
Supplementary for
SigGPDE: Scaling Sparse Gaussian Processes on Sequential Data

A. Additional Proof
In this section we prove Thm. 4.1 from the main paper which
yields an efficient algorithm to compute the gradients of the
signature kernel with respect to its input paths. We recall
Thm. 4.1 below.

Theorem 4.1. For any γ ∈ X the directional derivative
kγ(X,Y) of the signature kernel along the path γ satisfies
the following relation

kγ(X,Y) =

∫ T

0

∫ T

0

U(s, t)Ũ(T − s, T − t)(γ̇Ts Ẏt)dsdt

where Ũ(s, t) = k(
←−
X |[0,s],

←−
Y |[0,t]) and where

←−
X,
←−
Y are

respectively the paths X,Y reversed in time.

Before proving Thm. 4.1 we need the following important
lemma.

Lemma A.1. For any two paths continuous paths of
bounded variation X,Y ∈ X the signature kernel satis-
fies the following relation

k(X,Y) = k(
←−
X,
←−
Y) (1)

where
←−
X,
←−
Y are the respectively X,Y reversed in time.

Proof. It is a standard result in rough path theory (see for
example (Lyons et al., 2007)) that S(

←−
X) = S(X)−1, where

the inverse is taken in the set of grouplike elements, which
is a group. The operator on grouplike elements g : S(X) 7→
S(X)−1 reverses the order of the letters in each word and
multiplies the result by −1 if the length of the word is
odd. Expanding out k(

←−
X,
←−
Y) coordinate-wise it is easy

to see that the two −1’s for words of odd length cancel
as multiplied together, therefore the expansion of k(X,Y)

matches the one of k(
←−
X,
←−
Y).

Recall the notation for the signature kernel and its direc-
tional derivative used in the statement of Thm. 4.1:

U(s, t) := k
(
X|[0,s], Y |[0,t]

)
Uγ(s, t) := kγ

(
X|[0,s], Y |[0,t]

)
Proof of Theorem 4.1. Let γ : [0, T]→ Rd be a continuous
path of bounded variation along which we wish to differen-
tiate k. Let’s assume that for any s, t ∈ [0, T] there exists a

function As,t : [0, T]× [0, T]→ R such that

Uγ(s, t) =

∫ s

0

∫ t

0

As,t(u, v)U(u, v)(γ̇Tu Ẏv)dudv (2)

Differentiating Uγ with respect to s and t we get

∂2Uγ
∂s∂t

=

∫ s

0

∫ t

0

∂2As,t(u, v)

∂s∂t
U(u, v)(γ̇Tu Ẏv)dudv

+As,t(s, t)U(s, t)(γ̇Ts Ẏt) (3)

By eq. (41) in the main paper we know that the directional
derivative of the signature kernel along the path γ solves the
following PDE

∂2Uγ
∂s∂t

= (ẊT
s Ẏt)Uγ(s, t) + (γ̇Ts Ẏt)U(s, t) (4)

Equating eq. (3) and eq. (4) we deduce that As,t(s, t) = 1
and ∫ s

0

∫ t

0

∂2As,t(u, v)

∂s∂t
U(u, v)(γ̇Tu Ẏv)dudv

= Uγ(s, t)(Ẋ
T
s Ẏt)

= (ẊT
s Ẏt)

∫ s

0

∫ t

0

As,t(u, v)U(u, v)(γ̇Tu Ẏv)dudv

Which implies that

∂2As,t(u, v)

∂s∂t
= (ẊT

s Ẏt)As,t(u, v) (5)

Or equivalently, by integrating with respect to s and t

As,t(u, v) = 1 +

∫ s

u

∫ t

v

As′,t′(u, v)(Ẋ
T
s′ Ẏt′)ds

′dt′ (6)

Hence

AT,T (u, v) = 〈S(X)[u,T], S(Y)[v,T]〉 (7)

= k(
←−
X |[0,T−u],

←−
Y |[0,T−v]) (8)

where the last equality is a consequence of Lemma A.1.
Pluging back this result into eq. (2) concludes the proof.

B. Additional Experimental Details
In this section we describe the experimental setup for Sec. 6.
All experiments were conducted on NVIDIA Tesla P100
GPUs.

paper.pdf{}{}{}#theorem.4.1{}{}{}
paper.pdf{}{}{}#theorem.4.1{}{}{}
paper.pdf{}{}{}#theorem.4.1{}{}{}
paper.pdf{}{}{}#theorem.4.1{}{}{}
paper.pdf{}{}{}#equation.4.41{}{}{}
paper.pdf{}{}{}#section.6{}{}{}

SigGPDE: Scaling Sparse Gaussian Processes on Sequential Data

B.1. Data collection process

The classification tasks of Sections 6.1 and 6.2 were per-
formed on two datasets (PenDigits, RightWhaleCalls) from
the UCR & UEA time series classification repository.1 For
the large scale classification experiment of Sec. 6.3 we used
a dataset of 1M satellite time series (STS).2 Lastly, the cli-
matic data (WeatherForecast) for rainfall prediction task in
Sec. 6.4 was downloaded from the Max Planck Institute for
Biogeochemistry website.3

Data pre-processing included the following two steps. As
explained in Sec. 3.1, we first add a monotonically increas-
ing coordinate to all multivariate time series that we call
"time", which effectively augments by one the number of
channels. This is a standard procedure employed within sig-
nature based methods (Toth & Oberhauser, 2020; Chevyrev
& Kormilitzin, 2016). Then, we standard scale the time
series using tslearn library (Tavenard et al., 2020). This
is particularly important for the WeatherForecast dataset
where channels have different scales. Additional processing
steps have been performed for two datasets (RightWhale-
Calls, WeatherForecast) which we treat separately next.

A standard data transformation to tackle classification tasks
on audio signals consists in computing their spectrograms.
We follow this procedure for the RightWhaleCalls dataset
which contains univariate highly-oscillatory time series of
length 2 000. We used the scipy Python library to do so.
The spectrogram is commonly represented as a graph with
one axis representing time, the other axis representing the
frequency, and the color intensity representing the ampli-
tude of a particular frequency at a particular time. In this
paper, we consider the spectrogram as a multivariate time
series, where each channel represents the change in am-
plitude of a particular frequency over time. Furthermore,
exploiting the fact that frequencies in whale call signals
are typically between 50 and 300Hz, we only consider fre-
quencies which fall within this range. As a result we obtain
28-dimensional time series each of length 30. We then apply
the pre-processing steps described above.

To create the WeatherForecast dataset we used the record-
ings of various climatic variables in two weather stations
located in Germany from 2004 to 2020. The outliers were
filtered out, and we used the recordings of 7 variables (de-
picted on Fig. 2) over 6 hours in order to predict whether it
would rain by more than 1mm over the next hour. There is
one recording every 10min resulting in input time series of
length ` = 36. Since there were much fewer positive cases
(raining) than negative cases (not raining), we dropped at

1https://timeseriesclassification.com
2https://cloudstor.aarnet.edu.au/plus/

index.php/s/pRLVtQyNhxDdCoM
3https://www.bgc-jena.mpg.de/wetter/

weather_data.html

random a fraction of the data, such that the ratio of posi-
tive/negative examples is brought down to 3.

B.2. Training procedure

The datasets for classification of sequential digits (PenDig-
its), audio signals (RightWhaleCalls), and satellite time
series (STS) come with a predefined test-train split. In order
to report standard deviations on our results we subsampled
20% (PenDigits,RightWhaleCalls) or 2% (STS) of the train-
ing set to form a validation set.

The training was equally split into 3 different phases. During
the first phase, only the variational parameters are trained.
For the second phase, both the variational parameters and
the hyperparameters of the kernel are trained. During the
last phase the variational parameters are trained on the full
training set (the validation data being merged back). Overall,
the hyperparameters are fixed for two-third of the iterations.
SigGPDE and the GPSig-IT/IS baselines have the same set
of hyperparameters, which correspond to the scaling factors
for each channel for the ARD parametrization of the signa-
ture kernel Sec. 3.3. Those were initialized with the same
value for all models. The inducing tensors for GPSig-IT and
inducing sequences for GPSig-IS were initialized follow-
ing the procedure outlined in (Toth & Oberhauser, 2020).
We recall that for SigGPDE there is no such parameters to
initialize. As recommended in (Toth & Oberhauser, 2020),
we use a truncation level of n = 4 for their signature kernel
algorithm (GPSig-IT/IS).

The minibatch size is either 50 (PenDigits, RightWhale-
Calls) or 200 (STS). We used the Nadam optimizer (Dozat,
2016) with learning rate 10−3. In the main paper we report
the time per iteration which corresponds to one minibatch.

C. Additional Algorithmic Details
In this section we start by outlining the space and time com-
plexities of the algorithms underlying SigGPDE. Then, we
explain how we have developed a dedicated CUDA Tensor-
Flow operator for GPU acceleration to speed-up the compu-
tation of the signature kernel and its gradients.

C.1. Complexity analysis

The main algorithms underpinning SigGPDE consist in
computing three different covariance matrices to evalu-
ate the ELBO. These are the covariance matrix between
the inducing variables u (denoted by Cuu), between the
marginal f and the inducing variables (denoted by Cfu), and
finally the covariance matrix of f (its diagonal is denoted
by diag(Cff)). In Tables 1 and 2 we compare the time and
space complexities for the corresponding SigGPDE algo-
rithms to those of GPSig-IT/IS.

paper.pdf{}{}{}#subsection.6.1{}{}{}
paper.pdf{}{}{}#subsection.6.2{}{}{}
paper.pdf{}{}{}#subsection.6.3{}{}{}
paper.pdf{}{}{}#subsection.6.4{}{}{}
paper.pdf{}{}{}#subsection.3.1{}{}{}
paper.pdf{}{}{}#figure.caption.3{}{}{}
https://timeseriesclassification.com
https://cloudstor.aarnet.edu.au/plus/index.php/s/pRLVtQyNhxDdCoM
https://cloudstor.aarnet.edu.au/plus/index.php/s/pRLVtQyNhxDdCoM
https://www.bgc-jena.mpg.de/wetter/weather_data.html
https://www.bgc-jena.mpg.de/wetter/weather_data.html
paper.pdf{}{}{}#subsection.3.3{}{}{}

SigGPDE: Scaling Sparse Gaussian Processes on Sequential Data

In the SigGPDE sparse variational inference framework,
Cuu is diagonal which lowers both the memory and compu-
tational costs (see first line Tables 1 and 2). Besides there is
no need to compute the Cholesky decomposition of Cuu to
invert it (see last line Table 1). Lastly, in SigGPDE the in-
ducing variables do not depend on any variational parameter
(see last line Table 2).

Operation SigGPDE (ours) GPSig-IT GPSig-IS

Cuu O(1) O(n2M2d) O((n+ d)M2 ˜̀2)

Cfu O(ÑM`) O(n2ÑM`d) O((n+ d)ÑM ˜̀̀)

diag(Cff) O(dÑ`2) O((n+ d)Ñ`2) O((n+ d)Ñ`2)

Lin. Alg. O(ÑM2) O(ÑM2 +M3) O(ÑM2 +M3)

Table 1: Comparison of time complexities. M is the number
of inducing variables, Ñ the batch size, d the number of
channels in the time series, ` the length of the sequences, n
the truncation level (for GPSig-IT and GPSig-IS) and ˜̀ the
length of the inducing sequences.

Operation SigGPDE (ours) GPSig-IT GPSig-IS

Cuu N/A O(n2M2) O(M2 ˜̀2)

Cfu O(ÑM`) O(n2ÑM`) O(ÑM`˜̀)

diag(Cff) O(Ñ`2) O(Ñ`2) O(Ñ`2)

z N/A O(n2Md) O(M ˜̀d)

Table 2: Comparison of space complexities, separated by
algorithm to compute each covariance matrix. The last line
accounts for the storage of the inducing tensors and inducing
sequences in GPSig-IT and GPSig-IS.

C.2. Computing the signature kernel and its gradients

Recall that the signature kernel solves the following PDE,

∂2U

∂s∂t
= (ẊT

s Ẏt)U U(0, ·) = 1, U(·, 0) = 1 (9)

therefore each kernel evaluation amounts to a call to a PDE
solver. Using a straightforward implementation of a finite-
difference PDE solver which consists in applying an update
of the form

U(si, tj) = g(U(si−1, tj−1), U(si, tj−1), U(si−1, tj)),

in row or column order, the time complexity for N kernel
evaluations for time series with d channels of length ` is
O(dN`2). Indeed there is no data dependencies between
each of the N kernel evaluations, hence we can solve each
PDE in parallel. But, this does not reduce the quadratic
complexity with respect to the length `. However, it is
possible to parallelize the PDE solver by observing that
instead of solving the PDE in row or column order, we can
update the antidiagonals of the solution grid. As illustrated

s4

t4

s3

t3

s2

t2

s1

t1

U(s3, t3)U(s3, t2)

U(s2, t2) U(s2, t3)

1

Figure 1: Parallelization of the finite-difference scheme.
Each cell on an antidiagonal can be computed in parallel,
provided the previous antidiagonals have been computed.

on Fig. 1, each cell on an antidiagonal can be updated with
in parallel as there is no data dependency between them.
Therefore, we propose a CUDA implementation where N
collections of 2` − 1 threads (the number of cells on the
biggest antidiagonal) running in parallel can simultaneously
update an antidiagonal of the solution grids.

To compute the gradients, we use the result from Thm. 4.1.
During the forward pass we solve the PDEs defined by
the input time series using the CUDA operator described
above. For the backward pass, we first solve the PDEs with
the input time series reversed in time, by calling the same
CUDA operator. Second, we compute the gradients using
simple vectorized TensorFlow operations.

References
Chevyrev, I. and Kormilitzin, A. A primer on the signature

method in machine learning. arXiv:1603.03788, 2016.

Dozat, T. Incorporating nesterov momentum into adam.
2016.

Lyons, T. J., Caruana, M., and Lévy, T. Differential equa-
tions driven by rough paths. Springer, 2007.

Tavenard, R., Faouzi, J., Vandewiele, G., Divo, F., Androz,
G., Holtz, C., Payne, M., Yurchak, R., Rußwurm, M.,
Kolar, K., and Woods, E. Tslearn, a machine learning
toolkit for time series data. Journal of Machine Learning
Research, 21(118):1–6, 2020. URL http://jmlr.
org/papers/v21/20-091.html.

Toth, C. and Oberhauser, H. Bayesian learning from se-
quential data using gaussian processes with signature
covariances. In International Conference on Machine
Learning, pp. 9548–9560. PMLR, 2020.

paper.pdf{}{}{}#theorem.4.1{}{}{}
http://jmlr.org/papers/v21/20-091.html
http://jmlr.org/papers/v21/20-091.html

	Additional Proof
	Additional Experimental Details
	Data collection process
	Training procedure

	Additional Algorithmic Details
	Complexity analysis
	Computing the signature kernel and its gradients

