,2771 = () @Iy, 1), (43)
and
RY xRYT S R

Vi el (07,271 = W, (44)

vi_ial



The partial Jacobians of 27 (67, 27~1) are then

VL2 RY xRY T o Rdjxnj
VT-zj(é)j,zj*l) Vajgo( (zj 1))VT'aj(9j,zj*1),
VZ] - ,.an XRd7 1 Rd7><d7 1 vz7 1Zj(9j,2j71)

= Vi@ (ag; (277 VEdd (07,2771,
45
where we note that (V,; ¢’ (z))rs = 0¢? (2,)6,s (i-e., the

matrix is diagonal).

The partial Jacobians of the classifier are then given by

Vaep(0,2) = VI _1z(0%,py ()
V(0 () V2 (0 (@),
1</<L-1,

Vng(G,:z:) VHLZ (0L7p5 1( ))7

(46)
and
VZp(éLsc) =V (08 py (@)

VL2202, py(z))VE (0", 2).  (@T)

From (47), replacing the partial Jacobians of 27/ with the
expressions provided in (45), we obtain

VIp0,z) = FEwl ... F2wW2EMW!,  48)
where F is the Jacobian matrix of the activation in the jth
layer, ¢/ (e.g., if ¢/ = ReLU, FJ is a diagonal matrix with
1 and O entries). Constraining the weights moreover has a
direct influence on the smoothness of the interpolant py(z).

From (46), replacing the partial Jacobians of z7/ with the
expressions provided in (45), we obtain

Vipola) = FEPE.
Vhpe(x) = FEWE ... FEFIWHLEEPE
1<¢<L-1, (49)

where matrices F are defined above and P! is sparse with
repeated entries of pj(z) = z); o - - 0 z5, (). This shows
that as the depth L is increased, the gradient of py(x) with
respect to the parameters of any layer is composed of sparse
products of the weights 7. This multiplicative structure
leads to difficulty of DNN training: the multiplication of
small weights < 1 leads to a low value of the gradient
which in turn has the effect of slowing the training (van-
ishing gradient), while the multiplication of large weights
> 1 leads to a large value of the gradient which affects the
stability of the learning procedure (exploding gradient).

Let us explain the stability in more detail. As training meth-
ods are discretization of a dynamics involving the gradient

Vg Lx, the stability of a method is connected to the Lips-
chitz constant L on the statespace £/ = R" of the gradient.!
Assuming that L x is twice differentiable, the largest L can
be is

M < sup [Amax(6)], (50)

0EE

where A\pax () denotes the largest eigenvalue of the Hessian
V2L x (0). The entries of the Hessian are computed as

(ngX (0))7"5 =

N
Z <V9p(97 )V D(p(0, i), i) Vi p(0, xi))
=1

dout

+ZaykD

Even without providing the heavy expression of Bgres Dks
using (46) in this expression allow to appreciate the impact
of the magnitudes of the weights and of the depth on the
Hessian and thus on the stability.

rSs

yl)ae 0, pk(e xz)

D. Additional Numerical Details and Results

We perform all experiments using PyTorch (Paszke et al.,
2017) on NVIDIA DGX-1 GPUs. We compare our con-
strained methods with PyTorch’s SGD with momentum
optimiser. Unless otherwise indicated, we use for SGD
h = 0.1 and mom = 0 (to compare with our constrained
overdamped Langevin method) or mom = 0.9 (to compare
with our constrained underdamped Langevin method). We
use standard PyTorch initialization for all unconstrained
parameters (He et al., 2015; Paszke et al., 2017). Below we
provide implementation details for all our experiments.

D.1. Orthogonality Constraints

A plot of the planar spiral data set binary classification prob-
lem as used to produce Figure 4 and Figure 5 is provided in
Figure D1. The first class of the data set is generated using

& = 2v/t cos(8v/t) + 0.02N(0, 1),
y = 2Vt sin(8v/tr) + 0.02N(0, 1), (51)

where ¢ is drawn repeatedly from the uniform distribution
U(0,1) to generate data points. The other class of this
dataset is obtained by shifting the argument of the trigono-
metric functions by 7. For our experiments we used 500
training data, 1000 test data points and 5% subsampling.

To generate the results presented in Figure 4 and 5 of the
main paper, which show the effect of orthogonality con-

'Recall that the Lipschitz constant of a function h : E C
R" — R’ is the smallest constant M such that |f(z) — f(y)| <
M|z — y| for all z,y € E, where |.| denotes the Euclidean norm.
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Figure D1. Data set generated using Eq. (51).

straints on this spiral data set (see Fig. D1), we use multi-
layer perceptrons with ReLLU activation and binary cross
entropy (BCE) loss. In our experiments we vary the number
of 100-node hidden layers of the multi-layer perceptrons.
To compare the performance of our o-CoLA-od constrained
method with standard SGD we set the temperature 7 = 0
and h = 0.1 for all methods to generate Fig. 4. For Fig. 5
we do a grid-search to find the optimal value of the penalty
strength for the orthogonal regularization approach with
respect to the stepsize. In Fig. D2 we show the effect of
using a small temperature perturbation 7 = le-6. The size
of the temperature parameter was chosen to approximately
match observed fluctuations in the loss function. A more
precise parameterization is left for a subsequent work.

We also applied our orthogonality-constrained methods to
the ResNet-34 architecture on CIFAR-10 image classifi-
cation data (Krizhevsky & Hinton, 2009), see Figure 6.
The input data is pre-processed using random crop (pad=4),
random horizontal flip, and normalization. In this setting,
running SGD with orthogonal initialization worsened the
generalization performance of the resulting net and hence
the standard PyTorch initialization was used for SGD. We
train for 150 epochs and use a batchsize of 128. In Figure
D3 we compare the overdamped variant o-CoLA-od (with
7 = 0) to its unconstrained counterpart. We observe that
the use of an orthogonality constraint gives lower test loss
throughout training.

D.2. Circle constraints

For the results shown in Figure 1, Figure 2, Figure 3, and
Table 1 the first class of the data set is generated using

= Vtcos(4V/tm) + 0.05N (0, 1),
y = Vtsin(4v/tr) + 0.056N(0,1), (52)

where ¢ is repeatedly drawn from 4/(0, 1). The other class
is obtained by shifting the argument of the trigonometric
functions by 7. For our experiments we used 100 training
data points, 2000 test data points and 2% subsampling. We
use a 500-node single hidden layer perceptron, with ReLU
activation and BCE loss. We choose the optimal weight
decay value for SGD through line search. The results in Fig.
3 were obtained by computing the gradient of the predictions
of a trained classifier (after 10,000 epochs) on a 1000x1000
grid using second order accurate central differences.

For our Fashion-MNIST (Xiao et al., 2017) example we
reduce the number of training data samples to 10,000 and
we increase the number of test data samples to 60,000. We
use a 1000-node SHLP with ReLLU activation, cross entropy
loss and batchsize 128. Our main result with our circle
constrained approach is presented in Figure 7, the accom-
panying mean test accuracies with standard deviations are:
87.63+0.04% (c-CoLA-ud), 87.39 £0.06% (SGD), 87.47
+0.38% (SGD with WD = le-4), 87.29 £0.58% (SGD with
WD = 5e-5), 87.45 £0.06% (SGD with WD = le-5). Hyper-
parameters SGD: h = 0.1, mom = 0.8. Hyperparameters
c-CoLA-ud: h =0.3,y=1,7¢ = 0.05,7, = 0.1,7 = 0.

In Table D2 we present extensive hyperparameter tests for
the test accuracy and test loss obtained after 400 epochs (av-
eraged over 5 runs) using SGD-m with and without weight
decay (WD). In Figure D4 we show that both the test loss
and the maximum magnitude of the weights of the network
remains small and stable throughout training for our circle
constrained approach, while SGD shows signs of overfitting.

We also evaluate the performance of a small transformer
model (Vaswani et al., 2017) on the Penn Treebank (Mar-
cus et al., 1993) and Wikitext-2 (Merity et al., 2017) data.
The transformer has 2 encoder layers. Each encoder layer
consists of self-attention with 2 heads and a feedforward
network with 200 nodes followed by layer norms. We use
batchsize 1024 for the Penn Treebank data and batchsize
128 for the Wikitext-2 dataset. We present the lowest valida-
tion loss obtained in 200 epochs by SGD-m and our circle
constrained method c-CoLA-ud in Table 2 of the main paper.
In Table D1 we provide a comparison with weight decay.

Table D1. Minimum validation loss on Penn Treebank and
Wikitext-2 using a transformer trained using SGD-m. We found
weight decay set to WD = le-4 to give the best results for SGD-
m. In comparison, the transformer trained using c-CoLA-ud ob-
tains a minimum validation loss of 4.81 (Penn Treebank) and 5.09
(Wikitext-2). Using c-CoLA-ud therefore outperforms standard
SGD-m in the case without WD, but does less well than SGD-m
with weight decay, if the magnitude of the weight decay has been
carefully tuned. In contrast, for Fashion-MNIST image data using
a MLP we find that c-CoLA-ud outperforms both SGD-m with
weight decay and SGD-m without weight decay (see Table D2).

Optimizer Penn Treebank | Wikitext-2
Without WD
mom = 0.7 4.87 5.13
mom = 0.8 4.83 5.13
mom =0.9 4.84 5.13
With WD
mom = 0.7 4.84 5.01
mom = 0.8 4.77 5.02
mom =0.9 4.77 5.02




—~100 2 HL 6 HL 8 HL 10 HL

< =0 i LA il vl

< 90 T=1e6 vl i iy

> A 4 M

g i % | i

e b Y b Ml

5 80 i ' i ol

o i [ ul /

< 70 2 i / il i

a Vo ! / Z |

F o pghet AN Vil / f

9_)0 500 750 1000 250 500 750 1000 250 500 750 1000 250 500 750 1000 250 500 750 1000

Epoch Epoch Epoch Epoch Epoch
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le-6 (orange line). Results are averaged over 5 runs. The use of temperature is shown to speed up training and often slightly increases the

obtained test accuracies.
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Figure D3. Training loss (left), test loss (middle) and test accuracy (right) of a ResNet-34 trained using SGD vs. 0-CoLA-od on CIFAR-10
data, h = 0.1 (averaged over 5 runs). The orthogonality constraint provides modestly higher test accuracy and inhibits overfitting.

Table D2. These results are obtained for the Fashion-MNIST dataset using SGD with momentum to train a 1000-node SHLP. The results
presented in the two right-hand columns are all obtained with weight decay set to 1e-4. We found this value to give the best results for
SGD-m during a hyperparameter search. In comparison to the results for SGD-m shown in this table our circle constrained net reaches test
accuracy 87.63 %, with test loss 0.386 without using weight decay (see Figure 7). Hence it outperforms standard SGD with momentum

both with and without weight decay.

no WD with WD
SGD with mom Test Acc. | Test Loss | Test acc. | Test Loss
h=02 | mom=0.8 87.18% 1.06 84.05% 0.696
mom = 0.7 87.38% 0.890 87.0% 0.547
h=0.1 mom = 0.9 86.97% 1.133 85.35% 0.634
mom = 0.8 87.39% 0.824 87.47% 0.531
mom = 0.7 87.39% 0.750 87.25% 0.517
h=0.05 | mom=0.95 | 86.67% 1.226 85.63% 0.623
mom = 0.9 87.33% 0.837 86.24% 0.569
mom = 0.8 87.27% 0.719 87.33% 0.511
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Figure D4. Result is obtained for the Fashion-MNIST dataset with the same hyperparameter settings as in Figure 7 of the main paper. We
observe that the maximum absolute size of weights in the output layer of the network (left) and test loss (right) remain small and stable
throughout training for the circle constrained method (c-SGD or c-CoLA-ud). In contrast SGD shows clear signs of overfitting.
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Figure D5. Test loss and test accuracy averaged over 100 runs for constrained approaches with varying levels of additive noise, i.e.,
with different values of the temperature hyperparameter 7. The set-up is the same as for Fig. 1 and Fig. 2 in the main paper, i.e., we
train a 500-node single hidden layer perceptron for a spiral binary classification problem (Eq. (52)). Hyperpar. settings: h = 0.05, 2%
subsampling, 7o = 1,71 = 5 (see Eq. (M-2)). The best performance is obtained using temperature 7 = Se-5. This is also the temperature
that results in the classifier with the lowest curvature estimate (see Table D3).

D.3. Curvature

It is difficult to establish a commonly agreed defini-
tion of curvature for a boundary that is potentially non-
differentiable at a finite number of points. We computed
our curvature estimates using the method described below
which we suggest is indicative of the curvature of the locally
smoothed classification boundary and allows us to compare
the relative curvature estimates of classifiers trained using
different optimizers.

We evaluate the smoothness properties of our trained classi-
fiers after a fixed number of 10,000 epochs. The curvature
of a level curve ¢(x,y) = 0 is defined as (Persson, 2006):
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However, since we do not have access to the exact form of ¢,
we fit a contour to the model’s predictions on a 1000x1000
grid using matplotlib.pyplot.contour, which returns an array
containing the coordinates of points along the contour. We
view these as discrete samples from the parametric curve
(z(t),y(t)). The gradients of these are computed using
second order accurate central differences. This can then
be used to compute the approximate curvature (Gray et al.,
2006):

o ‘x//y/ _ I,Iy//| (53)
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Although this results in a rough estimate, by averaging our
results over 100 runs, we suggest this gives us some insight
on relative curvature estimates of classifiers trained using
different optimizers.

In Table D3 and Figure D5 we study the effect of varying the
temperature hyperparameter 7, which controls the additive
noise level (see Eq. (M-7)), on the generalization perfor-
mance and curvature of the resulting classifiers on the spiral
dataset defined by Eq. (52). We show that there appears to
be an ideal choice of temperature (in this case 7 = 5e-5),
for which the best generalization performance is obtained
using our circle constrained approach. We also show that
the trained classifier which has the lowest curvature estimate
also obtains the best generalization performance.

Table D3. Same set-up as for Fig. 1, 2, and Figure D5. We present
the mean curvature, standard deviation (std), and maximum (max)
curvature of classifier boundaries obtained using our constrained
approach with different values of the temperature 7. The lowest
curvature is obtained using 7 = 5e-5, which also corresponds to
the classifier which obtains the best generalization performance
(see Figure DS). These results are averaged over 100 runs.

Curvature Approximation
7 for C-SGLD | Mean | Std Max

7=0 9.38 | 317 | 5.58-10°
T=1le-6 9.01 | 273 | 1.63-10°

T =5e-6 7.75 | 166 | 5.86-10°

T =1e-5 7.06 | 108 | 4.06 -10°

T =5e-5 6.08 | 40.8 | 1.43.10°
T=1le-4 7.62 | 178 | 9.47-10°

T =5e-4 159 | 850 | 5.07 -10°




