Improved, Deterministic Smoothing for ¢, Certified Robustness

A. Proofs

Theorem 1 (Lee et al. (2019)). For any f : R — [0,1]

and parameter X € RT, define:

px):= E [fx+e)]. (30)
e~UL(=X,N)

Then, p(.) is 1/(2X)-Lipschitz with respect to the {1 norm.

Proof. Consider two arbitrary points x, ' where ¢ := ' —
x. We consider two cases.

e Case 1: ||6||; > 2A: Then, because f(-) € [0, 1], and
therefore p(-) € [0, 1], we have:

3D

* Case 2: ||6]|1 < 2A: In this case, for each i, |0;] < 2A.

Define B(x) as the £, ball of radius A around x, and
U(B(x)) as the uniform distribution on this ball (and,
similarly ¢/(-), on any other set). In other words:

p(x) = E f(z) (32)
2~ U(B(2))
Then,
Ip(x) — p(x')]
=| E f(z- E f(z
z~U(B(x)) z~U(B(x'))
= Pr z € B(z) \ Bz’ E f(z
‘(;w{(é(m)) (@) \ B( )zNM(B(:{)( )
\B(z"))
+ Pr zeB(x)n B E f(z
2~ U(B(x)) () ( )zNU(B(g)( ))
NB(z"))
- Pr z e B(z)\ Bz z
(z~u<8(w')) @)\ ()zNM(B(ac)() (33)
\B(z))
Pr z e B(z) N B(a' E f(z ‘
z~U(B(x')) () ( )z~u(3(£)( ))
NB(x"))
= Pr ze B(x)\ B(x z
2~U(B(z)) (@) \ B( )ZNU(B(ic( )
\B(z"))
— Pr z e B(z')\ B(x E f(z ’
z~U(B(x')) @)\ B( )z~u(8(wf)( )
\B(x))
Note that:

Pr zeB(x)\ Bz
B 2 € B\ B

= Pr zeB=x))\B)

2nU(B(x))

(34)

Because both represent the probability of a uniform
random variable on an ¢, ball of radius A taking a

value outside of the region B(x) N B(x') (which is
entirely contained within both balls.) Then:

Ip(z) — p(x')]
= Pr zeBx))\Ba
kb (z) \ B(z')
| E fe- E f2)] 69
z~U(B(x)\ z~U(B(x")
B(z')) \B(x))
< Pr zeBx))\B).
< Pr e B@)\B@)

Where, in the last line, we used the fact that f(-) €
[0, 1]. Let V(S) represent the volume of a set S. Note
that B(x) N B(x’) is a d-hyperrectangle, with each
edge of length

min(z;, ;) +A— (max(x;, x)—\) = 2A—|d;| (36)
Then following Equation 35,
Ip(z) — p(x)]
< Y(B(z)) = V(B(z) N B(z'))
- V(B(z))

I, (27— i) 37
V)

d;
=1 _ili <1 B |2)\|)
Note that, for 1 < d’ < d:
, 5;
'Liill (1 a 2)\|>
“m(-5) -G (- 5) e
'~ d; Ogr
2 (1-53) - 55

By induction:

=1

d
d |9 |6
1-— >1— 39
il;[1< 2)\)_ ;n (39)
Therefore,
p(z’)
i ( )
<1 H

1§|

) (40)
=1

I/\
A H

18l
2\

Thus, by the definition of Lipschitz-continuity, p is 1/(2))-
Lipschitz with respect to the £, norm. O
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Theorem 2 (General Case). Forany f : R? — [0,1], and
A > 0 let s € [0,2) be a random variable, with a fixed
distribution such that:

si ~U(0,2)), Vi. 41)

Note that the components s1, ..., Sq are not required to be
distributed independently from each other. Then, define:

min(2\[ #5551 4 54, 1)

Fy = 2 42)
L max(Af i{x; —HFs0) o us
) = EL1(@)]. o

Then, p(.) is 1/(2X)-Lipschitz with respect to the {1 norm.

Proof. Consider two arbitrary points x, ' where § := x’ —
. We consider two cases.

 Case 1: [|d|l1 > 2X: Then, because f(-) € [0,1], and
therefore p(-) € [0, 1], we have:
)
pla) —pla) <1< 10 )

e Case2: [|0]l1 < 2A:
In this case, for each i, |§;] < 2\, and therefore

[255] and [122;\81'] differ by at most one. Further-
more, [ =517 differs from [ %] by at most one, and
similarly for ;. Without loss of generality, assume

T < .1?2 (.e., 0; = ‘6z| = Z‘; — ;).

There are two cases:

- Case A: [5] = [%] Let this integer be n.
Then:
o [2550] = [552] = niff 55 < 3{—(n—1)
(which also implies 5% < 3% — (n — 1)).
s |’mi2;\Si—| _ (zi;)\sw —n—-1 iff% > % _
(n — 1) (which also implies 5% > F% — (n —
1)).
Then [Zi-%:] anq [“i524] differ only if 2& —
(n—1) < £ < 5+ — (n—1), which occurs with
probability g—)\
- CaseB: [55]+1= [%1 Letn := [51]. Then

[£554] and (%1 can differ if either:

s [2=5] = pand [%5%] = n + 1. This
occurs iff 5% < % — n (which also implies

A< H—(n—-1).
w [E5] = n —1 gnd [“554] = n. This

occurs iff 3+ > F& — (n — 1) (which also

’
implies 5 > Li _
implies 5% > 53 — n).

xT

In other words, [£5:51] = V'/"_Si iff:

2X
z; ( 1> Si o x}
o 21 = 2\
Or equivalently:
xX; + 1 > S; > xX; + 52
2 St g T
2 2A T 2) 2\

This happens w?th probability 1 — g—j\. Therefore,
[£i=21] and [ %] differ with probability 2.

Note that [ 55 —1] and [112;)\8 —1] differ only when

[2554] and V'/"_Sﬂ differ. Therefore in both cases,

2X
Z; and Z; differ with probability at most lgf\l . The rest
of the proof proceeds as in the A > 0.5 case in the

main text.

O

Corollary 1 (General Case). Forany f : R — [0, 1], and
A > 0 (with 2) a multiple of 1/q), let s € [0,2X — 1/q]{,) +
1/(2q) be a random variable with a fixed distribution such
that:

si~ Uy (0,20 = 1/q) +1/(2q), Vi. (46)

Note that the components s1, ..., Sq are not required to be
distributed independently from each other. Then, define:

min(2A[ X555 ] + 55, 1)

X; = 5 “47)
n max(mmﬁ; “HEs0) )
P69 = ELFR). )

Then, p(.) is 1/(2))-Lipschitz with respect to the {1 norm
on the quantized domain x € [0, 1]?q).

Proof. The proof is substantially similar to the proof of the
continuous case above. Minor differences occur in Cases
2.A and 2.B (mostly due to inequalities becoming strict,
because possible values of s; are offset from values of x;)
which we show here:

1= (%} Let this integer be n. Then:

(n—1)

* Case A: [ 3%

- [Pl =Rt = nlff,z%\ <3 -
(which also implies £ < 7 — (n — 1)).

= [P5] = [55] = n—Liff 55 > 3= (n—1)
(which also implies 5% > J& — (n — 1)).
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Then [*55°¢] and (x’/"zj\sﬂ differ only if 5 —(n—1) <
o < % — (n — 1). There are exactly ¢ - d; discrete
values that s; can take such that this condition holds.
This is out of 2\q possible values over which s; is
uniformly distributed. Therefore, the condition holds

with probability 2%.

e Case B: [Ji] +1 = [%] Let n := [3£]. Then

[*=517 and (x’/"z_)\sﬂ can differ if either:

- [%%] = pand [x’/"_sﬂ = n + 1. This occurs

- / DY
iff 25 < X — n (which also implies 3% < X —
(n—1)).

- [*5%] = n —1and [*5*] = n. This occurs
iff 55 > 3% — (n — 1) (which also implies 5§ >
% —n).

In other words, [*:521] = ("/2;)\5 iff:

!

X; S; X,

2 m—1 il A

AR Y
Or equivalently:

X4 54 X i

— — 1>—=>—- —

o T T T
There are exactly ¢ - (1 — ;) discrete values that s; can
take such that this condition holds. This is out of 2\q
possible values over which s; is uniformly distributed.

Therefore, the condition holds with probability 1; ;\S L,

Thus, [*:555¢] and [XEQ_A“] differ with probability 5.

O

B. Experimental Details

For uniform additive noise, we reproduced Yang et al.
(2020)’s results directly, using their released code. Note
that we also reproduced the training of all models, rather
than using released models. For Independent SSN and
DSSN, we followed the same training procedure as in Yang
et al. (2020), but instead used the noise distribution of our
methods during training. For DSSN, we used the same
vector v to generate noise during training and test time:
note that our certificate requires v to be the same fixed
vector whenever the classifier is used. In particular, we
used a pseudorandom array generated using the Mersenne
Twister algorithm with seed 0, as implemented in NumPy as
numpy.random.RandomState. This is guaranteed to produce
identical results on all platforms and for all future versions
of NumPy, given the same seed, so in practice we only store
the seed (0). In Section C, we explore the sensitivity of our
method to different choices of pseudorandom seeds.

In a slight deviation from Cohen et al. (2019), Yang et al.
(2020) uses different noise vectors for each sample in a
batch when training (Cohen et al. (2019) uses the same € for
all samples in a training batch to improve speed). We follow
Yang et al. (2020)’s method: this means that when training
DSSN, we train the classifier on each sample only once per
epoch, with a single, randomly-chosen value of Spase, Which
varies between samples in a batch.

Training parameters (taken from Yang et al. (2020)) were as
follows (Table 2):

CIFAR-10 ImageNet
Architecture WideResNet-40 | ResNet-50
Number of Epochs 120 30
Batch Size 64° 64
Initial 0.1 0.1
Learning Rate
LR Scheduler Cosine Cosine
Annealing Annealing

Table 2. Training parameters for experiments.

For all training and certification results in the main text, we
used a single NVIDIA 2080 Ti GPU. (Some experiments
with denoisers, in Section D, used two GPUs.)

For testing, we used the entire CIFAR-10 test set (10,000
images) and a subset of 500 images of ImageNet (the same
subset used by Cohen et al. (2019)).

When reporting clean accuracies for randomized techniques
(uniform additive noise and Independent SSN), we followed
(Yang et al., 2020) by simply reporting the percent of sam-
ples for which the Ny = 64 initial noise perturbations, used
to pick the top class during certification, actually selected
the correct class. (Notably, (Yang et al., 2020) does not
use an “abstain” option for prediction, as some other ran-
domized smoothing works (Cohen et al., 2019) do.) On the
one hand, this is an inexact estimate of the accuracy of the
true classifier p(x), which uses the true expectation. On the
other hand, it is the actual, empirical accuracy of a classifier
that is being used in practice. This is not an issue when
reporting the clean accuracy for DSSN, which is exact.

In DSSN, following Levine & Feizi (2020a) (discussed in

3There is a discrepancy between the code and the text of Yang
et al. (2020) about the batch size used for training on CIFAR-10:
the paper says to use a batch size of 128, while the instructions
for reproducing the paper’s results released with the code use a
batch size of 64. Additionally, inspection of one of Yang et al.
(2020)’s released models indicates that a batch size of 64 was
in fact used. (In particular, the “num_batches_tracked” field in
the saved model, which counts the total number of batches used
in training, corresponded with a batch size of 64.) We therefore
used a batch size of 64 in our reproduction, assuming that the
discrepancy was a result of a typo in that paper.
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Section 1.1), if two classes tie in the number of “votes”,
we predict the first class lexicographically: this means that
we can certify robustness up to and including the radius p,
because we are guaranteed consistent behavior in the case of
ties. Reported certified radii for DSSN should therefore be
interpreted to guarantee robustness even in the ||x — x'||; =
p case. (This is not a meaningful distinction in randomized
methods where the space is taken as continuous).

C. Effect of pseudorandom choice of v

In Section B, we mention that the vector v used in the de-
randomization of DSSN, which must be re-used every time
the classifier is used, is generated pseudorandomly, using a
seed of 0 in all experiments. In this section, we explore the
sensitivity of our results to the choice of vector v, and in par-
ticular to the choice of random seed. To do this, we repeated
all standard-training DSSN experiments on CIFAR-10, us-
ing two additional choices of random seeds. We performed
both training and certification using the assigned v vec-
tor for each experiment. Result are summarized in Table
3. We report a tabular summary, rather than certification
curves, because the curves are too similar to distinguish.
In general, the choice of random seed to select v does not
seem to impact the certified accuracies: all best certified
accuracies were within 0.65 percentage points of each other.
This suggests that our method is robust to the choice of this
hyperparameter.

D. Effect of a Denoiser

As shown in Figure 8 in the main text, at large A, there is
a substantial benefit to SSN which is unrelated to deran-
domization, due to the differences in noise distributions
discussed in Section 4.2.1. However, Equation 22 shows
that the difference between uniform additive noise and In-
dependent SSN is a simple, deterministic transformation
on each pixel. We therefore wondered whether training a
denoiser network, to learn the relationship between x and
the noisy sample (x + € or ), would eliminate the differ-
ences between the methods. Salman et al. (2020) proposes
methods of training denoisers for randomized smoothing, in
the context of using smoothing on pre-trained classifiers. In
this context, the noisy image first passes through a denoiser
network, before being passed into a classification network
trained on clean images. We used their code (and all default
parameters), in three variations:

1. Stability Denoising: In this method, the pre-trained
classifier network is required for training the denoiser.
The loss when training the denoiser is based on the
consistency between the logit outputs of the classifier
on the clean input  and on the denoised version of
the noisy input. This is the best-performing method

in (Salman et al., 2020). However, note that it does
not directly use the pixel values of  when training
the denoiser, and therefore might not “learn” the corre-
spondence between clean and noisy samples (Figure 2
in the main text) as easily.

2. MSE Denoising: This trains the denoiser via direct
supervised training, with the objective of reducing the
mean squared error difference between the pixel values
of the clean and denoised samples. Then, classifica-
tion is done using a classifier that is pre-trained only
on clean samples. This performs relatively poorly in
(Salman et al., 2020), but should directly learn the
correspondence between clean and noisy samples.

3. MSE Denoising with Retraining: For this experi-
ment, we trained an MSE denoiser as above, but then
trained the entire classification pipeline (the denoiser +
the classifier) on noisy samples. Note that the classifier
is trained from scratch in this case, with the pre-trained
denoiser already in place (but being fine-tuned as the
classifier is trained).

We tested on CIFAR-10, at three different noise levels, with-
out stability training. See Figure 9 for results. Overall,
we find that at high noise, there is still a significant gap in
performance between Independent SSN and (Yang et al.,
2020)’s method, using all of the denoising techniques. One
possible explanation is that it is also more difficult for the
denoiser to learn the noise distribution of (Yang et al., 2020),
compared to our distributions.

E. Additive and splitting noise allow for
different types of joint noise distributions

In Section 4.2 in the main text, we showed that, in the
A = 0.5 case, SSN leads to marginal distributions which
are simple affine transformations of the marginal distribu-
tions of the uniform additive smoothing noise (Equation
23). However, we also showed (Proposition 1) that, even in
this case, certification is not possible using arbitrary joint
distributions of € with uniform additive noise, as it is with
SSN. This difference is explained by the fact that, even for
A = 0.5, the joint distributions of (& + ¢) which can be gen-
erated by uniform additive noise and the joint distributions
of & which can be generated by SSN respectively are in fact
quite different.

To quantify this, consider a pair of two joint distributions:
D, with marginals uniform on [—0.5,0.5], and S, with
marginals uniform on [0,1]. Let D and S be considered
equivalent if, fore ~ D and s ~ S:

&~ (1/2)(x +¢) +1/4 Va (50)

where  is generated using the SSN noise s (compare to
Equation 23 in the main text).



Improved, Deterministic Smoothing for ¢, Certified Robustness

p=05 p=10 p=15 p=20 p=25 p=30 p=35 p=40
Seed=0 | 72.25% 63.07% 56.21% 51.33% 46.76% 42.66% 38.26% 33.64%
(81.50% (77.85% (71.17% (67.98% | (65.40% (65.40% | (65.40% | (65.40%
@ 0=0.75) | @ 0=1.25) | @ 0=2.25) | @ 0=3.0) | @ 0=3.5) | @ 0=3.5) | @ 0=3.5) | @ 0=3.5)
Seed=1 | 72.01% 62.73% 56.03% 51.20% 46.71% 42.45% 37.87% 33.08%
(81.85% (75.64% (72.19% (67.65% | (66.93% (66.19% | (66.19% | (66.19%
@ 0=0.75) | @ 0=1.5) | @ 0=2.0) @ 0=3.0) | @ 0=3.25) | @ 0=3.5) | @ 0=3.5) | @ 0=3.5)
Seed=2 | 72.62% 62.79% 56.06% 51.02% 46.85% 42.52% 38.22% 33.53%
(81.19% (74.26% (70.13% (70.13% | (65.33% (65.33% | (65.33% | (65.33%
@ 0=0.75) | @ 0=1.75) | @ 0=2.5) @ g=25) | @0=35) | @og=35) | @o=3)5) | @ g=3.5)

Table 3. Comparison of DSSN using different random seeds to generate v on CIFAR-10. Matching Yang et al. (2020), we test on 15 noise
levels (o € {0.15,0.25n for 1 < n < 14}). We report the best certified accuracy at a selection of radii p, as well as the clean accuracy
and noise level of the associated classifier. We find very little difference between the different seed values, with all certified accuracies

within £0.65 percentage points of each other.

Proposition 2. The only pair of equivalent joint distribu-
tions (D, S) is D ~ U¥(—0.5,0.5), S ~ U0, 1).

Proof. We first describe a special property of SSN (with A
=0.5):

Fix a smoothed value Z’, and let X’ be the set of all inputs
@ such that &’ can be generated from @ under any joint
splitting distribution S. From Figure 2-a in the main text,
we can see that this is simply

X' ={x|# < :/2+ (1/2) <& + (1/2) Vi}. (51)

Notice that to generate &', regardless of the value of ¢ € X',
the splitting vector s must be exactly the following:

2!
S; = oy
2z; — 1

(This is made clear by Figure 1 in the main text.)

if @ < 1/2

52
if i >1/2 62

If x € X7, then &’ will be generated iff this value of s is
chosen. Therefore, given a fixed splitting distribution S, the
probability of generating &’ must be constant for all points
in X',

Now, we compare to uniform additive noise. In order for D
and S to be equivalent, for the fixed noised point ( + €)' =
22’ — 1/2, it must be the case that all points in X’ are
equally likely to generate (x + ¢)’. But note from Equation
51 that X' is simply the uniform /., ball of radius 0.5
around (x + ¢€)’. This implies that D must be the uniform
distribution D ~ U?(—0.5,0.5), which is equivalent to the
splitting distribution S ~ 44(0, 1). O

The only case when SSN and uniform additive noise can
produce similar distributions of noisy samples is when all
noise components are independent. This helps us understand
how SSN can work with any joint distribution of splitting

noise, while uniform additive noise has only been shown to
produce accurate certificates when all components of € are
independent.

F. Tightness of Theorem 2
Here, we discuss the tightness of our certification result.
Theorem 2 is tight in the following sense:

Proposition 3. For any A > 0 and a random variable
s € [0,2X\]%, with any fixed distribution such that:

si ~ U(0,2)), Vi, (53)
there exists a f : RY — [0, 1], such that if we define:
3 min(2/\|—x7‘2_é\si-| + 84, 1) (54)
2A[ LSS ] i, 0
| max(A] 2 1750 "y (ss)
() = ELf(@)]. (56)

then, p(.) is not c-Lipschitz with respect to the {1 norm for
any ¢ < 1/(2X).

In other words, we cannot make the Lipschitz constraint any
tighter without some base classifier f providing a counterex-

ample. Note that this result holds for any legal choice of
joint distribution of s.

Proof. We consider two cases, on \:

e Case 1: A < 0.5: Consider the following base classi-

fier:
ﬂ@:{g

Now, consider the points = [0,0,0,0,...] and ' =
[2X,0,0,0,...]. Note that ||’ — x||; = 2\. From the

itz > A

. (57)
otherwise.
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definition of v, we have (with probability 1):

- S1
.TlZE

1 S1
= min (A+ 2, 1)+ 2
T mln(—|—272 —|—2

Note that this means that, with probability 1, we have
Z1 < A, and therefore f(£) = 0. Similarly, with
probability 1, Z{ > A, so f(2') = 1. Then, for all
c<1/(2)\):

0-1=1>c-2X=c||’ — x|
So p(-) is not c-Lipschitz.

e Case 2: A > 0.5: Consider the following base classi-
fier:

f(@) = (58)

1 ifx; >05
0 otherwise.

Now, consider the points = [0,0,0,0,...] and ' =
[1,0,0,0,...]. Note that ||#’ — x| = 1. From the
definition of X, we have (with probability 1):

min(sq, 1
= (21 )
_, min(s;, 1) + 15,1
.'L'l - 2

Note that this means that, with probability 1, we have
Z1 < 0.5, and therefore f(&) = 0. On the other hand,
Z} > 0.5iff s € (0,1) which occurs with probability
1/(2X). Therefore, for all ¢ < 1/(2\):

p(@) ~ pla’)] =
|EL/(@)) — Ef(@)]] =
0—1/(2N)] =1/(2\) > c=c||l2’ — z|1

So p(+) is not ¢-Lipschitz.
O

However, the tightness of the global Lipschitz bound on
p does not imply that the final certificate result, on the
minimum possible distance from « to the decision boundary
given p(x), is necessarily a tight bound.

For simplicity, consider a binary classifier, so that the deci-
sion boundary is at p(x) = 0.5. The certificate given by our
method can be formalized as a function

cert(z) := 2A(z — 0.5), (59)

which maps the value of p(x) to the certified lower bound
on the distance to the decision boundary.

A certificate function can be considered tight if, for all
z € (0.5,1.0] there exists an f, x, z’ such that:

p(x) = z
|z — x'||1 = cert(z) (60)
p(x') = 0.5

Note that, for example, the well-known smoothing-based
£ robustness certificate proposed by (Cohen et al., 2019) is
tight by the analogous definition.

It turns out that our certificate function is not necessarily
tight by this definition. In particular, one can show for
some valid choice of A and joint distribution of s that this
definition of tightness does not hold.

For example, consider the case where s; = s3 = ... = 54,
and A > 1. We discuss this scenario briefly in Section 4.1°;
recall (Equation 19) that the smoothed classifier must take
the form:

20 —1

1 -
o [05- D+ oo E [f@)], Ve, 6D

2\ s<1

p(z) =

which is the sum of a constant, and a function bounded
in [0,1/(2\)]. If 2 > 0.5 4+ 1/(2)), this implies that
2251 £(0.5 - 1) > 0.5, which implies that p(-) > 0.5 every-
where. This means that the tightness condition cannot hold

for z € (0.54+1/(2)), 1.

G. Complete Certification Data on CIFAR-10
and ImageNet

We provide complete certification results for uniform addi-
tive noise, randomized SSN with independent noise, and
DSSN, at all tested noise levels on both CIFAR-10 and
ImageNet, using both standard and stability training. For
CIFAR-10, see Figures 10, 11, 12, and 13. For ImageNet,
see Figure 14.

%1n that section, we discuss this distribution in the quantized
case, but the differences is not relevant to our argument here
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N o = 0.5, Stability Denoiser N o = 2.0, Stability Denoiser N o = 3.5, Stability Denoiser
—— Yang et al. (Clean Acc: 73.49%) —— Yang et al. (Clean Acc: 53.04%) —— Yang et al. (Clean Acc: 46.55%)
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Figure 9. Certified accuracies of models trained with denoisers, for additive uniform noise, SSN with independent noise, and DSSN. See
text of Section D for further details on the denoisers used. For o > 2.0, Independent SSN outperfroms (Yang et al., 2020)’s method,
suggesting that the difference in noise representations can not be resolved by using a denoiser. (It may appear as if (Yang et al., 2020)’s
method is more robust at large radii for o = 3.5 with an MSE denoiser without retraining: however, this is for a classifier with clean
accuracy = 10%, so this is vacuous: similar results can be achieved by simply always returning the same class.)
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Figure 10. Certification results for CIFAR-10, comparing uniform additive noise, randomized SSN with independent noise, and DSSN,
for o € {0.15,0.25,0.5,0.75}
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Figure 11. Certification results for CIFAR-10, comparing uniform additive noise, randomized SSN with independent noise, and DSSN,
foro € {1.0,1.25,1.5,1.75}
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Figure 12. Certification results for CIFAR-10, comparing uniform additive noise, randomized SSN with independent noise, and DSSN,
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foro € {2.0,2.25,2.5,2.75}




Improved, Deterministic Smoothing for ¢, Certified Robustness

Certified Accuracy Certified Accuracy

Certified Accuracy

Figure 13. Certification results for CIFAR-10, comparing uniform additive noise, randomized SSN with independent noise, and DSSN,
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Figure 14. Certification results for ImageNet, comparing uniform additive noise, randomized SSN with independent noise, and DSSN,
for o € {0.5,2.0,3.5}. Note that we see less improvement in reported certified accuracies due to derandomization (i.e., less difference
between Independent SSN and DSSN) in ImageNet compared to in CIFAR-10, particularly at large noise levels.



