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Abstract

Making predictions and quantifying their uncer-
tainty when the input data is sequential is a fun-
damental learning challenge, recently attracting
increasing attention. We develop SigGPDE, a new
scalable sparse variational inference framework
for Gaussian Processes (GPs) on sequential data.
Our contribution is twofold. First, we construct
inducing variables underpinning the sparse ap-
proximation so that the resulting evidence lower
bound (ELBO) does not require any matrix inver-
sion. Second, we show that the gradients of the
GP signature kernel are solutions of a hyperbolic
partial differential equation (PDE). This theoret-
ical insight allows us to build an efficient back-
propagation algorithm to optimize the ELBO. We
showcase the significant computational gains of
SigGPDE compared to existing methods, while
achieving state-of-the-art performance for classi-
fication tasks on large datasets of up to 1 million
multivariate time series.

1. Introduction

Gaussian process (GP) models provide a sound mathemat-
ical framework for supervised learning that allows the in-
corporation of prior assumptions and provides uncertainty
estimates when modelling unknown functions (Rasmussen
& Williams, 2006). This is usually achieved by specifying
a GP prior over functions with a suitable covariance (or
kernel) along with a conditional likelihood. With this, the
problem boils down to that of estimating the posterior over
the function (values) given the observed data.

However, this posterior distribution is often analytically
intractable and, even when the conditional likelihood is a
Gaussian, GP models scale poorly on the number of obser-
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vations IV, with naive approaches having a time complexity
O(N?). From a wide range of approximate techniques
to scale inference in GP models to large datasets, “sparse”
methods based on variational inference (VI) have emerged
as one of the dominant approaches (Titsias, 2009). They con-
sist in defining a family of approximate posteriors through
M inducing variables, and selecting the distribution in this
family that minimizes the Kullback-Leibler (KL) divergence
between the approximation and the true posterior. This is
achieved by minimizing the so-called evidence lower bound
(ELBO). When the likelihood factorizes over datapoints,
training can be done in minibatches of size N resulting in
a per-iteration computational cost O(NM? 4+ M?3), where
the O(M?3) cost is due to the inversion of the covariance
matrix of the M inducing variables. This yields significant
computational savings when M < N.

In the seminal work of Titsias (2009) the inducing variables
correspond to evaluations of the GP at M pseudo input lo-
cations, which typically results in a dense covariance matrix
to invert. Subsequently, other ways of constructing induc-
ing variables have been introduced in order to mitigate the
O(M?3) cost (Hensman et al., 2017; Burt et al., 2020b). The
core idea consists in defining (almost) independent inducing
variables, such that their covariance matrix is (almost) diag-
onal. These inducing variables correspond to projections of
the GP on basis functions, such that the covariance matrix
is a Gramian matrix with respect to some inner-product. Or-
thogonal basis functions yield diagonal Gramian matrices,
hence these methods are often referred to as variational or-
thogonal features (VOFs) . However existing VOF methods
are limited to stationary kernels on X C R (d € N).

In this work we are interested in generalizing the VOF
paradigm to the case where the input space X is a set of
sequences of vectors in R%. One may be tempted to naively
concatenate each vector in a sequence of length ¢ to form a
flat vector in R®. However in this case existing VOF meth-
ods cannot be directly applied because they are limited to
low dimensional vectors, with d < 8 (Dutordoir et al., 2020).
Thus, one needs kernel functions specifically designed for
sequential data. The signature kernel (Cass et al., 2020)
is a natural choice that has recently emerged as a leading
machine learning tool for learning on sequential data. In
particular, Toth & Oberhauser (2020) have proposed GPSig,
a GP inference framework leveraging an approximation of



SigGPDE: Scaling Sparse Gaussian Processes on Sequential Data

this covariance function (Kirdly & Oberhauser, 2019) and
achieving state-of-the-art performance on time series classi-
fication tasks. Nevertheless, as in standard sparse variational
approaches to GPs, the inducing inputs they chose (so called
inducing tensors) are additional variational parameters to
optimize, and the resulting covariance matrix is dense.

Here we develop SigGPDE, a new scalable sparse varia-
tional inference framework for GP models on sequential
data. After a brief recap on the general principles of varia-
tional inference (Sec. 2) we identify a set of VOFs naturally
associated with the signature kernel. These inducing vari-
ables do not depend on any variational parameter as they
are defined as projections of GP-samples onto an orthogo-
nal basis for the RKHS associated to the signature kernel
(Sec. 3). As a result, unlike the methods developed in Toth
& Oberhauser (2020), in SigGPDE the optimization of the
ELBO does not require any matrix inversion. Subsequently,
we show that the gradients of the signature kernel are so-
lutions of a hyperbolic partial differential equation (PDE).
This theoretical insight allows us to build an efficient back-
propagation algorithm to optimize the ELBO (Sec. 4). Our
experimental evaluation shows that SigGPDE is consider-
ably faster than GPSig, whilst retaining similar predictive
performances on datasets of up to 1 million multivariate
time series (Sec. 6).

2. Background

We begin with a general summary of variational inference
for GPs. In this section, it is assumed that the input space is
X C R? Standard models with zero-mean GP priors and
iid conditional likelihoods can be written as follows

N
i=1

where k(-,-) is the covariance function. The general set-
ting for sparse GPs consists in specifying a collection of
M variables as well as a joint distribution with variational
parameters m (mean vector) and 3. (covariance matrix)
u={w )y ) =NmE). @
These variables induce a family of approximate posteriors
that are GPs with finite dimensional marginal densities of
the form ¢(f,u) = p(f|u)g(u). Considering any input
x € X, the mean and covariance functions of these GPs are

fq(x) = C’fqul;}m 3)
kq(fca y) = k(‘r) y) - Cf'pucljl} (Cuu - Z)CJI}Cufy’

where the vector C,  and the matrix C},, are defined as

[wau}m = E[umf(x)], [CUU]m,m’ = E[umum’] €]

Provided the inducing variables u are deterministic condi-
tioned on f, one has the following lower bound (ELBO) on
the marginal log likelihood (Matthews, 2017)

logp(y) = Ey()[log p(y[f)] — K L[g(w)[[p(uw)],  (5)

where p(u) = N (057, Cyyu). Maximizing the right-hand-
side of eq. (5) is equivalent to minimizing the KL divergence
between ¢(f) and the true posterior distribution.

The original variational inference framework outlined in
Titsias (2009) consists in setting u,, = f(z,,) where z,, €
X is a pseudo input living in the same space as z that
may either be fixed or optimized. The per-iteration cost
of optimizing the ELBO is O(NM? + M?3), where N is
the minibatch size and M3 is the cost of computing C,}
via a Cholesky decomposition.

Recently, a considerable effort has been devoted to the con-
struction of inducing variables u which yield a structured
covariance matrix C\,, whose inversion has a reduced com-
putational complexity (Hensman et al., 2017). This line of
work is often referred to as inter-domain sparse GPs, owing
to the fact that the pseudo inputs are not constrained to live
in X as before. In particular, Burt et al. (2020b); Dutor-
doir et al. (2020) have shown that provided one can find
an orthogonal basis of functions for the RKHS associated
with the kernel k(-, -), it is possible to define the inducing
variables as projections of the GP samples onto this basis.
This construction yields a diagonal covariance matrix Cyy,.

3. Variational Inference with Orthogonal
Signature Features

Here we present our first contribution, namely the use of
orthogonal signature features as inducing variables for GPs
on sequential data. We begin with a summary of the theo-
retical background needed to define GPs endowed with the
signature kernel. In this section & is no longer a subspace
of R? but will be defined as a space of paths hereafter.

3.1. The signature

Consider a time series x as a collection of points z; € R4~!
with corresponding time-stamps t; € R such that

X = ((to,%o),(tl,xl),...,(t",In)) (6)

with 0 = tg < ... < t, = T. Let X : [0,T] — R4
be the piecewise linear interpolation of the data such that
X, = (t;,x;). We denote by X the set of all continuous
piecewise linear paths defined over the time interval [0, T')
and with values on R?.

For any path X € X and any a € {1,...,d}, we will
denote its o’ channel by X () so that at any time ¢ € [0, T']

Xp = (XM, X, (7)
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as depicted on Fig. la with d = 3.

The signature S : X — H is a feature map defined for any
path X € X as the following infinite collection of statistics

500 (1 {50}

[s(x)onon)’

)
ag,02=1

{s(x)onmmem)’

)
a1,02,03=1

where each term is a scalar equal to the iterated integral

S(X)lermes) = dx (... dx{) (8)

0<sl<...<sj<T

The feature space H associated to the signature is a Hilbert
space defined as the direct sum of tensor powers of R¢

H=EPRH*  =RoR'® RH®? @ ... (9)
k=0

where ® denotes the outer product (Lyons, 1998; 2014).

Interpretability of the signature features An important
aspect of sequential data is that the order of the observations
is not commutative, in the sense that reordering the elements
of a sequence can completely change its meaning. By defi-
nition the terms in the signature capture this fact. In effect,
the j-fold iterated integral in eq. (8) is defined as an integral
over the simplex 0 < s1 < ... < s; < T which explicitly
encodes the ordering of events happening across different
channels X (®) ..., X (@) This provides the signature fea-
tures with a natural interpretability as highlighted several
times in prior work (Arribas et al., 2018; Moore et al., 2019;
Lemercier et al., 2021).

3.2. The signature kernel

The signature kernel k : X x X — R s areproducing kernel
associated to the signature feature map and defined for any
pair of paths X, Y € X as the following inner product

E(X,Y)=(S(X),S(Y))y - (10)

From the structure of H and the properties of the signature
it turns out that the signature kernel can be decomposed
according to the expansion (Cass et al., 2020)

EXY) =) ) S(X)*s(v)*, (1)
=0 |a|=j
where the inner summation is over the set of multi-indices

{a=(a1,...,q5)ra1,...,05 €{1,...,d}} (12

In their recent article, Cass et al. (2020) provide a kernel
trick for the signature kernel by proving the relation

where the function of two variables U : [0,7] x [0,T] — R
is the solution of the following hyperbolic PDE

0?U —(
dsot

with boundary conditions U (0,-) = 1 and U(-,0) = 1. This
kernel trick is explained with simple arguments in the proof
of Cass et al. (2020, Thm. 2.5). The sketch of the proof goes
as follows: one first shows that the inner-product in eq. (10)
satisfies a double integral equation which comes from the
fact that the signature itself solves an integral equation. Then
one uses the fundamental theorem of calculus to differentiate
with respect to the two time variables to obtain the PDE.

xXIvyu (14)

Next, we propose a simple parametrization of this kernel.

3.3. Parametrization of the signature kernel

In many real-world problems the input path X contains a
large number d of different channels, only some of which
are relevant. For any coordinate o € {1,...,d} and time
index ¢ € [0,T] one can rescale each channel X (@) by a
scalar hyperparameter 6,, yielding the rescaled path

X8 =0, xM, .. 0.xD). (15)

From eq. (8) it is straightforward to see that the correspond-
ing rescaled signature satisfies the following relation

SO(X)(al,...,aJ) - S(XO)(al,‘.A,aj) 6
= eal ...HajS(X)(OZ1,...7aj) (17)

for any ay,...,c; € {1,...,d}. As aresult, akin to an
automatic relevance determination (ARD) parametrization,
the signature kernel of eq. (11) can be reparametrized as

oo

ko(X,Y) =) > Sp(X)*Sp(Y)*.  (18)

7=0 |a|=3

3.4. Variational Orthogonal Signature Features

In the sequel we build on the results from the previous
sections to define the orthogonal signature features underly-
ing our sparse variational inference framework for GPs on
sequential data.

By Steinwart & Christmann (2008, Thm. 4.21), the repro-
ducing kernel Hilbert space (RKHS) ‘H associated to the
parametrized signature kernel kg can be defined as

H={g: X (Se(X),h),}, heH (19
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Figure 1. Illustration of the first terms of the signature S(X) for a 3-dimensional path X . Each blue circle corresponds to a signature feature

S(X)® with & = (a1, . ...

, & ). The size of the circle reflects the feature importance according to the property |S(X)*)| = O(1/|a]!).

The first feature S°) which is always equal to 1 is omitted in this schematic.

Besides, for any two functions g1, go € H such that,

g1 X = <Sg(X),h1>H
gs : X — <Sg(X),h2>H,

(20)

2D

the inner product (-, -) g induces the inner product on H
(91, 92)n = (h1,ho) g (22)

This result relies on the unicity of h; and hy in the decompo-
sition of ¢g; and go, which follows from Diehl & Reizenstein
(2019, Lemma 3.4) and Xu & Zhang (2007, Lemma 5).

The key to our setup is that the set of signature features

St ={S()*: X — S6(X)* actarray) (23
forms an orthonormal basis for the RKHS H, i.e.
, 1, fa=dod
Se (), Se(-)* =0aa =% T(24
< o() o) >H we {0, otherwise. 24)

An important property of the orthonormal basis S is that
its elements are naturally ordered. This ordering is due
to the property that for any path X € X" the terms of the
signature decay factorially (Lyons et al., 2007)

500%1 =0 (7).

as shown in Fig. 1. Hence to index the signature orthogonal
features S, Sa,...,S5", ... we order first by increasing
level j, and then by sorting the multi-indices o within a
level. From eqgs. (24) and (25) we define our inducing vari-
ables as orthogonal projections? of the GP onto the first M

(25)

'By Diehl & Reizenstein (2019, Lemma 3.4) 5panS(X) = H
where S(X) := {S(X) : X € X}. Therefore by Xu & Zhang
(2007, Lemma 5.) Vg € H, 3th € H : g(-) = (S(-),h)x.

2Although f does not belong to # with probability 1 (Kana-
gawa et al., 2018), such projections are well defined because the
space spanned by S is dense in the space of continuous functions
on X and f is continuous (Toth & Oberhauser, 2020, Thm. 1.)

elements of the orthonormal signature basis S L thatis

Um = <faS79n>7'lv

With this choice of inducing variables we easily deduce the
following covariances (Hensman et al., 2017)

1<m<M. (26)

Elun f(X)] = Sg'(X) and E[umum] = Omm, (27)
which implies that the covariance matrix Cl,, is the identity.

For any path X € X we use the convenient vector notation

Su(X) :=[S5(X),..., S (X)] eRM,  (28)

to obtain the approximate posterior GP(u, ) with mean
and covariance functions defined by the following equations

w(X) =Sy (X)"m (29)
V(X,Y) =ke(X,Y) — Sy (X)T (Ing — 2)Sp (V).

We note that the signature and the signature kernel can be
easily computed on real time series using existing python
libraries (Lyons, 2010; Reizenstein & Graham, 2018).

4. Reverse-mode automatic differentiation for
the signature kernel

In order to optimize the ELBO with respect to the parame-
ters @ one needs to take derivatives of the signature kernel
ke of eq. (29) with respect to each of its input paths. Given
that kg solves the PDE (14) it can be computed using appro-
priate PDE numerical solvers. Therefore, in theory the dif-
ferentiation could be carried out by leveraging the automatic
differentiation tools of modern deep learning libraries (Ten-
sorflow, PyTorch etc.). However, backpropagating through
the operations of the PDE solver can be inefficient.

Here we show that the gradients of kg can be computed
efficiently without backpropagating through the operations
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of the PDE solver as they are the solutions of a second PDE
analogous to eq. (14). The ability not to rely on automatic
differentation allows for an efficient fitting of SigGPDE
both in the terms of time complexity and memory cost.

4.1. Differentiating the signature kernel along the
direction of a path

Consider a time series X as a collection of points z; € R?
with corresponding time-stamps s; € R such that

x = ((80,0), (81,21), .., (8¢, 2¢)) (30)

with sg < ... < s¢. Every vector x; in the sequence can be
written with respect to the canonical basis of R as

d
Ty = meej (31)
j=1

Let X : [0,7] — R be the piecewise linear interpolation
of the data such that X;, = (¢;, ;). Similarly for a second
time series y and resulting piecewise linear interpolation Y.
Recall the definition of signature kernel as

ko(X,Y) = k(X® YY), (32)
where X and Y? are the rescaled paths of eq. (15).
By the chain rule one has that

ke _ Ok 8X9+ ok oy*® 33)
00 ~ 9X® 90 ' 9X°O 90

Hence, to formulate a backpropagation algorithm in a rigor-

ous way compatible with the TensorFlow library used in this

work, we need to give meaning to the following gradients
£,d

0
{oerxn] en

ij=1

The technical difficulty here consists in reconciling the con-
tinuous nature of the input path X and the discrete nature of
the locations x; ; where one wants to compute the gradients
and given by the knots of the time series x.

Next we introduce a collection of localised impulses and
define the concept of directional derivative of the signature
kernel along a path in order to make sense of the gradients
in eq. (34). These definitions will be followed by the main
result of this section, namely that the directional derivative
of k solves another PDE similar to eq. (14) for the signature
kernel, for which we derive an explicit solution via the
technique of variation of parameters (Thm. 4.1).

Definition 1. Foranyi =1,... . fandany j = 1,...,d
define the localised impulse ; ; : [0,T] — R< as the solu-
tion of the following ordinary differential equation (ODE)

. 1
Yig = geiliseri-v/eison 7:,5(0) =0 (35)

Definition 2. For any path v € X the directional derivative
of the signature kernel k along ~y is defined as

ko (X,Y) o= %k(X Fey, Y)‘ i (36)

Each gradient of the signature kernel kg at the knot z; ;
reported in eq. (34) can be identified with the directional
derivative of kg along the localised impulse ; ; of Def. 1

0

Iz;j

k(X,Y) =k, (X,Y) 37)

4.2. A PDE for the gradients of the signature kernel

Recall that the signature kernel kg solves the following PDE
02U _
dsot

Integrating both sides with respect to s and ¢ one obtains

(XTv)U (38)

s t
U(s,t) =1 +/ / Ulu,v)(XLY,)dudv  (39)
u=0 Jv=0

Let’s denote by U,, : [0,7] x [0,7] — R the directional
derivative k- evaluated at the restricted paths X|o 5, Y[0,4

Uy (8,t) := ky(X 10,5, Y[0.67) (40)
The combination of eqs. (39) and (40) yields the relation

Us(s,1) = ok (X + )l Vlow)|

o s t . ) T .
= (/0 /0 U(u, v) (Xu+e%) Yvdudv>€:0
s t
= / / (Uw(u, )XY, + Ul(u, U)"VEYU) dudv
o Jo

Hence, differentiating the last equation first with respect to
t and then s we get that the directional derivative k., of the
signature kernel along the path ~y solves the following PDE

82U»Y ST -Tx,
with boundary conditions
Uy(0,-) =0, U,(-,0)=0. (42)

As a result, the gradients in eq. (34) of the signature kernel
with respect to each of its input paths can be computed
in a single call to a PDE solver, which concatenates the
original state and the partial derivatives (41) into a single
vector. Each partial derivative follows the dynamics of (41)
where one replaces the direction y by the relevant localised
impulse ; ;, 7; ; for X and Y respectively. We outline the
resulting procedure in Alg. 1, where the concatenated partial
derivatives are denoted by U, (s, t). Note that to optimize
the ELBO we only need to differentiate k(X, X), which is
the case presented in the algorithm. The generalization to
the case k(X,Y") is straightforward using the chain rule.
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Algorithm 1 Backpropagation for kg (X, X) via PDE (41)

Input: Path X, localised impulses v = {; ;} fully determined by the time series x.

Up,: = [1707"'70]7 U0 = [170770]
def aug_dynamics([U (s, t), Uy(s,t)],s,t):

// Boundary conditions for the augmented state
// Dynamics for the augmented state

[U(T,T),U,(T,T)] = PDESolve(uy ., u. o, aug_dynamic, T, T)

1:
2
3
4 return [XSTXtU(s, 1), XTX,Usy(5,) + 4. XU (s, 1)
5
6:

Output: 2 - U, (T, T)

// Gradients of the kernel at the knots of X

Algorithm 2 Backpropagation for kg (X, X) via variation of parameters (Thm. 4.1)

1: Input: Path X, localised impulses v = {v; ;} fully determined by the time series x

2: u07;:[1,...,1], u:70:[1,...,1]

[U(s,t),ﬁ(s,t)} ,s,t):

bl

def aug_dynamics(
4 return [ X7 X,U (s, 1), XF_ X0 (s, )]
50 U, U] = PDESolve(uyg ;, u. g, aug_dynamic, T, T)
6
7

Uy =tfsumU - U - vX)
: Output: 2 - U,

// Boundary conditions for the augmented state

// Dynamics for the augmented state

// Keep the solutions at each (s,t)

// Simple final TensorFlow operations
// Gradients of the kernel at the knots of X

4.3. An explicit solution by variation of parameters

From this second PDE (41) we derive the following theo-
rem (proved in Appendix A), that allows to compute the
directional derivative k. of the signature kernel directly

from its evaluations at X, Y and at ?, ?, where Y, ? are
respectively the paths X, Y reversed in time.

Theorem 4.1. For any v € X the directional derivative
k(X,Y) of the signature kernel along the path ~y satisfies
the following relation

ky(X,Y) = /OT /OT U(s,)U(T — s, T — t)(57Y;)dsdt

where Ul(s,t) = k(yho,sbyho,t]) and where ?, Y are
respectively the paths X,Y reversed in time.

The full backpropagation procedure is described in Alg. 2.

5. Related work

In this section we expand on the material presented in Sec. 2,
focusing on the most recent approaches to scalable GPs on
R? with VOFs and on sparse GPs for sequential data.

Variational Fourier Features In Hensman et al. (2017)
the inducing variables are defined for scalar input X = R
as projections of the GP-sample onto the truncated Fourier
basis. This type of inducing variables can be constructed
for GPs with Matérn-type kernels. Although the resulting
covariance matrix of the inducing variables is not diagonal,
it can be decomposed into the sum of a diagonal matrix
and rank one matrices. As a result it can be inverted using

the Woodbury identity, which makes it possible to scale GP
inference on R. The generalization to GPs on R? is done by
taking the outer product of the Fourier basis on R.

Eigenfunction inducing features Closest to our work is
the eigenfunction inducing features developed by Burt et al.
(2020a), where the inducing variables are also defined as
projections of the GP-sample onto an orthogonal basis of
functions for the RKHS associated with the GP kernel. This
relies on a Mercer’s expansion of the kernel. From here
one identifies this orthogonal basis functions by solving an
eigendecomposition problem. For example Dutordoir et al.
(2020) map the input data to the hypersphere S~ c R?
and then show that spherical harmonics form an orthogonal
basis for RKHS associated to zonal kernels defined on S% 1.

GPs with signature covariances Toth & Oberhauser
(2020) propose a different sparse GP inference framework
for sequential data with signature covariances (GPSig). In
this work the inducing variables are either taken to be induc-
ing sequences (IS) in the original input space (GPSig-1S) of
sequences or inducing tensors (IT) in the corresponding fea-
ture space (GPSig-IT). The chosen covariance function is an
approximation of the signature kernel based on truncating
the signature to a finite level n. For GPSig-IT, this trunca-
tion makes the feature space finite dimensional and allows to
optimize inducing tensors defined over such truncated space.
Unlike our method, the inducing tensors are additional vari-
ational parameters to optimize. The covariance matrix Cyy
is dense and its inversion incurs an additional O(M?3) cost.
In Table 1 we compare the computational complexities of
GPSig-IT, GPSig-IS and SigGPDE. A similar table for the
memory complexity can be found in Appendix C.
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Figure 2. Weather forecast dataset. (a) One (standard scaled) multivariate time series X in input to the GP model. (b) Posterior mean of the
SigGPDE GP when evaluated at multiple input time series like x on the test set. The actual precipitation amount is given for reference.

Operation ~ SigGPDE (ours) GPSig-IT GPSig-IS
Cuu o(1) O(n2M?2d) O((n+ d) M)
Cta O(NMY) OmANMLd)  O((n+ d)NMLL)
diag(Cg) O(dNE?) O((n+d)NE)  O((n+ d)NE2)
Lin. Alg. O(NM?) O(NM? + M3)  O(NM?+ M)

Table 1. Comparison of time complexities. M is the number of
inducing variables, N the batch size, d the number of channels
in the time series, £ the length of the sequences, n the truncation
level (for GPSig-IT and GPSig-IS) and [ the length of the inducing
sequences. The last line of the table corresponds to linear algebra
operations including matrix multiplication and matrix inversion.

6. Experiments

In this last section, we benchmark SigGPDE against GPSig-
IT and GPSig-IS from Toth & Oberhauser (2020) on various
multivariate time series classification tasks. For GPSig-IS,
we use inducing sequences of length ¢ = 5 as recommended
in Toth & Oberhauser (2020). We highlight how SigGPDE
performs competitively in terms of accuracy and uncertainty
quantification but with a significant speed-up in the fitting
compared to the other baselines.

We use a mixture of UEA & UCR time series datasets
(timeseriesclassification.com) and real world
data for the final example. In the latter we discuss how the
predictions provided by SigGPDE can be interpreted in a
natural way via the interpretability of the interated integrals
defining the signature and discussed in Sec. 3.1.

We measure the classification accuracy on the test set, as-
sess the uncertainty quantification with mean negative log-
predictive probabilities (NLPP) and report the runtime per-
iteration. For each dataset all models are trained 3 times
using a random training-validation split. The validation split
is used to monitor the NLPP when optimizing the hyper-
parameters of the models. Further details on the training
procedure can be found in Appendix B. All code is written
in TensorFlow using GPFlow (De G. Matthews et al., 2017).

6.1. Classifying digits in sequential MNIST

We start with a handwritten digit classification task, where
writers were asked to draw the digits from O to 9. The
instances are made up of 2-d trajectories of the pen traced
across a digital screen. The trajectories are of length ¢ =
8. The training and test sets are of size 7494 and 3498
respectively. We made use of M = 500 inducing features.
In the results reported in Table 2, SigGPDE achieves even
better accuracy and NLPP than the GPSig baselines, whilst
being almost twice as fast than GPSig-IT.

Table 2. Classification for sequential MNIST (PenDigits). The
higher the Mean Acc. and the lower the NLPP the better.

Model Mean Acc. NLPP Time

GPSig-IS 9742+ 0.17 0.096 = 0.005 0.186 (s/iter)
GPSig-IT 96.66 £0.59 0.115+0.018 0.036 (s/iter)
SigGPDE  97.73 £0.13 0.085 + 0.001  0.022 (s/iter)

6.2. Detecting whale call signals

In this example the task is to classify audio signals and
distinguish one emitted from right whales from noise. The
dataset (called RightWhaleCalls in the UEA archive) con-
tains 10 934 train cases and 5 885 test cases. The signals are
one-dimensional, sampled at 2kHz over 2 seconds, hence
of length 4000. We tackle this problem as a multivariate
time series classification task, by taking the spectrogram of
the univariate audio signal. The resulting streams are made
of 29 channels corresponding to selected frequencies and
are 30 time steps long. The results in Table 3 are obtained
with M = 700 and show the significant speed-up of SigG-
PDE by almost one order of magnitude compared to GPSig.
This speed-up is compensated by a minimal decrease in
performance both in terms of accuracy and NLPP.
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Table 3. Classification for whale call signals

Model Mean Acc. NLPP Time
GPSig-IS  86.97+0.11 0.367 +0.005 0.438 (s/iter)
GPSig-IT 87.70£0.42 0.357 +0.003 0.048 (s/iter)

SigGPDE  86.76 £0.36 0.382 £ 0.002 0.008 (s/iter)

6.3. Large scale classification of satellite time series

This is our large scale classification example on 1 million
time series. The time series in this dataset represent a vege-
tation index, calculated from remote sensing spectral data.
The 24 classes represent different land cover types (Petit-
jean et al., 2012). The aim in classifying these time series
of length ¢ = 46 is to map different vegetation profiles to
different types of crops and forested areas. Due to the sheer
size of this dataset we only compare SigGPDE to GPSig-IT
as GPSig-IS is not scalable to such large dataset. In Fig. 3
we report the accuracy, time per iteration and ELBO by
progressively increasing the number of inducing variables.
Compared to SigGPDE, GPSig-IT has additional variational
parameters, namely the inducing tensors. This extra flexi-
bility explains the better performances of GPSig-IT when
few inducing variables are used. However, as the number
of inducing features increases, SigGPDE catches up and
outperforms its competitor in all monitored metrics.

6.4. Weather forecast

In this last example we will be using a dataset of climatic
variables recorded by the Max Planck Institute for Bio-
geochemistry® in the weather stations of WS Beutenberg
and WS Saaleaue from 2004-2020. The data consists of
7-dimensional time series recorded once per 10 minutes
where each channel represents a weather feature such as
temperature, pressure, humidity etc. The goal is to predict
whether it will rain over the next hour from the trajectory of
all other features in the preceding 6 hours. To obtain binary
labels for the classification task we set the label to 1 if the
precipitation is larger than 1mm and to O otherwise. The
inference mechanism is depicted on Fig. 2.

A key feature proper to our model SigPDE is its interpretabil-
ity. Looking at the variational mean vector m in eq. (29), we
can extract the terms with highest relevance learned by the
model. As discussed in Sec. 3.1, thanks to the correspond-
ing signature features it is possible to infer which signature
features used by the GP are more responsible for the pro-
duced outcome. The most relevant predictive features for
this weather forecast experiment are represented in Fig. 4.

3https ://www.bgc—-jena.mpg.de/wetter/
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Figure 3. Large scale (1M) classification of satellite time series.
Comparison of various metrics as functions of inducing variables.

I feature importance

Moisture-Humidity-Moisture
Moisture-Temperature-Moisture
Humidity-Rain-Humidity-Rain
Moisture-Airtight-Moisture
Pressure-Rain-Pressure-Rain
Rain

Moisture-Wind speed-Moisture
Airtight-Temperature-Rain
Rain-Rain-Rain
Pressure-Pressure-Rain

Figure 4. Top 10 signature features (by importance) used by Sig-
GPDE to predict whether or not it will rain in the next hour from
previous weather data. Each feature is a term in the signature. For
example Moisture-Humidity-Moisture means that a change in the
moisture channel followed by a change in the humidity channel
and a change in the moisture channel is an important pattern.
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7. Conclusion

In this paper we have developed SigGPDE, a framework to
perform variational inference for GP models on sequential
data with orthogonal signature features. Firstly, we con-
structed inducing variables so that their covariance matrix
is diagonal. Secondly, we showed that the gradients of the
signature kernel are solutions of a hyperbolic PDE. As a re-
sult the ELBO is cheap to evaluate as gradient descent does
not require backpropagating through the operations of the
PDE solver. We benchmarked SigGPDE against the state-
of-the-art GPSig on different time series classification tasks,
showing a significant speed up and similar performance.
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