
Supplementary Material: Globally-Robust Neural Networks

Klas Leino 1 Zifan Wang 1 Matt Fredrikson 1

A. Proofs
A.1. Proof of Theorem 1

Theorem 1. If F̄ ε(x) 6=⊥, then F̄ ε(x) = F (x) and F is
ε-locally-robust at x.

Proof. Let j=F (x). Assume that F̄ ε(x) 6=⊥; this happens
only if one of the outputs of f is greater than f̄ ε⊥(x) —
from the definition of f⊥(x), it is clear that only fj(x) can
be greater than f̄ ε⊥(x). Therefore fj(x) > f̄ ε⊥(x), and so
F̄ ε(x)=j=F (x).

Now assume x′ satisfies ||x−x′|| ≤ ε. Let Ki be an upper
bound on the Lipschitz constant of fi. Then, ∀i

|fi(x)−fi(x′)|
ε

≤ |fi(x)−fi(x′)|
||x−x′||

≤Ki

=⇒ |fi(x)−fi(x′)|≤Kiε (3)

We proceed to show that for any such x′, F (x′) is
also j. In other words, ∀i 6= j, fi(x′) < fj(x

′). By
applying the definition of the Lipschitz constant as in
(3), we obtain (4). Next, (5) follows from the fact that
f̄ ε⊥(x) = maxi 6=j {yi+(Ki+Kj)ε}. We then obtain (6)
from the fact that fj(x)>f̄ ε⊥(x), as observed above. Finally,
we again apply (3) to obtain (7).

fi(x
′)≤fi(x)+|fi(x)−fi(x′)|≤fi(x)+Kiε (4)
≤ f̄ ε⊥(x)−Kjε (5)
<fj(x)−Kjε (6)
≤fj(x)−|fj(x)−fj(x′)|≤fj(x′) (7)

Therefore, fi(x′)< fj(x
′), and so F (x′) = j. This means

that F is locally robust at x.

A.2. Tighter Bounds for Theorem 1

Note that in the formulation of GloRo Nets given in
Section 2.2, we assume that the predicted class, j, will

1Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.
Correspondence to: Klas Leino <kleino@cs.cmu.edu>, Matt
Fredrikson<mfredrik@cmu.edu>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

decrease by the maximum amount within the ε-ball, while
all other classes increase by their respective maximum
amounts. This is a conservative assumption that guarantees
local robustness; however, in practice, we can dispose of this
assumption by instead calculating the Lipschitz constant of
the margin by which the logit of the predicted class surpasses
the other logits, fj−fi.

The margin Lipschitz constant of f , defined for a pair of
classes, i 6=j, is given by Definition 4.
Definition 4. Margin Lipschitz Constant For network, f :
Rn→Rm, and classes i 6= j ∈ [m], K∗ij is an upper bound
on the margin Lipschitz constant of f if ∀x1,x2,

|fj(x1)−fi(x1)−(fj(x2)−fi(x2))|
||x1−x2||

≤K∗ij

We now define a variant of GloRo Nets (Section 2.2) as
follows: For input, x, let j = F (x), i.e., j is the label
assigned by the underlying model to be instrumented. Define
f̄ εi (x) ::=fi(x), and f̄ ε⊥(x) ::=maxi 6=j{fi(x)+εK∗ij}.
Theorem 4. Under this variant, if F̄ ε(x) 6= ⊥, then
F̄ ε(x)=F (x) and F is ε-locally-robust at x.

Proof. The proof is similar to the proof of Theorem 1
(Appendix A.1). Let j=F (x). As before, when F̄ ε(x) 6=⊥,
we see that F̄ ε(x)=j=F (x).

Now assume x′ satisfies ||x−x′||≤ ε. LetK∗ij be an upper
bound on the margin Lipschitz constant. Then, ∀i

|fj(x)−fi(x)−(fj(x
′)−fi(x′))|≤K∗ijε (8)

We proceed to show that for any such x′, F (x′) is also
j. In other words, ∀i 6= j, fi(x′) < fj(x

′). By applying
(8), we obtain (9). Next, (10) follows from the fact that
f̄ ε⊥(x)=maxi6=j

{
fi(x)+K∗ijε

}
. We then obtain (11) from

the fact that fj(x)>f̄ ε⊥(x), as F̄ ε(x)=j 6=⊥.

���fi(x)+fj(x)−���fi(x)−fj(x′)+fi(x
′)

≤ fi(x)+|fj(x)−fi(x)−(fj(x
′)−fi(x′))|

≤ fi(x)+K∗ijε (9)

≤ f̄ ε⊥(x) (10)
< fj(x) (11)

Rearranging terms, we obtain that fi(x′) < fj(x
′). Thus,

F (x′)=j; this means that F is locally robust at x.

Supplementary Material: Globally-Robust Neural Networks

x d(x)

Figure A.1: Illustration of a function, g, constructed to
satisfy Theorem 3. The points in S are shown in light and
dark gray, with different shades indicating different labels.
The Voronoi tessellation is outlined in black, and the faces
belonging to the decision boundary are highlighted in bold.
The level curves of g are shown in various shades of gray and
correspond to points, x, at some fixed distance, d(x), from
the decision boundary.

A.3. Proof of Theorem 2

Theorem 2. F̄ ε/2 is ε-globally-robust.

Proof. Assume x1 and x2 satisfy ||x1 − x2|| ≤ ε. Let
F̄ ε/2(x1)=c1 and F̄ ε/2(x2)=c2.

If c1 =⊥ or c2 =⊥, global robustness is trivially satisfied.

Consider the case where c1 6= ⊥, c2 6= ⊥. Let x′ be the
midpoint between x1 and x2, i.e., x′=(x1+x2)/2. Thus

||x1−x′||=
∣∣∣∣∣∣∣∣x1−x22

∣∣∣∣∣∣∣∣= ||x1−x2||2
≤ ε

2
.

By Theorem 1, this implies F (x′) = c1. By the same
reasoning, ||x2−x′||≤ ε/2, implying that F (x′)=c2. Thus,
c1 =c2, so global robustness holds.

A.4. Proof of Theorem 3

Theorem 3. Let f be a binary classifier that predicts
1⇐⇒f(x)>0. LetKL(x,ε) be the local Lipschitz constant
of f at point xwith radius ε.

Suppose that for some finite set of points, S, ∀x ∈ S,
|f(x)|> εKL(x,ε), i.e., all points in S can be verified via
the local Lipschitz constant.

Then there exists a classifier, g, with global Lipschitz constant
KG, such that ∀x∈S, (1) g makes the same predictions as
f on S, and (2) |g(x)| > εKG, i.e., all points in S can be
verified via the global Lipschitz constant.

Proof. Let T be the Voronoi tessellation generated by the
points inS. Each Voronoi cell,Cj ∈T , corresponds to the set
of points that are closer to pj ∈S than to any other point in S;

and the face, Fij ∈T , which separates cellsCi andCj , corre-
sponds to the set of points that are equidistant from pi and pj .

Let B = {Fij :sign(f(pi)) 6=sign(f(pj))}, i.e., the set of
faces in the Voronoi tessellation that separate points that are
classified differently by f (note that B corresponds to the
boundary of the 1-nearest-neighbor classifier for the points
in S).

Consider a point, x. Let px∈S be the closest point in S to x,
i.e., the point corresponding to the Voronoi cell containing x.
Let d(x)= ||proj(x→B)−x||; that is, d(x) is the minimum
distance from x to any point in any of the faces inB. Then
define

g(x)=sign
(
f(px)

)d(x)

ε

First, observe that g(x)>0⇐⇒ f(x)>0 follows from the
fact that d(x) and ε are non-negative, thus the sign of g(x)
is derived from the sign of f(x).

Next, we show that the global Lipschitz constant of g,KG,
is at most 1/ε, that is, ∀x1,x2,

|g(x1)−g(x2)|
||x1−x2||

≤ 1

ε

Consider two points, x1 and x2, and let p1 and p2 be the
points in S corresponding to the respective Voronoi cells of
x1 and x2.

First, consider the case where sign(f(p1)) 6= sign(f(p2)),
i.e., x1 and x2 are on opposite sides of the boundary, B.
In this case |g(x1)− g(x2)| = (d(x1)+d(x2))/ε, and thus it
suffices to show that d(x1)+d(x2)≤||x1−x2||.

Assume for the sake of contradiction that d(x1)+d(x2)>
||x1−x2||. Note that because x1 and x2 belong in Voronoi
cells with different classifications from f , the line segment
connecting x1 and x2 must cross the boundary,B, at some
point c. Therefore, ||x1 − c||+ ||x2 − c|| = ||x1 − x2|| <
d(x1)+d(x2); without loss of generality, this implies that
||x1−c||<d(x1). But since c∈F ∈B, this contradicts that
d(x1) is the minimum distance from x1 toB.�

Next, consider the case where sign(f(p1)) = sign(f(p2)).
In this case |g(x1) − g(x2)| = |d(x1)−d(x2)|/ε, and
thus, without loss of generality, it suffices to show that
d(x1)−d(x2)≤||x1−x2||.

Assume for the sake of contradiction that d(x1)−d(x2)>
||x1−x2||. Thus d(x1)> ||x1−x2||+d(x2). However, this
suggests that we can take the path from x1 to x2 to B with
a smaller total distance than d(x1), contradicting that d(x1)
is the minimum distance from x1 toB.�

We now show that ∀p ∈ S, |g(p)| ≥ 1, i.e., d(p) ≥ ε. In
other words, we must show that the distance of any point,
p∈S to the boundary, B, is at least ε. Consider a point, x,
on some face, Fij ∈ B. This point is equidistant from pi

Supplementary Material: Globally-Robust Neural Networks

and pj ∈ S, on which f makes different predictions; and
every other point in S is at least as far from x as pi and
pj . I.e., ||pi−x|| = ||pj −x|| ≤ ||p−x||, ∀p ∈ S. By the
triangle inequality, 2||pi−x||≥||pi−pj ||, and by Lemma 1,
||pi−pj || ≥ 2ε. Thus ||p−x|| ≥ ε, ∀p∈S; therefore every
point on the boundary is at least ε from p∈S.

Putting everything together, we have that ∀p ∈ S,
|g(p)|≥1≥εKG.

Note that while Theorem 3 is stated for binary classifiers, the
result holds for categorical classifiers as well. We can modify
the construction of g from the above proof in a straightfor-
ward way to accommodate categorical classifiers. In the case
where there are m different classes, the output of g has m
dimensions, each corresponding to a different class. Then,
for x in a Voronoi cell corresponding to px∈S with label, j,
we define gj(x) ::=d(x)/ε and gi(x) ::=0 ∀i 6=j. We can see
that, for all pairs of classes, i and j, the Lipschitz constant
of gi− gj in this construction is the same as the Lipschitz
constant of g in the above proof, since only one dimension of
the output of g changes at once. Thus, we can use the global
bound suggested in Appendix A.2 to certify the points in S.

A.5. Proof of Lemma 1

Lemma 1. Suppose that for some classifier, F , and some
set of points, S, ∀x ∈ S, F is ε-locally-robust at x. Then
∀x1,x2∈S such that F (x1) 6=F (x2), ||x1−x2||>2ε.

Proof. Suppose that for some classifier, F , and some set
of points, S, ∀x ∈ S, F is ε-locally-robust at x. Assume
for the sake of contradiction that ∃x1, x2 ∈ S such that
F (x1) 6=F (x2) but ||x1−x2||≤2ε. Consider the midpoint
between x1 and x2, x′=(x1+x2)/2. Note that

||x′−x1||=
||x1−x2||

2
≤ε

Therefore, since F is ε-locally-robust at x1, F (x′)=F (x1).
By the same argument, F (x′)=F (x2). But this contradicts
that F (x1) 6=F (x2).�

B. Hyperparameters
In this appendix, we describe hyperparameters used in the
training of GloRo Nets to produce the results in Section 5.
The full set of hyperparameters used for all experiments is
shown in Tables B.1 and B.2. We explain each column as
follows and discuss how a particular value is selected for
each hyperparameter.

Architectures. To denote architectures, we use c(C,K,S)
to denote a convolutional layer with C output channels,
a kernel of size K ×K, and strides of width S. We use

SAME padding unless noted otherwise. We use d(D) to
denote a dense layer with D output dimensions. We use
MinMax (Anil et al., 2019) or ReLU activations (see
Appendix D for a comparison) after each layer except the
top of the network, and do not include an explicit Softmax
activation. Using this notation, the architectures referenced
in Section 5 are as shown in the following list.

• 2C2F: c(16,4,2).c(32,4,2).d(100).d(10)

• 4C3F: c(32,3,1).c(32,4,2).c(64,3,1).c(64,4,2)
.d(512).d(512).d(10)

• 6C2F: c(32,3,1).c(32,3,1).(32,4,2).(64,3,1)
.c(64,3,1).c(64,4,2).d(512).d(10)

• 8C2F: c(64,3,1).c(64,3,1).c(64,4,2).c(128,3,1).
c(128,4,2).c(256,3,1).(256,4,2).d(200)

We arrived at these architectures in the following way. 2C2F,
4C3F and 6C2F are used in the prior work (Lee et al., 2020;
Croce et al., 2019; Wong & Kolter, 2018) to evaluate the
verifiable robustness, and we used them to facilitate a direct
comparison on training cost and verified accuracy. For
Tiny-ImageNet, we additionally explored the architecture
described in (Lee et al., 2020) for use with that dataset, but
found that removing one dense and one convolutional layer
(denoted by 8C2F in the list above) produced the same (or
better) verified accuracy, but lowered the total training cost.

Data preprocessing. For all datasets, we scaled the fea-
tures to the range [0,1]. On some datasets, we used the follow-
ing data augmentation pipeline ImageDataGenerator
from tf.keras, which is denoted by default in
Table B.2 and B.1.

rotation_range=20
width_shift_range=0.2
height_shift_range=0.2
horizontal_flip=True
shear_range=0.1
zoom_range=0.1

When integrating our code with tensorflow-dataset,
we use the following augmentaiton pipeline and denote it
as tfds in Table B.2 and B.1.

horizontal_flip=True
zoom_range=0.25
random_brightness=0.2

Our use of augmentation follows the convention established
in prior work (Wong et al., 2018; Lee et al., 2020): we only
use it on CIFAR and tiny-imatenet, but not on MNIST.

Supplementary Material: Globally-Robust Neural Networks

architecture dataset data augmentation warm-up batch size # epochs εtrain εtest

2C2F
GloRo

MNIST None 0 512 500 0.3 0.3

initialization init lr lr decay loss ε schedule power iter

orthogonal 1e-3 decay to 1e-6 0.1,2.0,500 single 5

architecture dataset data augmentation warm-up batch size # epochs εtrain εtest

4C3F
GloRo

MNIST None 0 512 200 1.74 1.58

initialization init lr lr decay loss ε schedule power iter

orthogonal 1e-3 decay to 1e-6 1.5 log 5

architecture dataset data augmentation warm-up batch size # epochs εtrain εtest

6C2F
GloRo

CIFAR-10 tfds 0 512 800 0.141 0.141

initialization init lr lr decay loss ε schedule power iter

orthogonal 1e-3 decay to 1e-6 1.2 log 5

architecture dataset data augmentation warm-up batch size # epochs εtrain εtest

8C2F
GloRo

Tiny-Imagenet default 0 512 800 0.141 0.141

optimizer init lr lr decay loss ε schedule power iter

default 1e-4 decay to 5e-6 1.2,10,800 log 5

Table B.1: Hyperparameters used for training (MinMax) GloRo Nets.

ε scheduling. Prior work has also established a convention
of gradually scaling ε up to a value that is potentially larger
than the one used to measure verified accuracy leads to
better results. We made use of the following schemes for
accomplishing this.

• No scheduling: we use ‘single’ to denote we εtrain
for all epochs.

• Linear scheduling: we use a string ‘x,y,e’ to
denote the strategy that at training epoch t, we use
εt=x+(y−x)∗(t/e) if t≤e. When t>e, we use the
provided εtrain to keep training the model.

• Logarithmic scheduling: we use ‘log’ to denote that
we increase the epsilon with a logarithmic rate from 0
to εtrain.

We found that scheduling ε is often unnecessary when
instead scheduling the TRADES parameter λ (discussed
later in this section), which appears to be more effective for
that loss. To select a scheme for scheduling ε, we compared
the results of the three options listed above, and selected
the one that achieved the highest verified accuracy. If there
was no significant difference in this metric, then we instead
selected the schedule with the least complexity, assuming the

following order: single, (x,y,e), log. When applying
(x,y,e) and log, we began the schedule on the first epoch,
and ended it on (# epochs)/2.

Initialization & optimization. In Table B.2, default
refers to the Glorot uniform initialization, given by
tf.keras.initializers.GlorotUniform(). The string
‘ortho’ refers to an orthogonal initialization given by
tf.keras.initializers.Orthogonal(). To select an ini-
tialization, we compared the verified accuracy achieved by
either, and selected the one with the highest metric. In the
case of a tie, we defaulted to the Glorot uniform initialization.
We used the adam optimizer to perform gradient descent in
all experiments, with the initial learning rate specified in Ta-
ble B.2 and B.1, and default values for the other hyperparam-
eters (β1 =0.9, β2 =0.999, ε=1e−07, amsgrad disabled).

Learning rate scheduling. We write ‘decay to lb’ to
denote a schedule that continuously decays the learning
rate to lb at a negative-exponential rate, starting the decay
at (#epochs)/2. To select lb, we searched over values
lb∈{1×10−7,5×10−7,1×10−6,5×10−6}, selecting the
value that led to the best VRA. We note that for all datasets
except Tiny-Imagenet, we used the default initial rate of
1×10−3. On Tiny-Imagenet, we observed that after several

Supplementary Material: Globally-Robust Neural Networks

architecture dataset data augmentation warm-up batch size # epochs εtrain εtest

2C2F
GloRo (CE)

MNIST None 0 256 500 0.45 0.3

initialization init lr lr decay loss ε schedule power iter

default 1e-3 decay to 1e-6 CE single 10

architecture dataset data augmentation warm-up batch size # epochs εtrain εtest

2C2F
GloRo (T)

MNIST None 0 256 500 0.45 0.3

initialization init lr lr decay loss ε schedule power iter

default 1e-3 decay to 1e-6 0,2,500 single 10

architecture dataset data augmentation warm-up batch size # epochs εtrain εtest

4C3F
GloRo (CE)

MNIST None 0 256 300 1.75 1.58

initialization init lr lr decay loss ε schedule power iter

default 1e-3 decay to 5e-6 CE single 10

architecture dataset data augmentation warm-up batch size # epochs εtrain εtest

4C3F
GloRo (T)

MNIST None 0 256 300 1.75 1.58

initialization init lr lr decay loss ε schedule power iter

default 1e-3 decay to 5e-6 0,3,300 single 10

architecture dataset data augmentation warm-up batch size # epochs εtrain εtest

6C2F
GloRo (CE)

CIFAR-10 default 20 256 800 0.1551 0.141

initialization init lr lr decay loss ε schedule power iter

orthogonal 1e-3 decay to 1e-6 CE log 5

architecture dataset data augmentation warm-up batch size # epochs εtrain εtest

6C2F
GloRo (T)

CIFAR-10 default 20 256 800 0.1551 0.141

initialization init lr lr decay loss ε schedule power iter

default 1e-3 decay to 1e-6 1.2 log 5

architecture dataset data augmentation warm-up batch size # epochs εtrain εtest

8C2F
GloRo (CE)

Tiny-Imagenet default 0 256 250 0.16 0.141

optimizer init lr lr decay loss ε schedule power iter

default 2.5e-4 decay to 5e-7 CE single 5

architecture dataset data augmentation warm-up batch size # epochs εtrain εtest

8C2F
GloRo (T)

Tiny-Imagenet default 0 256 500 0.16 0.141

initialization init lr lr decay loss ε schedule power iter

default 2.5e-4 decay to 5e-7 1,10,500 single 1

Table B.2: Hyperparameters used for training (ReLU) GloRo Nets. We provide models trained with both TRADES
(Definition 3) loss (denoted by “(T)”) and with cross-entropy loss (denoted by “(CE)”).

Supplementary Material: Globally-Robust Neural Networks

epochs at this rate, as well as at 5×10−4, the loss failed to
decrease, so again halved it to arrive at 2.5×10−4.

Batch size & epochs. For all experiments, we used
minibatches of 256 instances. Because our method does not
impose a significant memory overhead, we found that this
batch size made effective use of available hardware resources,
increasing training time without impacting verified accuracy,
when compared to minibatch sizes 128 and 512. Because
the learning rate, ε, and λ schedules are all based on the total
number of epochs, and can have a significant effect on the
verified accuracy, we did not monitor convergence to deter-
mine when to stop training. Instead, we trained for epochs in
the range [100,1000] in increments of 100, and when verified
accuracy failed to increase with more epochs, attempted
training with fewer epochs (in increments of 50), stopping the
search when the verified accuracy began to decrease again.

Warm-up. Lee et al. (2020) noted improved performance
when models were pre-trained for a small number of epochs
before optimizing the robust loss. We found that this helped
in some cases with GloRo networks as well, in particular
on CIFAR-10, where we used the same number of warm-up
epochs as prior work.

λ scheduling. When using the TRADES loss described in
Section 4, we found that scheduling λ often yielded superior
results. We use ‘x,y,e’ to denote that at epoch t, we set
λt =x+(y−x)∗(t/e) if t<e else λt = y. We write ‘x’ to
denote we use λ= x all the time. To select the final λ, we
trained on values in the range [1,10] in increments of 1, and
on finding the whole number that yielded the best result,
attempted to further refine it by increasing in increments 0.1.

Power iteration. As discussed in Section 4, we use power
iteration to compute the spectral norm for each layer to find
the layer-wise Lipschitz constants. In Table B.2, power iter
denotes the number of iterations we run for each update
during training. We tried values in the set {1,2,5,10}, break-
ing ties to favor fewer iterations for less training cost. After
each epoch, we ran the power iteration until convergence
(with tolerance 1×10−5), and all of the verified accuracy
results reported in Section 5 are calculated using a global
bound based on running power iteration to convergence as
well. Since the random variables used in the power iterations
are initialized as tf.Variables, they are stored in .h5
files together with the architecture and network parameters.
Therefore, one can directly use the converged random
variables from the training phase during the test phase.

Search strategy. Because of the number of hyperparame-
ters involed in our evaluation, and limited hardware resources,
we did not perform a global grid search over all combinations
of hyperparameters discussed here. We plan to do so in future

Deterministic Guarantees

method Clean (%) PGD (%) VRA(%)

MNIST (ε=0.3)

GloRo 99.0 97.8 95.7
BCP 93.4 89.5 84.7
KW 98.9 97.8 94.0
MMR 98.2 96.2 93.6

MNIST (ε=1.58)

GloRo 97.0 81.9 62.8
BCP 92.4 65.8 47.9
KW 88.1 67.9 44.5
BCOP 98.8 - 56.7
LMT 86.5 53.6 40.6

CIFAR (ε=36/255)

GloRo 77.0 69.2 58.4
BCP 65.7 60.8 51.3
KW 60.1 56.2 50.9
Cayley 75.3 67.6 59.1
BCOP 72.4 64.4 58.7
LMT 63.1 58.3 38.1

Stochastic Guarantees
method Clean (%) PGD (%) VRA(%)

CIFAR (ε=0.5)

RS 67.0 - 49.0
SmoothADV - - 63.0
MACER 81.0 - 59.0

Table C.1: Comprehensive VRA comparisons for deter-
ministic guarantees and stochastic guarantees. Best results
reported in the literature are included in the table.

work, as it is possible that results could improve as we may
have missed better settings than those explored to produce
the numbers reported in our evaluation. Instead, we adopted
a greedy strategy, prioritizing the choices that we believed
would have the greatest impact on verified accuracy and train-
ing cost. In general, we explored parameter choices in the
following order: ε schedule, λ schedule, # epochs, LR decay,
warm-up, initialization, # power iterations, minibatch size.

C. Comprehensive VRA Comparisons
In Section 5 of the main paper, we compare, in depth,
the performance of GloRo Nets to two approaches to
deterministic certification that have been reported as
achieving the state-of-the-art in recently published work on
robustness certification (Lee et al., 2020).

For completeness, we present a brief overview of a wider
range of approaches, providing the VRAs reported in the orig-
inal respective papers. Table C.1 contains VRAs reported by
several other approaches to deterministic certification, includ-
ing the methods compared against in Section 5: KW (Wong

Supplementary Material: Globally-Robust Neural Networks

& Kolter, 2018) and BCP (Lee et al., 2020); work that was
superseded by KW or BCP: MMR (Croce et al., 2019) and
LMT (Tsuzuku et al., 2018); work that we became aware
of after the completion of this work: BCOP (Li et al., 2019);
and concurrent work: Cayley (Trockman & Kolter, 2021).
In addition, we include work that provides a stochastic guar-
antee: Randomized Smoothing (RS) (Cohen et al., 2019a),
SmoothADV (Salman et al., 2019), and MACER (Zhai et al.,
2020). The results for stochastic certification typically use
different radii, as reflected in Table C.1. We note that because
these numbers are taken from the respective papers, the
results in Table C.1 should be interpreted as ball-park figures,
as they do not standardize the architecture, data scaling and
augmentation, etc., and are thus not truly “apples-to-apples.”

We find that GloRo Nets provide the highest VRA for both
ε = 0.3 and ε = 1.58 on MNIST. GloRo Nets also match
the result on CIFAR-10 from concurrent work, Cayley,
coming within one percentage point of the VRA reported
by Trockman & Kolter.

D. MinMax vs. ReLU GloRo Nets
Recently, Anil et al. (2019) proposed replacing ReLU
activations with sorting activations to construct a class of
universal Lipschitz approximators, that that can approximate
any Lipschitz-bounded function over a given domain, and
Cohen et al. (2019b) subsequently studied the application to
robust training. We found that these advances in architecture
complement our work, improving the VRA performance of
GloRo Nets substantially compared to ReLU activations.

The results achieved by GloRo Nets in Figure 4a in
Section 5 of the main paper are achieved using MinMax
activations (Anil et al., 2019) rather than ReLU activations.
Figure D.1a shows a comparison of the VRA that can
be achieved by GloRo Nets using ReLU activations as
opposed to MinMax activations. We see that in each case,
the GloRo Nets using MinMax activations outperform
those using ReLU activations by a several percentage
points. Nonetheless, the ReLU-based GloRo Nets are still
competitive with the VRA performance of KW and BCP.

We observed that MinMax activations result in a slight
penalty to training and evaluation cost, as they are slightly
slower to compute than ReLU activations. Figures D.1a
and D.1b provide the cost in terms of time and memory
incurred by GloRo Nets using each activation function. We
see that the MinMax-based GloRo Nets are slightly slower
and more memory-intensive; however, the difference is not
particularly significant.

Finally, we compared the Lipschitz bounds obtained on
MinMax and ReLU GloRo Nets, presented in Figure D.1c.
We see that the Lipschitz bounds are fairly similar, in terms
of both their magnitude a well as their tightness with respect

to the empirical lower bounds.

E. Measuring Memory Usage
In our experiments, we used Tensorflow to train and
evaluate standard and GloRo networks, and Pytorch to
train and evaluate KW and BCP (since Wong & Kolter
(2018) and Lee et al. (2020) implement their respective
methods in Pytorch). To measure memory usage, we invoked
tf.contrib.memory stats.MaxBytesInUse() at the end
of each epoch for standard and GloRo networks, and took
the peak active use from torch.cuda.memory summary()
at the end of each epoch for KW and BCP.

We note that some differences may arise as a result of
differences in memory efficiency between Tensorflow and
Pytorch. In particular, Pytorch enables more control over
memory management than does Tensorflow. In order to
mitigate this difference as much as possible, we did not
disable gradient tracking when evaluating certification times
and memory usage in Pytorch. While gradient tracking is
unnecessary for certification (it is only required for training),
Tensorflow does not allow this optimization, so by forgoing
it the performance results recorded in Figure 4b in Section 5
are more comparable across frameworks.

In Section 5.2, we note that Randomized Smoothing (RS)
training times have been omitted. This is because RS
essentially acts as a post-processing method on top of a
pre-trained model. In practice the only difference between
the training routine to produce a model for RS and standard
training is the addition of Gaussian noise (mathcing the noise
radius used for smoothing) to the data augmentation; we
assume that this has a negligible impact on training cost.

F. Optimizing for Lipschitz Lower Bounds
Figure 4c in Section 5 gives empirical lower bounds on the
global and average local Lipschitz constants on the models
trained in our evaluation. We use optimization to obtain
these lower bounds; further details are provided below.

Global Lower Bounds. We use the margin Lipschitz
constant,K∗ij (Definition 4 in Appendix A.2), which takes
a different value for each pair of classes, i and j. To obtain
the lower bound we optimize

max
x1,x2

max
i

{
|fj1(x1)−fi(x1)−(fj1(x2)−fi(x2))|

||x1−x2||

}
where j1 =F (x1). Optimization is performed using Keras’
default adam optimizer with 7,500 gradient steps. Both x1
and x2 are initialized to random points in the test set; we
perform this optimization over 100 such initial pairs, and
report the maximum value obtained over all initializations.

Supplementary Material: Globally-Robust Neural Networks

method Model Clean (%) PGD (%) VRA(%) Sec./epoch # Epochs Mem. (MB)

MNIST (ε=0.3)

ReLU GloRo (CE) 2C2F 98.4 96.9 94.6 0.7 500 0.7
ReLU GloRo (T) 2C2F 98.7 97.4 94.6 0.7 500 0.7
MinMax GloRo 2C2F 99.0 97.8 95.7 0.9 500 0.7

MNIST (ε=1.58)

ReLU GloRo (CE) 4C3F 92.9 68.9 50.1 2.3 300 2.2
ReLU GloRo (T) 4C3F 92.8 67.0 51.9 2.0 300 2.2
MinMax GloRo 4C3F 97.0 81.9 62.8 3.7 300 2.7

CIFAR-10 (ε=36/255)

ReLU GloRo (CE) 6C2F 70.7 63.8 49.3 3.2 800 2.6
ReLU GloRo (T) 6C2F 67.9 61.3 51.0 3.3 800 2.6
MinMax GloRo 6C2F 77.0 69.2 58.4 6.9 800 3.6

Tiny-Imagenet (ε=36/255)

ReLU GloRo (CE) 8C2F 31.3 28.2 13.2 14.0 250 7.3
ReLU GloRo (T) 8C2F 27.4 25.6 15.6 13.7 500 7.3
MinMax GloRo 8C2F 35.5 32.3 22.4 40.3 800 10.4

(a)

method Model Time (sec.) Mem. (MB)

ReLU GloRo 6C2F 0.2 2.5
MinMax GloRo 6C2F 0.4 1.8

(b)

method global UB global LB local LB

MNIST (ε=1.58)

Standard 5.4·104 1.4·102 17.1
ReLU GloRo 3.2 3.0 2.1
MinMax GloRo 2.3 1.9 0.8

CIFAR-10 (ε=36/255)

Standard 1.2·107 1.1·103 96.2
ReLU GloRo 18.9 11.4 6.2
MinMax GloRo 15.8 11.0 3.7

Tiny-Imagenet (ε=36/255)

Standard 2.2·107 3.6·102 40.7
ReLU GloRo 7.7 3.3 1.5
MinMax GloRo 12.5 5.9 0.8

(c)

Figure D.1: (a) Certifiable training evaluation results on benchmark datasets. Best results highlighted in bold. For ReLU
GloRo Nets, we provide models trained with both TRADES (Definition 3) and with cross-entropy: “(T)” indicates that
TRADES loss was used and “(CE)” indicates that cross-entropy was used. (b) Certification timing and memory usage results
on CIFAR-10 (ε=36/255). (c) Upper and lower bounds on the global and average local Lipschitz constant. In (a) and (b), peak
GPU Memory usage is calculated per-instance by dividing the total measurement by the training or certification batch size.

Local Lower Bounds. We use a variant of the margin
Lipschitz constant (Definition 4 in Appendix A.2) analogous
to the local Lipschitz constant at a point, x0, with radius ε.
To obtain this lower bound we optimize

max
x1,x2

max
i

{
|fj(x1)−fi(x1)−(fj(x2)−fi(x2))|

||x1−x2||

}
subject to ||x1−x0||≤ε, ||x2−x0||≤ε

where j =F (x0). Optimization is performed using Keras’
default adam optimizer with 5,000 gradient steps. After
each gradient step, x1 and x2 are projected onto the ε-ball
centered at x0. Both x1 and x2 are initialized to random
points in the test set, and x0 is a fixed random point in the test
set. We perform this optimization over 100 random choices
of x0, and report the mean value.

Discussion. In Section 5.3, we observe that the global up-
per bound is fairly tight on the GloRo Net trained on MNIST,
but decreasingly so on CIFAR-10 and Tiny-Imagenet. While
this suggests that there is room for improvement in terms
of the bounds obtained by GloRo Nets, we make note of two
subtleties that may impact these findings.

First, the tightness decreases inversely with the dimension-
ality of the input. While it is reasonable to conclude that
learning tight GloRo Nets in higher dimensions becomes
increasingly difficult, it is worth noting that the optimization
process described above also becomes more difficult in

higher dimensions, meaning that some of the looseness may
be attributable to looseness in the lower bound, rather than
in the upper bound.

Second, the hyperparameters used may have an effect on the
tightness of the Lipschitz bound. As seen in Appendix B,
different hyperparameters were used on MNIST, CIFAR-10,
and Tiny-Imagenet; some of these differences were selected
based on impacting training time, which is of greater
concern for larger datasets that naturally take longer to train.
Specifically, we note that fewer power iterations were used
for CIFAR-10, and even fewer for Tiny-Imagenet. While this
is good for expediency, and still produces state-of-the-art
VRA, we note that tighter bounds may be learned by
putting more computation time into training, in the form of
more power iterations (for example). More generally, this
speculation suggests that slightly different training strategies,
hyperparameters, etc., from the ones used in this work may
be sufficient to improve the bounds and the VRA achieved
by GloRo Nets. We conclude that future work should further
explore this possibility.

References
Anil, C., Lucas, J., and Gross, R. Sorting out Lipschitz

function approximation. In ICML, 2019.

Cohen, J., Rosenfeld, E., and Kolter, Z. Certified adversarial
robustness via randomized smoothing. In International

Supplementary Material: Globally-Robust Neural Networks

Conference on Machine Learning (ICML), 2019a.

Cohen, J. E., Huster, T., and Cohen, R. Universal lipschitz
approximation in bounded depth neural networks. arXiv
preprint arXiv:1904.04861, 2019b.

Croce, F., Andriushchenko, M., and Hein, M. Provable
robustness of ReLU networks via maximization of
linear regions. In International Conference on Artificial
Intelligence and Statistics (AISTATS), 2019.

Lee, S., Lee, J., and Park, S. Lipschitz-certifiable training
with a tight outer bound. In NIPS, 2020.

Li, Q., Haque, S., Anil, C., Lucas, J., Grosse, R. B.,
and Jacobsen, J.-H. Preventing gradient attenuation in
lipschitz constrained convolutional networks. In Advances
in Neural Information Processing Systems, 2019.

Salman, H., Li, J., Razenshteyn, I., Zhang, P., Zhang, H.,
Bubeck, S., and Yang, G. Provably robust deep learning
via adversarially trained smoothed classifiers. In Advances
in Neural Information Processing Systems, 2019.

Trockman, A. and Kolter, J. Z. Orthogonalizing convolu-
tional layers with the cayley transform. In International
Conference on Learning Representations, 2021.

Tsuzuku, Y., Sato, I., and Sugiyama, M. Lipschitz-margin
training: Scalable certification of perturbation invariance
for deep neural networks. In NIPS, 2018.

Wong, E. and Kolter, J. Z. Provable defenses against
adversarial examples via the convex outer adversarial
polytope. In ICML, 2018.

Wong, E., Schmidt, F., Metzen, J. H., and Kolter, J. Z.
Scaling provable adversarial defenses. In NIPS, 2018.

Zhai, R., Dan, C., He, D., Zhang, H., Gong, B., Ravikumar,
P., Hsieh, C.-J., and Wang, L. Macer: Attack-free and
scalable robust training via maximizing certified radius.
In International Conference on Learning Representations,
2020.

