
Learning to Price Against a Moving Target

Renato Paes Leme 1 Balasubramanian Sivan 1 Yifeng Teng 2 Pratik Worah 1

Abstract

In the Learning to Price setting, a seller posts
prices over time with the goal of maximizing rev-
enue while learning the buyer’s valuation. This
problem is very well understood when values are
stationary (fixed or iid). Here we study the prob-
lem where the buyer’s value is a moving target,
i.e., they change over time either by a stochastic
process or adversarially with bounded variation.
In either case, we provide matching upper and
lower bounds on the optimal revenue loss. Since
the target is moving, any information learned soon
becomes out-dated, which forces the algorithms
to keep switching between exploring and exploit-
ing phases.

1. Introduction
Inspired by applications in electronic commerce, we study
a problem where a seller repeatedly interacts with a buyer
by setting prices for an item and observing whether the
buyer purchases or not. These problems are characterized
by two salient features: (i) binary feedback: we only observe
if the buyer purchased or not, at the price we posted; (ii)
discontinuous loss function: pricing just below the buyer’s
valuation incurs a small loss while pricing just above it
incurs a large loss since it results in a no-sale.

This problem has been studied with many different assump-
tions on how the buyer valuation vt changes over time: fixed
over time and i.i.d. draws each round were studied in (Klein-
berg & Leighton, 2003; Devanur et al., 2019; Cesa-Bianchi
et al., 2019), deterministic contextual (Amin et al., 2014;
Cohen et al., 2016; Lobel et al., 2017; Leme & Schneider,
2018; Liu et al., 2021), contextual with parametric noise
(Javanmard & Nazerzadeh, 2019) and contextual with non-

*Equal contribution 1Google Research, New York, NY, USA
2Department of Computer Sciences, University of Wisconsin-
Madison, Madison, WI, USA. Correspondence to: Renato Paes
Leme <renatoppl@google.com>, Balasubramanian Sivan <balu-
sivan@google.com>, Yifeng Teng <yifengt@cs.wisc.edu>,
Pratik Worah <pworah@google.com>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

parametric noise (Shah et al., 2019; Krishnamurthy et al.,
2020). All those models are stationary in the sense that the
buyer’s model is i.i.d. across time. The exceptions to this
are algorithms that consider valuations that are drawn adver-
sarially (Kleinberg & Leighton, 2003), but that work still
compares with the best single price in hindsight. I.e., even
though the buyer model is non-stationary, the benchmark
still is.

Our main goal in this paper is to explore settings where
both the buyer model and the benchmark are non-stationary.
We will compare our revenue with the first-best benchmark,
namely, the sum of the buyer’s value at every single step.
We will however assume that the buyer’s valuation moves
slowly.

Motivation Our main motivation for this study is online
advertising. Display ads are mostly sold through first price
auctions with reserve prices (Paes Leme et al., 2020). In
many market segments, the auctions are thin, i.e., there is
just one buyer, who bids just above the reserve when his
value exceeds the reserve (to both pay as little as possible,
and not reveal their true value) and doesn’t bid otherwise.
This scenario effectively offers just binary feedback, and
also makes reserve price the only pricing tool (i.e., not much
auction competition). To see why buyer value changes are
typically slow, and unknown to the seller: the effective value
of a buyer, even for two identical queries, is similar but not
exactly the same due to factors such as remaining budget. A
common scenario is that a buyer has a spend target stating
a target θt of their daily budget to be spent by time t. Bids
often become a function of the ratio between the actual
spend and the target spend. The auction platform doesn’t
know the targets/bidding formula, but it can use the fact
that both target and actual spend, and hence the bids, will
change smoothly over time.

Another important motivation is to effectively price buy-
ers who are learning about their own valuation. This is a
common setup in finance (Shreve, 2004) where traders con-
stantly acquire new information about the products they are
trading, and update their valuations accordingly.

Our results and techniques are presented in Section 3 after
we formally define our model in Section 2.

Learning to Price Against a Moving Target

Related Work Our work is situated in the intersection of
two lines of work in online learning: online learning for
pricing (discussed earlier in the introduction) and online
learning with stronger benchmarks, such as tracking regret
(Herbster & Warmuth, 2001; Luo & Schapire, 2015), adap-
tive regret (Hazan & Seshadhri, 2007), strongly adaptive
online learning (Daniely et al., 2015) and shifting bandits
(Foster et al., 2016; Lykouris et al., 2018). The difficulty in
applying this line of work to pricing problems is that even
when the valuation vt changes slightly, the loss function
itself will change dramatically for certain prices. Instead
here, we exploit the special structure to the revenue loss to
obtain better regret bounds.

There is another line of work that studies revenue maxi-
mization in the presence of evolving buyer values (Kakade
et al., 2013; Pavan et al., 2014; Chawla et al., 2016). While
all these works consider the cumulative value over time as
benchmark, there are important differences, the first two pa-
pers have full feedback: they design mechanisms that solicit
buyer bids. Chawla et al. shoot for simple pricing schemes
yielding constant factor approximations, while we seek to
obtain much closer to the optimal. Moreover, in their model
the values evolve only when the buyer purchases the good.

2. Setting
General setting. A seller repeatedly interacts with a buyer
over T time steps, offering to sell an item at each step. The
buyer’s value is vt ∈ [0, 1] at time step t ∈ [T], and is
changing across time. The seller has no knowledge of the
buyer’s value at any time, not even at t = 1. At each time
step t, the seller posts a price pt ∈ [0, 1] to the buyer, and
the buyer purchases the item if and only if she can afford to
buy it, i.e. pt ≤ vt. The binary signal

σt = 1{vt ≥ pt} ∈ {0, 1}

of whether the item is sold or not is the only feedback the
seller obtains at each time step. The seller’s objective is to
maximize his the total revenue, i.e. REV =

∑T
t=1 ptσt.

Loss metrics. The benchmark we are comparing to is the
hindsight optimal revenue we can get from the buyer, which
is the sum of her value across all time periods: OPT =∑T
t=1 vt. The revenue loss at any time step t is defined by

`R(pt, vt) = vt − ptσt, and the revenue loss of any price
vector p = (p1, · · · , pT) for value profile v = (v1, · · · , vT)
is defined by

`R(p,v) =
1

T
(OPT − REV) =

1

T

T∑
t=1

(vt − ptσt).

The symmetric loss at any time step t is defined by
`1(pt, vt) = |vt − pt|, and the total symmetric loss of

any price vector p = (p1, · · · , pT) for value profile v =
(v1, · · · , vT) is defined by

`1(p,v) =
1

T

T∑
t=1

|vt − pt|.

Intuitively, the revenue loss determines how much revenue
we lose compared to a hindsight optimal selling strategy.
The symmetric loss determines how close our price guesses
are from the correct value vector of the buyer.

3. Our Results and Techniques
Next we describe our main results in this model. Our re-
sults will be given in terms of the changing rate, which we
define as follows: consider a sequence of buyer valuations
v1, v2, . . . , vT and a sequence ε1, . . . , εT−1 (all εt ≤ 1).
We say that a sequence of buyer valuations {vt}t=1..T has
changing rate {εt}t=1..T−1 whenever

|vt+1 − vt| ≤ εt. (1)

The average changing rate is ε̄ = 1
T−1

∑T−1
t=1 εt. Our guar-

antees are a function of the average changing rate ε̄ but our
algorithms are agnostic to both the changing rate sequence
and its average (except in warmup section 4).

We will consider the problem in two environments:

1. Adversarial: an adaptive adversary chooses vt’s.

2. Stochastic: an adaptive adversary chooses a mean-zero
distribution supported in [−εt, εt] from which vt+1−vt
is drawn so that vt is a bounded martingale. More
generally, our results hold for any stochastic process
satisfying Azuma’s inequality.

We analyze three settings in total: symmetric loss in the
adversarial environment, and revenue loss in both the ad-
versarial and stochastic environments. In each of the three
settings, we design our algorithms gradually starting from
the simple case where the changing rate is fixed and known
(warmup, Section 4), then fixed and unknown (Section 5)),
and finally dynamic and unknown (Section 6)).

Dynamic, non-increasing changing rates In Section 6,
where we study dynamic and unknown εt, we focus pri-
marily on the case where the changing rates εt are non-
increasing over time. This is motivated by situations where
buyers use a learning algorithm with non-increasing learn-
ing rates (quite common) to determine their value, or using
a controller to bid that stabilizes once the value approaches
the ground truth. For symmetric loss alone (Theorem 6.4),
we give guarantees for any sequence εt (i.e., not just non-
increasing) but we get an additional log(T)-factor in loss.

Learning to Price Against a Moving Target

Our results For symmetric loss, we develop an algorithm
with average loss Õ(ε̄) (Theorem 6.1) [and a slightly larger
loss of Õ(ε̄ log T) when the εt’s are not necessarily non-
increasing (Theorem 6.4)]. For revenue loss we show av-
erage loss of Õ(ε̄1/2) in the adversarial setting (Theorem
6.2) and Õ(ε̄2/3) in the stochastic setting (Theorem 6.3).
Throughout, we use Õ(f) to denote O(f)polylog(1/ε̄) +
o(1) where the o(1) is with respect to T . Surprisingly, our
loss bounds for none of the three settings in the general case
of dynamic and unknown changing rates (Section 6) can
be improved even if the changing rate is fixed and known
(Section 4, Theorems 4.1, 4.2, 4.3). I.e., in our fairly general
model, knowing the rate of change of valuation, or having
the rate of change be fixed, don’t provide much help in
learning the valuation function to profitably price against it!

Our techniques Step 1: fixed and known ε (Section 4):
Here, the algorithm keeps in each period a confidence in-
terval [`t, rt] containing vt. If rt − `t is small, we price
at the lower endpoint `t, resulting in a larger interval
[`t+1, rt+1] = [`t − ε, rt + ε] in the next iteration. Once
the interval is large enough, we decrease its size by a binary
search to decrease and re-start the process. The algorithm
thus keeps alternating between exploring and exploiting,
where the length of the interval decides when we do what.

Step 2: fixed and unknown ε (Section 5): Here, we start
guessing a very small value of ε, say ε̂ = 1/T and we
behave as if we knew ε. If we detect any inconsistency with
our assumption, we double our guess: ε̂← 2ε̂. It is easy to
detect when the value is below our confidence interval (since
we always price at the lower point) but not so easy to detect
when it is above. To address this issue, we randomly select
certain rounds (with probability proportional to a power of
our estimate ε̂) to be checking rounds. In those rounds, we
price at the higher end of the interval.

Step 3: dynamic, non-increasing and unknown εt (Section
6): We again keep an estimate ε̂ like in Step 2, but now we
adjust it in both directions. We increase ε̂ as in the previous
step if we observe anything inconsistent with the guess.
For the other direction, we optimistically halve the guess
(ε̂← ε̂/2) after we spend 1/ε̂ periods with the same guess.

Comment on average versus total loss. Our results are
all framed in terms of the average loss instead of the total
loss, thus suppressing the factor T . To see why, note that
even if we knew vt−1 exactly for each t, and even if values
evolved stochastically, we would already incur an O(ε) loss
per step leading to a total regret of O(Tε). Consequently,
the main question is not the dependence on T (which is
necessarily linear and cannot become any worse), but how
much worse does the dependence on ε get, per time step. To
see this in action, it is instructive to compare our algorithms
with the algorithm in (Kleinberg & Leighton, 2003) which

has sublinear loss with respect to a fixed price benchmark.
For a fixed ε consider the periodic sequence vt that starts at
zero and increases by ε in each period reaching 1 and then
decreases by ε in each period reaching 0 and starts climbing
again. The first-best benchmark is

∑
t vt = T

2 +O(ε) while
the best fixed price benchmark is T

4 +O(ε). Our algorithm
guarantees total revenue T (1

2 − O(
√
ε)), while Kleinberg

& Leighton guarantee a revenue of T 1
4 − O(

√
T). In the

supplementary material we show that for this example their
algorithm indeed suffers a total loss of Ω(T) with respect
to the first-best benchmark, while our algorithms suffer
TÕ(
√
ε), i.e., much better dependence on ε.

4. Warmup: Buyer’s Changing Rate is Fixed,
Known

We begin by studying the symmetric loss in the adversarial
environment. The result is straightforward via a binary
search algorithm that keeps track of a confidence interval
[`t, rt] that contains the true value vt in each time step.

Theorem 4.1. If the buyer has adversarial values and a
fixed changing rate ε that is known to the seller, Algorithm 1
achieves symmetric loss O(ε). Further, no online algorithm
can obtain symmetric loss less than Ω(ε).

Algorithm 1 Symmetric-loss minimizing algorithm for ad-
versarial buyer with known changing rate ε
`1 ← 0
r1 ← 1
for each time step t do

Price at pt ← rt+`t
2

if the current value vt < pt then
`t+1 ← max(0, `t − ε)
rt+1 ← min(1, pt + ε)

else
`t+1 ← max(0, pt − ε)
rt+1 ← min(1, rt + ε)

end if
end for

Next, we extend the algorithm for symmetric loss to an
optimal algorithm for revenue loss.

Theorem 4.2. If the buyer has adversarial values and a
fixed changing rate ε that is known to the seller, there ex-
ists an online pricing algorithm with revenue loss Õ(ε1/2).
Further, no online algorithm can obtain a revenue loss less
than Ω(ε1/2).

Proof. We assume that ε ≥ 1
T . Otherwise, we can run the

algorithm with ε′ = 1
T and get revenue loss Õ((ε′)1/2) =

o(1) = Õ(ε1/2).

Learning to Price Against a Moving Target

The idea of the algorithm is as follows. The sale process
starts with the seller not knowing the initial value v1 of
the buyer. However, since the buyer’s value only changes
by at most ε in each step, the seller can quickly locate the
buyer’s value within O(ε) error by binary search. Such a
small confidence interval that contains the buyer’s current
value extends by ε in both upper bound and lower bound
after each step. We propose an algorithm that repeatedly
prices at the bottom of the confidence interval and re-locates
the buyer’s current value whenever the confidence interval
becomes too wide.

Firstly, we have the following building-block algorithm that
quickly returns the range of the buyer’s value with additive
accuracy O(ε). In the algorithm, timestamp t increases by
one after any pricing query.

Algorithm 2 Locating the value of a buyer with changing
rate ε to an interval of length a ≤ 6ε

Input: current confidence interval [`t, rt]
Run Algorithm 1 until confidence interval [`t, rt] satisfies
rt − `t < 4ε
Return [`t − ε, rt + ε]

The algorithm repeatedly does binary search until the con-
fidence interval has length O(ε). If at the beginning we
have a confidence interval of length b and finally we have
a confidence interval of length a, thus the total number of
steps needed is O(log b

a), and the total loss of the algorithm
is O(log b

a) since the loss of each step is at most 1.

Next, we present the entire pricing algorithm for an adver-
sarial buyer with changing rate ε using Algorithm 2 as a
building block.

Algorithm 3 Revenue loss minimizing algorithm for adver-
sarial buyer with known changing rate ε

for each phase [t0 + 1, t0 +m] of length m = ε−1/2 do
Apply Algorithm 2 to locate the current value of the
buyer in an interval [`t, rt] with length

√
ε

for each step t in the phase do
Price at pt ← `t
[`t+1, rt+1]← [`t − ε, rt + ε]

end for
end for

Now we analyze the revenue loss of the algorithm. In each
phase of the algorithm with m time steps, we first initialize
and locate the value of the buyer to a small range

√
ε. The

revenue loss incurred by Algorithm 2 is O(log 1
ε) = Õ(1)

in each phase (actually O(1) after the first phase since the
length of confidence interval only needs to shrink by con-
stant fraction). Then we price at the bottom of the confi-

dence interval for O(
√
ε) steps for m =

√
ε steps. Since

the confidence interval [`t, rt] expands by 2ε each time,
it is equivalent to say we wait until the confidence inter-
val has length 3

√
ε. The revenue loss from each step is

≤ 3
√
ε since the item is bought by the buyer every time,

thus O(
√
ε) · 3

√
ε = O(ε) in the entire phase; then we

use binary search to narrow the confidence interval by 1
2 ,

which has revenue loss O(1) since it takes only O(1) steps
in Algorithm 2. Each phase takes Θ(

√
ε) steps with loss

O(ε), therefore there are O(Tε−1/2) phases in total with
loss O(Tε−1/2) · O(ε) = O(Tε1/2). Thus the total loss
of the algorithm is Õ(Tε1/2), with average revenue loss
Õ(ε1/2).

We show that such loss is tight, that no online algorithm
can obtain a revenue loss o(ε1/2). By Yao’s minimax princi-
ple, to reason that there exists some adversarial buyer such
that no randomized online algorithm can get revenue loss
o(ε1/2), it suffices to show that there exists a random adver-
sarial buyer such that no online deterministic algorithm can
get such low revenue loss. The buyer’s value sequence is
predetermined as follows. In the beginning, the buyer has
value v0 = 1

2 . The entire time horizon [T] is partitioned to
T
√
ε phases, each with length ε−1/2. In each phase start-

ing with time t0 + 1 and ending with time t0 + ε−1/2, the
values of the buyer form a monotone sequence: with prob-
ability 1

2 , vt0+j = vt0 + jε, ∀j ∈ [ε−1/2]; with probability
1
2 , vt0+j = vt0 − jε, ∀j ∈ [ε−1/2]. For any deterministic
algorithm with price pt at each time, when any phase begins,
the algorithm needs to decide the pricing strategy without
knowing which value instance of the buyer will be realized.
Let t̂ ∈ [t0 +1, t0 +ε−1/2] be the first time step in the phase
such that vt0 − (t− t0)ε < pt.

If such t̂ exists, then the revenue loss at time t̂ is vt0 −
(t̂ − t0)ε = vt0 − O(ε1/2) when the values of the buyer
decrease in the phase, and this case happens with probability
1
2 . Then in expectation the revenue loss in this phase is
Ω(vt0)−O(ε1/2). Notice that the starting value vt0 of each
phase form a unbiased random walk sequence with step
size ε1/2, since the buyer starts with v0 = 1

2 , therefore with
constant probability vt0 ≥ 1

2 . Thus we can also claim that
the expected revenue loss in the phase is Ω(1). If such
t̂ does not exist, it means that the algorithm has identical
information from both instances of the buyer in the entire
phase, since the buyer can always afford to purchase the
item. As pt ≤ vt0−(t−t0)ε for each time t, the revenue loss
of the algorithm when the values of the buyer increase in
the phase is at least

∑
t0<t≤t+ε−1/2(vt0 + (t− t0)ε−pt) ≥∑

t0<t≤t+ε−1/2 2(t− t0)ε = Ω(1).

Therefore in both cases, the revenue loss in the phase is
Ω(1) in this phase for any deterministic algorithm. As there
are Tε1/2 phases, the total revenue loss from all phases is
at least Ω(Tε1/2). Thus no randomized algorithm can get

Learning to Price Against a Moving Target

average revenue loss o(ε1/2).

If the buyer’s value evolves stochastically across time, the
stochasticity helps us incur less revenue loss. To be more
specific, when the buyer’s value is stochastic and forms a
martingale, after every ε−2/3 steps, although the buyer’s
value can change by as large as ε−2/3 · ε = ε1/3, with high
probability the buyer’s value only changes by ε2/3. Thus
compared to Algorithm 3, we can extend each phase’s length
while maintaining a shorter confidence interval. We state
the algorithm and the revenue loss below.

Algorithm 4 Revenue loss minimizing algorithm for
stochastic buyer with known changing rate ε

[`, r]← [0, 1]
for each phase [t0 + 1, t0 +m] of length m = ε−2/3 do

Apply Algorithm 2 to narrow down the confidence
interval [`, r] to length 6ε
for each step t in the phase do

Price at pt ← `− 4ε2/3
√

log 1
ε

end for
end for

Theorem 4.3. If the buyer has stochastic value and a fixed
changing rate ε that is known to the seller, Algorithm 4 has
revenue loss Õ(ε2/3). Furthermore, no online algorithm
can obtain a revenue loss less than Ω(ε2/3).

5. Buyer’s Changing Rate is Fixed, Unknown
In this section, we consider the case where the buyer’s value
changes by fixed rate εt = ε that is unknown to the seller.
As a warm-up, we first study the symmetric loss obtained
by online prices. Such a problem lets us understand better
how to deal with the unknown rate of value change, and the
pricing algorithm can be extended to the case of revenue
loss.

Theorem 5.1. If the buyer has adversarial values and a
fixed changing rate ε unknown to the seller, there exists
an online pricing algorithm with a symmetric loss Õ(ε).
Further, no online algorithm can obtain a symmetric loss
less than Ω(ε).

Proof sketch. Compared to the case where ε is known to
the seller, the seller can use a guess ε̂ to replace the true
rate ε, and run the algorithms in the known ε setting. The
algorithm starts with ε̂ = 1

T , and doubles ε̂ whenever the
algorithm detects that the true changing rate exceeds ε̂.

The algorithm deals with three time steps t, t + 1, t + 2
at each time, and always maintain a confidence interval
[`t, rt] of vt at the beginning of time step t, such that ε̂ > ε,

Algorithm 5 Symmetric-loss minimizing algorithm for ad-
versarial buyer with unknown changing rate ε

[`1, r1]← [0, 1]
ε̂← 1

T
while ε̂ < 1

2 do
for each three consecutive time steps t, t+ 1, t+ 2 do

Set price pt ← `t
Set price pt+1 ← rt + ε̂
Set price pt+2 ← `t+rt

2
if the seller finds vt < ` or vt+1 ≥ rt + ε̂ then
ε̂← 2ε̂
break

end if
if vt+2 < pt+2 then
`t+3 ← `t − 3ε̂, rt+3 ← pt+2 + ε̂

else
`t+3 ← pt+2 − ε̂, rt+3 ← r + 3ε̂

end if
end for

end while

vt ∈ [`t, rt] always holds. Time steps t and t + 1 are
“checking steps”, to check whether the current three steps
vt , vt+1 and vt+2 incur too much loss. In particular, if
ε̂ ≥ ε, then vt ≥ pt and vt+1 < pt+1 will always hold,
and the symmetric loss is O(ε) per step from Theorem 4.1.
On the other hand, in an iteration with ε̂ < ε, if vt ≥
pt = `t and vt+1 < pt+1 = rt + ε̂ always hold, then
vt, vt+1, vt+2 ∈ [`t − O(ε), rt + O(ε)] since the value of
the buyer only changes by at most ε per step. Thus in a round
of three consecutive time steps t, t + 1, t + 2, if vt ≥ pt
and vt+1 < pt+1, the symmetric loss from this round of
three time steps is O(rt− `t + ε). Notice that there are only
O(log T) different ε̂ < ε. For each ε̂ the initialization has
O(1) symmetric loss, while the stable length of confidence
interval rt−`t = O(ε̂) = O(ε), thus the average symmetric
loss of each step is Õ(ε).

Using a similar technique of checking steps as in the case
of symmetric loss, we can obtain the same revenue loss as
in the setting where the seller knows the changing rate, no
matter whether the buyer has adversarial or stochastic value.

Theorem 5.2. If the buyer has adversarial values and a
fixed changing rate ε unknown to the seller, there exists an
online pricing algorithm with revenue loss Õ(ε1/2). Further,
no online algorithm can obtain a revenue loss less than
Ω(ε1/2).

Proof. The tightness Ω(ε1/2) result is shown in Theo-
rem 4.2, so we only need to construct an algorithm with
revenue loss Õ(ε1/2). We want to apply the same technique

Learning to Price Against a Moving Target

of “checking steps” as in the pricing algorithm for sym-
metric loss. Recall that the checking steps in Algorithm 5
repeatedly price at the upper bound and the lower bound
of the current confidence interval of the value of the buyer
to make sure the buyer’s value is not too far away from
the confidence bound. However, when minimizing revenue
loss, the seller cannot afford to frequently check the upper
bound of the confidence interval, since each time the buyer
is very likely to reject the item and incurs a huge revenue
loss. The solution to such a problem is that we can add one
checking step to each phase of Algorithm 3. By pricing
at the lower bound `t of the confidence interval at time t
and the upper bound rt+1 of the confidence interval at time
t + 1, the seller can know whether vt−1 is far away from
our confidence interval [`t−1, rt−1] for it. Thus for a phase
with m time steps and k “bad steps” when the buyer’s value
is far away from the confidence interval, a random checking
step can detect a bad step with probability k

m . This means
that after O(m) bad steps in expectation, a bad step will be
detected and the algorithm will move to the next iteration
with ε̂ doubled. The algorithm is stated as follows.

Algorithm 6 Revenue loss minimizing algorithm for adver-
sarial buyer with unknown changing rate ε
ε̂← 1

T
while ε̂ < 1

2 do
for each phase [t0 + 1, t0 +mε̂] of length mε̂ = ε̂−1/2

do
Apply Algorithm 2 to locate the current value of the
buyer in an interval [`t, rt] with length

√
ε̂

Randomly select a t∗ ∈ [t0 + 1, t0 +mε̂]
for each step t in the phase do

if t 6= t∗ then
Price at pt ← `t
if vt < pt then
ε̂← 2ε̂ and break (terminate the phase)

end if
else

Price at pt ← rt
if vt ≥ pt then
ε̂← 2ε̂ and break (terminate the phase)

end if
end if
[`t+1, rt+1]← [`t − ε, rt + ε]

end for
end for

end while

The algorithm first guesses ε̂ = 1
T , and doubles ε̂ when-

ever the algorithm detects a piece of evidence of ε̂ being
smaller than the true ε. In particular, the algorithm main-
tains confidence bound [`t, rt] that may contain the current
value vt of the buyer. When ε̂ first becomes larger than ε
(thus at most 2ε), the algorithm will run smoothly without

triggering any break statement since vt ∈ [`t, rt] always
holds. The revenue loss is Õ(

√
ε̂) = Õ(

√
ε) as analyzed in

Theorem 4.2.

In an iteration when ε̂ < ε, firstly there is an additional
O(log 1

ε̂) = Õ(1) loss for binary search initialization of
the confidence interval compared to Algorithm 3 for the
fixed ε setting. Let bad event Et denote “vt ≥ rt + 2ε
or vt < `t”. If bad events never happen, the additional
loss is at most 2ε per step (thus Tε in total), since in the
analysis of Algorithm 3 it has confidence interval [`t, rt]
rather than [`t, rt + 2ε] here. In a phase with time steps
[t0 + 1, t0 +mε̂], if an event Et happens, then there are two
cases. If vt < `t, then it is detected when pt = `t, which
almost surely happens. If vt > rt + 2ε, then it is detected
when pt+1 = rt+1 i.e. t∗ = t, since vt+1 ≥ vt − ε >
rt + ε = rt+1. Therefore, since t∗ is randomly selected
from [t0 + 1, t0 + mε̂], if k events in Et0+1, · · · , Et0+mε̂
happens, with probability k

mε̂
a bad event gets detected.

Thus, in an iteration with fixed ε̂ < ε, when a bad event
is detected, in expectation m bad events have occurred.
Each bad event will result in additional revenue loss at
most 1, thus Õ(mε̂) = O(ε̂−1/2). The total contribution of

revenue loss from bad events is at most
∑log T
i=0

(
2i

T

)−1/2
=

O(T 1/2) = To(1). To summarize, the total revenue loss of
the algorithm is Õ(Tε1/2) for Algorithm 3 with known ε,
plus the binary search cost Õ(1) for locating the position of
vt in each iteration of different ε̂, plus the additional cost
O(Tε) for having a slightly larger confidence interval in
good events than Algorithm 3, plus a total revenue loss of
T 1/2 from the bad events. Sum up all the costs above we
show that the total revenue loss of Algorithm 6 is TÕ(ε1/2)
for all time steps, thus Õ(ε1/2) on average.

When the buyer has stochastic value, we can modify Algo-
rithm 6 for an adversarial buyer such that in each phase is
replaced by a phase in Algorithm 4, with the normal pricing
step t 6= t∗ pricing at pt = `t0 − Õ(ε̂−1/3), and each check-
ing step t∗ at price pt∗ = rt0 + Õ(ε̂−1/3). The analysis is
almost identical to Theorem 5.2.

Theorem 5.3. If the buyer has stochastic value and a fixed
changing rate ε unknown to the seller, there exists an on-
line pricing algorithm with revenue loss Õ(ε2/3). Further,
no online algorithm can obtain a revenue loss less than
Ω(ε2/3).

6. Buyer’s Changing Rate is Dynamic,
Unknown

In this section, we study a more complicated setting where
the buyer’s value changes in a more dynamic way. In par-
ticular, |vt+1 − vt| are upper bounded by possibly different

Learning to Price Against a Moving Target

non-increasing εt that are unknown to the seller.

For the symmetric-loss minimization problem with an ad-
versarial buyer, we show that when εt are non-increasing,
the seller can still achieve a symmetric loss of Õ(ε̄) as in
the case of fixed ε. The algorithm and its analysis have the
same structure as the revenue loss minimization problem
and is omitted here.

Theorem 6.1. If the buyer has adversarial values and non-
increasing changing rates εt unknown to the seller, then
there exists an online pricing algorithm with symmetric
loss Õ(ε̄). Furthermore, no online algorithm can obtain a
symmetric loss less than Ω(ε̄).

For the revenue loss minimization problem for an adversar-
ial buyer, we can also recover the results in previous sections,
even when εt are unknown to the seller. We describe the
result and the algorithm in detail here.

Theorem 6.2. If the buyer has adversarial values and non-
increasing changing rates εt unknown to the seller, there
exists an online pricing algorithm with revenue loss Õ(ε̄1/2),
here ε̄ = 1

T

∑T
t=1 εt. Further, no online algorithm can

obtain a revenue loss less than Ω(ε̄1/2).

Proof. The Ω(ε̄1/2) tightness result has been shown in The-
orem 4.2 with all εt being identical. Now we show that there
exists an algorithm with revenue loss Õ(ε̄1/2).

When εt decreases, the seller needs to detect such a trend
timely, otherwise the loss of each time step is going to
be not comparable to

∑
t εt. We propose the following

algorithm for the seller, that repeatedly guesses the current
level of changing rate at each time step. The algorithm
starts with guessing ε̂ = 1

2 being an estimate of εt, and
reduces the value of the guess ε̂ by a factor of 1

2 if in several
time steps the algorithm cannot find any evidence supporting
ε̂ < εt. Whenever the algorithm finds evidence that supports
ε̂ < εt, the algorithm repeatedly doubles ε̂ and updates the
confidence interval according to the new ε̂, until the evidence
of ε̂ < εt disappears. Such a dynamic update of ε̂ keeps the
revenue loss bounded.

To be more specific, ε̂ decreases by a factor of 1
2 if the seller

has not observed any evidence of ε̂ < εt for long enough
time. In particular, the algorithm tries to run ε̂−1/2 identical
phases in Algorithm 6, and will halve ε̂ when the buyer
passes all checking steps. The algorithm is described in
Algorithm 7.

Now we analyze the performance of the algorithm. Parti-
tion the time horizon [T] to log T intervals I1, · · · , Ilog T ,
such that for each time interval Ii and time t ∈ Ii, εt ∈
(2−i, 2−i+1]. Let ε∗i = 2−i+1. We argue that in time inter-
val Ii the total revenue loss is Õ((ε∗i)

−1/2 + |Ii|(ε∗i)1/2).

In interval Ii the algorithm may start with ε̂ > ε∗i , and

Algorithm 7 Revenue loss minimizing algorithm for adver-
sarial buyer with unknown decreasing changing rate εt
ε̂← 1

2
while true do

for ε̂−1/2 phases of length mε̂ = ε̂−1/2 do
At the beginning of phase [t0 + 1, t0 + mε̂], apply
Algorithm 2 to locate the current value of the buyer
in an interval [`t, rt] with length

√
ε̂

Randomly select a t∗ ∈ [t0 + 1, t0 +mε̂]
for each step t in the phase do

if t 6= t∗ then
Price at pt ← `t
if vt < pt then
ε̂← 2ε̂ and go back to the beginning of the
while loop (terminate the ε̂−1/2 phases)

end if
else

Price at pt ← rt
if vt ≥ pt then
ε̂← 2ε̂ and go back to the beginning of the
while loop (terminate the ε̂−1/2 phases)

end if
end if
[`t+1, rt+1]← [`t − ε, rt + ε]

end for
end for
ε̂← ε̂/2 if ε̂ > 1

T
end while

then gradually decreases to reach ε̂ = ε∗i and never become
larger than ε∗i later. In this process, the revenue loss is
Õ(1) in each phase as shown in the proof of Theorem 5.2,
thus Õ(ε̂−1/2) loss for every value ε̂ > ε∗i and at most∑
ε̂>ε∗i

Õ(ε̂−1/2) = Õ((ε∗i)
−1/2) in total.

Now we show that after ε̂ reaches ε∗i , the revenue loss is
Õ((ε∗i)

1/2) per step on average. First we study the revenue
loss from each ε̂−1/2 phases with changing rate ε̂. The
same as in previous proofs, a piece of “bad evidence”, or a
piece of evidence of ε̂ < ε is the event of vt < pt in a non-
checking step t 6= t∗ or vt ≥ pt in a checking step t = t∗. If
no evidence of ε̂ < ε is detected, then the revenue loss is at
most some constant c = Õ(1) in each phase, thus cε̂−1/2 for
the ε̂−1/2 phases with ε̂−1 time steps. We also observe that
if we run the algorithm with changing rate ε∗i , the revenue
loss of such ε̂−1 time steps is going to be c(ε∗i)

1/2 per step
thus cε̂−1(ε∗i)

1/2 in total.

We argue that the per-step revenue loss in Ii is at most
2c(ε∗i)

1/2. In ε̂−1/2 phases where no bad evidence is
found, the algorithm actually gets c(ε̂−1(2ε∗i)

1/2 − ε̂1/2) >
cε̂−1(ε∗i)

1/2 > cε̂−1/2 less revenue loss than the expected
benchmark (2c(ε∗i)

1/2 per step). In any phase with esti-
mated changing rate ε̂ where a piece of bad evidence is

Learning to Price Against a Moving Target

found, as shown in the analysis of Algorithm 6, in expecta-
tion mε̂ = ε̂−1/2 steps with value out of confidence bound
has occurred, and contributes at most ε̂−1/2 total additional
revenue loss more than the normal 2c(ε∗i)

1/2 loss per step.
Therefore, every time the algorithm goes through ε̂−1/2

phases without bad evidence, the algorithm has at least
cε̂−1/2 less revenue loss than expected; every time the al-
gorithm with estimated changing rate ε̂ finds a phase with
a piece of bad evidence, the algorithm has at most cε̂−1/2

more revenue loss than expected. Observe that in each it-
eration with ε̂ decreases by 1

2 no bad evidence is detected,
and bad evidence is found in each iteration with ε̂ getting
doubled. Thus the number of iterations with no bad evi-
dence being detected is at least the number of iterations with
bad evidence found, which means that the algorithm has
no more revenue loss than the expected 2c(ε∗i)

1/2 per step.
To summarize, in Ii after ε̂ reaches ε∗i , the revenue loss is
Õ((ε∗i)

1/2) per step.

Above reasoning shows that in each time interval Ii, the
total revenue loss is Õ((ε∗i)

−1/2 + |Ii|(ε∗i)1/2). Sum up
over all i, the total revenue loss of all time steps is∑

i≤log T

Õ((ε∗i)
−1/2 + |Ii|(ε∗i)1/2)

= Õ(T 1/2) + Õ(1)
∑
i

|Ii|(ε∗i)1/2

≤ To(1) + Õ(1)
∑
i

|Ii|ε̄1/2 = Õ(T ε̄1/2),

Here the inequality is by Cauchy-Schwarz. Thus the average
revenue loss of each time step is Õ(ε̄1/2).

Such a result can also be extended for a stochastic buyer.

Theorem 6.3. If the buyer has stochastic value and non-
increasing changing rate εt unknown to the seller, then there
exists an online pricing algorithm with revenue loss Õ(ε̄2/3),
here ε̄ = 1

T

∑T
t=1 εt. Furthermore, no online algorithm can

obtain a revenue loss less than Ω(ε̄2/3).

For the revenue loss minimization problem, it is hard to ob-
tain positive results when the changing rates εt are arbitrary,
since setting a price slightly higher than the true value in a
step can result in a huge revenue loss. Surprisingly, even
if εt for each time step can change arbitrarily, we can still
achieve the Õ(ε̄) loss in previous sections, only losing a tiny
O(log T) factor.

Theorem 6.4. If the buyer has adversarial values and dy-
namic changing rate εt unknown to the seller, there exists an
online pricing algorithm with symmetric loss Õ(ε̄ log T) for
ε̄ = 1

T

∑
t∈[T] εt. Further, no online algorithm can obtain

a symmetric loss less than Ω(ε̄).

Proof sketch. Suppose for a moment that the algorithm is
allowed to set multiple pricing queries for a single time step.
The algorithm maintains a correct confidence interval [`t, rt]
that contains the value vt of the buyer at each time step. At
time t+ 1, the seller does not know the exact value change
vt+1 − vt. Furthermore, she also does not know a bound
of the value change εt ≥ |vt+1 − vt|. However, the seller
can try to price at `t − δj and rt + δj repeatedly for every
j and δj = 2jT−1. When j has increased such that the
algorithm finds that `t− δj < vt+1 < rt + δj , the seller can
then price at `t+rt2 to get a new correct confidence interval
[`t+1, rt+1]← [`t − δj , `t+rt2] or [`t+rt2 , rt + δj]. Such an
algorithm identifies the change of each step accurately and
has Õ(ε̄) symmetric loss.

Algorithm 8 Symmetric-loss minimizing algorithm for ad-
versarial buyer with unknown dynamic changing rate εt

[`1, r1]← [0, 1]
Let t1 + 1 = 1 be the starting time of the first phase
for each phase i of time interval [ti + 1, ti+1] with to-be-
determined stopping time ti+1 do

Let ti + 1 be the starting time step of the phase
for each integer j ≥ 0 do
ε̂← δj = 2jT−1

Set price pti+2j+1 ← `ti+1 − δj
Set price pti+2j+2 ← rti+1 + δj
if the seller finds vti+2j+1 ≥ pti+2j+1 and
vti+2j+2 < pti+2j+2 then

break (from this for loop)
end if

end for
ti+1 ← ti + 2j + 3

Set pti+1
← `ti+1+rti+1

2
if vti+1 < pti+1 then

[`ti+1+1, rti+1+1]← [`ti+1 − δj , pti+1]
else

[`ti+1+1, rti+1+1]← [pti+1
, rti+1 + δj]

end if
end for

However, we are not allowed to have multiple pricing
queries for the same value. The key observation is that
when we serialize the pricing queries in such an algorithm
with at most k queries per step, the symmetric loss only in-
creases by a factor of O(k). Since the parallel algorithm has
at most O(log T) pricing queries in each step, the serialized
algorithm’s symmetric loss only increases by O(log T). An-
other specific example of such serialization is Algorithm 5
for minimizing symmetric loss in the unknown fixed chang-
ing rate setting. Each three consecutive steps t, t+ 1, t+ 2
can be viewed as the serialization of a single step with three
price queries `t − ε, rt + ε and `t+rt

2 . The analysis of the
serialized Algorithm 8 for this unknown changing εt set-
ting can be viewed as a generalization of the analysis of

Learning to Price Against a Moving Target

Algorithm 5 for the unknown fixed changing rate setting.

Acknowledgements
We thank the reviewers for their valuable feedback. Yifeng
Teng was supported in part by NSF grants CCF-1617505
and SHF-1704117. Part of this work was done when Yifeng
Teng was an intern at Google.

References
Amin, K., Rostamizadeh, A., and Syed, U. Repeated contex-

tual auctions with strategic buyers. In Advances in Neural
Information Processing Systems 27: Annual Conference
on Neural Information Processing Systems 2014, Decem-
ber 8-13 2014, Montreal, Quebec, Canada, pp. 622–630,
2014.

Cesa-Bianchi, N., Cesari, T., and Perchet, V. Dynamic
pricing with finitely many unknown valuations. In Algo-
rithmic Learning Theory, pp. 247–273. PMLR, 2019.

Chawla, S., Devanur, N. R., Karlin, A. R., and Sivan, B.
Simple pricing schemes for consumers with evolving val-
ues. In Krauthgamer, R. (ed.), Proceedings of the Twenty-
Seventh Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2016, Arlington, VA, USA, January 10-12,
2016, pp. 1476–1490. SIAM, 2016.

Cohen, M. C., Lobel, I., and Paes Leme, R. Feature-based
dynamic pricing. In Proceedings of the 2016 ACM Con-
ference on Economics and Computation, pp. 817–817.
ACM, 2016.

Daniely, A., Gonen, A., and Shalev-Shwartz, S. Strongly
adaptive online learning. In International Conference on
Machine Learning, pp. 1405–1411. PMLR, 2015.

Devanur, N. R., Peres, Y., and Sivan, B. Perfect bayesian
equilibria in repeated sales. Games Econ. Behav., 118:
570–588, 2019.

Foster, D. J., Li, Z., Lykouris, T., Sridharan, K., and Tardos,
É. Learning in games: robustness of fast convergence.
In Proceedings of the 30th International Conference on
Neural Information Processing Systems, pp. 4734–4742,
2016.

Hazan, E. and Seshadhri, C. Adaptive algorithms for online
decision problems. In Electronic colloquium on computa-
tional complexity (ECCC), volume 14, 2007.

Herbster, M. and Warmuth, M. K. Tracking the best linear
predictor. Journal of Machine Learning Research, 1(281-
309):10–1162, 2001.

Javanmard, A. and Nazerzadeh, H. Dynamic pricing in high-
dimensions. Journal of Machine Learning Research, 20
(9):1–49, 2019. URL http://jmlr.org/papers/
v20/17-357.html.

Kakade, S. M., Lobel, I., and Nazerzadeh, H. Optimal
dynamic mechanism design and the virtual-pivot mecha-
nism. Oper. Res., 61(4):837–854, 2013.

Kleinberg, R. and Leighton, T. The value of knowing a
demand curve: Bounds on regret for online posted-price
auctions. In Foundations of Computer Science, 2003.
Proceedings. 44th Annual IEEE Symposium on, pp. 594–
605. IEEE, 2003.

Krishnamurthy, A., Lykouris, T., Podimata, C., and
Schapire, R. Contextual search in the presence of ir-
rational agents. arXiv preprint arXiv:2002.11650, 2020.

Leme, R. P. and Schneider, J. Contextual search via in-
trinsic volumes. In 59th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2018, Paris,
France, October 7-9, 2018, pp. 268–282, 2018. doi: 10.
1109/FOCS.2018.00034. URL https://doi.org/
10.1109/FOCS.2018.00034.

Liu, A., Leme, R. P., and Schneider, J. Opti-
mal contextual pricing and extensions. pp. 1059–
1078, 2021. doi: 10.1137/1.9781611976465.66.
URL https://epubs.siam.org/doi/abs/10.
1137/1.9781611976465.66.

Lobel, I., Leme, R. P., and Vladu, A. Multidimensional
binary search for contextual decision-making. Operations
Research, 2017.

Luo, H. and Schapire, R. E. Achieving all with no pa-
rameters: Adanormalhedge. In Conference on Learning
Theory, pp. 1286–1304. PMLR, 2015.

Lykouris, T., Sridharan, K., and Tardos, É. Small-loss
bounds for online learning with partial information. In
Conference on Learning Theory, pp. 979–986. PMLR,
2018.

Paes Leme, R., Sivan, B., and Teng, Y. Why do competitive
markets converge to first-price auctions? In Proceedings
of The Web Conference 2020, pp. 596–605, 2020.

Pavan, A., Segal, I., and Toikka, J. Dynamic mech-
anism design: A myersonian approach. Economet-
rica, 82(2):601–653, 2014. doi: https://doi.org/10.3982/
ECTA10269. URL https://onlinelibrary.
wiley.com/doi/abs/10.3982/ECTA10269.

Shah, V., Johari, R., and Blanchet, J. Semi-
parametric dynamic contextual pricing. 32:2363–
2373, 2019. URL https://proceedings.

http://jmlr.org/papers/v20/17-357.html
http://jmlr.org/papers/v20/17-357.html
https://doi.org/10.1109/FOCS.2018.00034
https://doi.org/10.1109/FOCS.2018.00034
https://epubs.siam.org/doi/abs/10.1137/1.9781611976465.66
https://epubs.siam.org/doi/abs/10.1137/1.9781611976465.66
https://onlinelibrary.wiley.com/doi/abs/10.3982/ECTA10269
https://onlinelibrary.wiley.com/doi/abs/10.3982/ECTA10269
https://proceedings.neurips.cc/paper/2019/file/363763e5c3dc3a68b399058c34aecf2c-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/363763e5c3dc3a68b399058c34aecf2c-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/363763e5c3dc3a68b399058c34aecf2c-Paper.pdf

Learning to Price Against a Moving Target

neurips.cc/paper/2019/file/
363763e5c3dc3a68b399058c34aecf2c-Paper.
pdf.

Shreve, S. E. Stochastic calculus for finance II: Continuous-
time models, volume 11. Springer Science & Business
Media, 2004.

https://proceedings.neurips.cc/paper/2019/file/363763e5c3dc3a68b399058c34aecf2c-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/363763e5c3dc3a68b399058c34aecf2c-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/363763e5c3dc3a68b399058c34aecf2c-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/363763e5c3dc3a68b399058c34aecf2c-Paper.pdf

