
Run-Sort-ReRun: Escaping Batch Size Limitations
in Sliced Wasserstein Generative Models

José Lezama 1 Wei Chen 2 Qiang Qiu 2

Abstract
When training an implicit generative model, ide-
ally one would like the generator to reproduce all
the different modes and subtleties of the target
distribution. Naturally, when comparing two em-
pirical distributions, the larger the sample popu-
lation, the more these statistical nuances can be
captured. However, existing objective functions
are computationally constrained in the amount of
samples they can consider by the memory re-
quired to process a batch of samples. In this
paper, we build upon recent progress in sliced
Wasserstein distances, a family of differentiable
metrics for distribution discrepancy based on the
Optimal Transport paradigm. We introduce a
procedure to train these distances with virtually
any batch size, allowing the discrepancy measure
to capture richer statistics and better approximat-
ing the distance between the underlying contin-
uous distributions. As an example, we demon-
strate the matching of the distribution of Incep-
tion features with batches of tens of thousands
of samples, achieving FID scores that outperform
state-of-the-art implicit generative models.

1. Introduction

A fundamental resource for training implicit deep gener-
ative models is the ability to characterize the discrepancy
between the distribution of generated samples and that of
real training data. Naturally, as one would like the gen-
erative model to capture the subtleties of the target distri-
bution, the larger the population this characterization takes
into account, the more accurate it will be. In recent years,
a lot of progress has been made in developing and improv-
ing differentiable measures of discrepancy between empir-
ical distributions (Goodfellow et al., 2014; Arjovsky et al.,

1IIE, Universidad de la República, Montevideo, Uruguay
2ECE, Purdue University, West Lafayette, USA. Correspondence
to: <jlezama@fing.edu.uy>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

2017; Li et al., 2017; Mroueh et al., 2017; Heusel et al.,
2017; Deshpande et al., 2018). However, the number of
samples that one can consider when optimizing a genera-
tive model is typically constrained by the memory required
to store the model, activations and gradients in the com-
puting device (i.e. the GPU). This limits the richness and
complexity of the statistics that the objective function can
extract from the available samples. Figure 1 illustrates this
point with an extreme example: learning a data distribution
containing four modes, but using only four samples at each
training iteration. Clearly this is not enough to capture the
complexity of the target distribution for existing models.

In this paper, we present a method to overcome the lim-
itations in the number of samples that can be considered
when computing the mismatch between the generated and
real distributions. The algorithm, termed Run-Sort-ReRun,
allows to efficiently compute a measure of distribution mis-
match, effectively considering tens of thousands of samples
in each training iteration. The algorithm is thus able to cap-
ture the complexities of the target distribution, regardless
of the hardware constraints imposed on the batch size, as
exemplified in Figure 1.

The method is based on the recent success of sliced Wasser-
stein distances (Rabin et al., 2011; Bonneel et al., 2015;
Deshpande et al., 2018; Kolouri et al., 2018; 2019a) for
training generative models. The main idea is to use an
average of 1-D Wasserstein distances obtained from ran-
dom projections of the original distributions. These meth-
ods have the advantage of efficiently computing a stochas-
tic measure that in expectation approximates the actual
Wasserstein distance between the full distributions (Bon-
notte, 2013). Moreover, this type of training does not nec-
essarily require adversarial training, which is often unsta-
ble. On top of these advantages, we add the ability to use
arbitrarily large batch sizes, making the empirical distance
even closer to the actual distance between the distributions.

In our experiments, we demonstrate the effectiveness of
the method by directly matching the distribution of real
and generated image features, considering empirical pop-
ulations of thousands of samples. By directly optimizing
over Inception features (Szegedy et al., 2016), our mod-
els obtain FID scores that surpass the most advanced GAN

Run-Sort-ReRun: Escaping Batch Size Limitations in Sliced Wasserstein Generative Models

models in the literature.

2. Background

The task of generative modeling is to characterize the prob-
ability distribution of a given dataset D = {(x)} with m
samples x ∼ Pr, where Pr is an unknown real data distri-
bution. Implicit generative models learn a parametric trans-
formation from a tractable base distribution to a learned
distribution Pθ,θ ∈ Rd. The goal is to make the distribu-
tion of generated samples Pθ as similar as possible to Pr.

Generative Adversarial Networks (GANs) treat such a task
as a distance minimization problem. Normally, the opti-
mal distance can be achieved by minimizing the Jensen-
Shannon divergence between Pr and Pθ (Goodfellow et al.,
2014), but doing so often leads to vanishing gradients
as the discriminator guiding Pθ saturates. Arjovsky &
Bottou (2017) provided important theoretical analysis of
this problem, stating that the inverted Kullback-Leibler di-
vergence is prone to gradient vanishing and mode drop-
ping, and proposed in Arjovsky et al. (2017) to replace
the Jensen-Shannon divergence with the 1-Wasserstein dis-
tance. Specifically, the p-Wasserstein distance between the
unknown real data distribution Pr and the parametric dis-
tribution Pθ, defined on a compact data space X , is given
by

Wp(Pr, Pθ) = inf
γ∈Π(Pr,Pθ)

(
E(x,y)∼γ [‖x− y‖p]

) 1
p , (1)

where Π(Pr, Pθ) denotes all joint distributions of x and y
that have respective marginals Pr and Pθ. Wp is a met-
ric on the space of probability measures on X (Villani,
2008) [Chapter 6]. Since the actual data distribution Pr
is unknown, it is hard to compute the infimum in Equa-
tion 1. Therefore, as proposed in (Arjovsky et al., 2017),
by employing the Kantorovich-Rubinstein duality the 1-
Wasserstein distance yields:

W (Pr, Pθ) = sup
‖f‖L≤1

(Ex∈Pr [f(x)]− Ex∈Pθ [f(x)]) ,

(2)
where the supremum is over all 1-Lipschitz functions f :
X −→ R. The correctness of the Wasserstein GAN estima-
tion depends on how well the discriminator or critic f has
been trained to achieve this supremum, a difficult task due
to the instability and complexity of this minimax optimiza-
tion, while guaranteeing the Lipschitz condition.

Another convenient approximation consists in using the
“sliced” version of the Wasserstein distance (Deshpande
et al., 2018; Deshpande et al., 2019; Kolouri et al., 2019b;
Wu et al., 2019; Deshpande et al., 2019; Nguyen et al.,
2020). In general, the “sliced p-Wasserstein distance” be-

tween distributions Pr and Pθ is defined as:

W̃ (Pr, Pθ) =

[∫
ω∈Ω

W p
p (Pωr , P

ω
θ)dω

] 1
p

, (3)

where Pωr , Pωθ denote the projection (i.e., marginal) of Pr
and Pθ onto the direction ω, and Ω is the set of all possible
directions on the unit sphere.

In practice, these methods approximate the sliced 2-
Wasserstein distance between the distributions by using
samples D ∼ Pr, F ∼ Pθ, and replacing the integration
over Ω with a Monte Carlo approximation over a randomly
chosen set of unit vectors Ω̂. With Pθ (and hence, F) be-
ing implicitly parametrized by θ, the following program is
used for generative modeling:

min
θ

1

ˆ|Ω|

∑
ω∈Ω̂

W 2
2 (Dω, Fω). (4)

The 2-Wasserstein distance between the projected samples
Dω and Fω can be computed by finding the optimal trans-
port map. For 1-D distributions, this can be done through
sorting (Villani, 2008):

W 2
2 (Dω, Fω) =

1

|D|
∑
i

‖FωπF (i) −D
ω
πD(i)‖

2
2, (5)

where πD(i) and πF (i) are permutations that sort the pro-
jected sample sets Dω and Fω respectively, i.e., DωπD(1) ≤
DωπD(2) ≤ . . . D

ω
πD(|D|).

It can be shown that the empirical distributions D and F
arbitrarily approximate their unknown continuous counter-
parts as the number of samples increases under Wasser-
stein distance (Weed et al., 2019), and therefore that the
empirical p-Wasserstein distance converges to the continu-
ous distance, although with a slow sample complexity rate
of O

(
n−1/(2p)

)
(Sommerfeld et al., 2019). This motivates

the main goal of this work: the search for a practical al-
gorithm that can effectively utilize arbitrarily large popula-
tions of samples.

3. Method

3.1. Motivating Example

We consider a motivating example in Figure 1, where we
want to learn a distribution with four modes (leftmost sub-
figure), but having an allowance of four samples per train-
ing batch. This extreme example illustrates the usual case
where a restrictive training batch size results in practice
in an objective function that only compares two distribu-
tions using relatively few samples, not enough to capture
the complexity of the target distribution.

Run-Sort-ReRun: Escaping Batch Size Limitations in Sliced Wasserstein Generative Models

Ground Truth Adversarial Wasserstein Run-Sort-ReRun (ours)

Figure 1. Comparison of empirical distributions obtained by different methods. In this example we show the shortcomings of training
generative models with a batch size that is too small compared to the complexity of the target distribution, a common scenario under
memory limitations. We train simple 1-D generative models to replicate a mixture of 4 Gaussians (leftmost), using batches of 4 samples.
The standard GAN suffers from “mode collapse”. Optimizing the empirical 1-D Wasserstein distance also fails to capture the 4 modes
with such few samples. Our method, Run-Sort-ReRun is able to process one small batch (4 samples here) at a time, yet virtually support
arbitrarily large batch sizes (in this case 1024), overcoming the memory limitations and successfully capturing all the modes of the target
distribution.

The second sub-figure in Figure 1 shows the result of train-
ing a standard GAN with an adversarial discriminator on
the ground truth distribution. One can immediately observe
the well known “mode collapse” problem, where the gen-
erator is only able to replicate one of the modes of the dis-
tribution. The third sub-figure shows the result of trying
to optimize the 1-D empirical 2-Wasserstein distance with
only four random samples, which is clearly not enough to
capture this distribution. A typical solution for emulating
large batch sizes in stochastic gradient descent is to accu-
mulate the gradient of multiple small training batches, but
the same mode collapse behavior is observed even when
accumulating the gradient of 1024 samples. Finally, the
rightmost sub-figure shows the result of the proposed Run-
Sort-ReRun method, processing a batch of four samples a
time for an effective large batch size of 1024. By effec-
tively optimizing the distance of empirical populations of
1024 samples, the proposed algorithm is the only one that
is able to reproduce all the modes of the ground truth distri-
bution. Moreover, although we used a batch size of four for
illustration, exactly the same behavior would be obtained
by this algorithm with a smaller batch size, to the extreme
of using a single sample per batch. We present next the
proposed Run-Sort-ReRun algorithm.

3.2. Run-Sort-ReRun Algorithm

In this section we describe the Run-Sort-ReRun algorithm,
which can effectively overcome batch size limitations im-
posed by memory constraints. These memory constraints
are typically due to the capacity of the GPU to store all the
activations and gradients of the model for backpropagation.

To illustrate the proposed algorithm, we focus on the prob-
lem of computing the 1-D empirical Wasserstein distance,
which is the building block of the sliced Wasserstein dis-

tance in (4). The 2-Wasserstein distance between two 1-
D empirical distributions of the same size can be com-
puted as in Equation (5). We begin by noticing that the
2-Wasserstein distance in (5) is a particular type of regres-
sion problem, where the regression target for each gener-
ated sample is given by the corresponding sample from the
real distribution. Namely, the ith sample from the generated
distribution F is mapped according to

i→ π−1
D ◦ πF (i). (6)

The central idea of the Run-Sort-ReRun algorithm is to
compute the regression targets in (6) as they would be if
the number of samples was very large, such that the empiri-
cal distance arbitrarily approximates the actual distance be-
tween the continuous distributions. LetG(z;θ) be a gener-
ative model with parameters θ whose input is a latent vec-
tor z ∈ Rh and output is a generated synthetic sample. The
proposed algorithm iterates over the following Run, Sort
and ReRun steps:

• In the Run step, one small batch of size m at a time,
both real and synthetic empirical distributionsDω and
Fω are computed and stored (|Dω| � m). For the
synthetic data, the latent vectors z are also stored so
they can be used to regenerate the synthetic samples
in the ReRun step.

• In the Sort step, both stored distributions are sorted
obtaining πD(i) and πF (i), so the corresponding re-
gression targets in (6) are known.

• In the ReRun step, small batches of samples are re-
generated from the stored latent vectors, and com-
pared to the targets obtained in the previous step. The

Run-Sort-ReRun: Escaping Batch Size Limitations in Sliced Wasserstein Generative Models

RealGeneratedLatent

ZZ

G(z)

ReRunSortRun

Z

G(z)

Figure 2. Schematic representation of the Run-Sort-ReRun algorithm. In this example, we assume that the generator G can only process
3 samples at a time, and that the desired full sample size is 12. We consider a single projection for illustration. In the Run step, the latent
vectors z (gray) are used to generate synthetic samples (red), 3 at a time (dark gray/dark red). A group of 12 real samples (blue) is also
collected. In the Sort step, the 12 synthetic and the 12 real samples are sorted, thus establishing the correspondences (straight arrows)
for computing (5). In the ReRun step, synthetic samples are generated again, 3 at a time, from the same latent vectors as in the Run
step. The distances to their correspondences (dark blue) are computed, so the gradient of the 1-D Wasserstein on the 12 samples can be
computed, even though no more than 3 samples were ran through the generator at any time.

1-D Wasserstein loss (5), corresponding to a large
number of samples, can now be backpropagated us-
ing only small batches of samples.

Note that the only step requiring automatic differentiation
is the ReRun step. Thus, the algorithm only needs to store
intermediate network activations and gradients for a small
number of samples, yet the true sliced Wasserstein distance
for an arbitrary large number of samples is computed and
optimized. Detailed pseudocode of the algorithm, includ-
ing the projection step is presented in Algorithm 1 and il-
lustrated in Figure 2. Source code is publicly available1.

3.3. On the Choice of Projection Directions

A critical aspect of the sliced Wasserstein distance is the
choice of directions of Ω̂ onto which the empirical samples
are projected to compute the Monte Carlo approximation
in (4). Various strategies have been proposed in the lit-
erature for choosing the sampling distribution of random
directions. A simple choice is to use random Gaussian di-
rections (Wu et al., 2019; Kolouri et al., 2019b), however
a lot of computation is wasted on directions that are irrel-
evant or poorly informative for distinguishing both distri-
butions. A deterministic approach in (Deshpande et al.,
2019) aims at using the direction of maximum separation,
motivated by the fact that random directions are with high
probability orthogonal to it. More recently, (Nguyen et al.,
2020) demonstrated even improved results by optimizing
over a parametric family of distributions of random direc-
tions, with a variability constraint. When no variability is
enforced, this amounts to the maximum direction of sepa-
ration as in (Deshpande et al., 2019).

1https://github.com/jlezama/RSR

While the Run-Sort-ReRun algorithm is agnostic to the
choice of projection directions, and can be used together
with any of these strategies, here we introduce a different
strategy, that requires no extra training as in (Deshpande
et al., 2019; Nguyen et al., 2020), and is simple to com-
pute. It is motivated by the following observation: We note
that the contribution to the sliced Wasserstein distance (5)
of a generated sample yi under projection ω is given by

ci = ((yi − x[i])
>ω)2, (7)

where x[i] is the corresponding real sample after the sort-
ing. Thus, if we wanted to steer ω to a direction of greater
separation between the samples, the gradient ∇ωci would
point towards (yi−x[i]). On the other hand, the line joining
two random datapoints is typically much closer to the data
manifold than random Gaussian directions. Consider for
example the case of two separated Gaussian distributions,
whose covariance matrices are close to singular, lying in a
very high-dimensional space.

Based on this observation, we construct the distribution of
projection directions by sampling random pairs of gener-
ated and real samples, giving the alternative formulation:

Ŵ p
p (Pr, Pθ) = Ex∼Pr,y∼Pθ

[
W p
p (Pω(x,y)

r , P
ω(x,y)
θ)

]
,

(8)
where ω(x,y) = (x− y)/||x− y||.

Finally, to maintain a balance between exploiting informa-
tive directions and exploring new directions, in each new
iteration we re-utilize a subset of the random directions
that produced the largest separation according to the 1-D
Wasserstein distance. The procedure is described in Algo-
rithm 2.

https://github.com/jlezama/RSR

Run-Sort-ReRun: Escaping Batch Size Limitations in Sliced Wasserstein Generative Models

Algorithm 1 Run-Sort-ReRun

Input: Real data X ∈ Rd×n, large batch size b, small
batch size m, generator G with parameters θ, number of
projections p, step size α, latent dimension dz
repeat

(auto-diff OFF)
Initialize Z ∈ Rdz×b, D ∈ Rd×b, F ∈ Rd×b: storage

for latent vectors, real data and model output resp.
Initialize Ω ∈ Rd×p: projection matrix

RUN
for i = 1 to b/m do
Zi = m samples from N (0, I)
Z[:, (i−1)×m : i×m]← Zi // column indexing
F [:, (i− 1)×m : i×m]← G(Zi;θ)
D[:, (i− 1)×m : i×m]←m samples from X

end for
D = ΩD, F = ΩF // project

SORT
D = sort(D) // row-wise
Π−1
F = argsort(argsort(F)) // row-wise

D = D[: ,Π−1
F] // aligns rows of F and D as per (6)

(auto-diff ON)
RERUN
Initialize g = 0
for i = 1 to b/m do
Zi = Z[:, (i− 1)×m : i×m]
Fi = G(Zi;θ)
Di = D[:, (i− 1)×m : i×m]
c = ||ΩFi −Di||2F /m
g = g +∇θc

end for
θ = θ − αg

until convergence

3.4. Algorithmic Complexity Analysis

The time complexity of the Run-Sort-ReRun algorithm,
similarly to the standard sliced Wasserstein distance, is
dominated by the sorting of each projection of the samples.
Considering the cost of processing b samples under p pro-
jections, Run-Sort-ReRun requiresO(b log b·p) operations,
due to the full batch sorting. In comparison, the standard
sliced Wasserstein distance, requires O(b logm · p) opera-
tions to process batches of m samples. This results in an
a increment of log(b)− log(m), which is only logarithmic
in the large batch size b. Besides this theoretical increment,
Run-Sort-ReRun also requires an extra forward pass for the
Run step.

The space complexity of Run-Sort-ReRun is dominated by
the storage of b latent vectors, b, generated and b real sam-

Algorithm 2 Choice of Projection Directions

Input: Number of projections p, previous projection di-
rections Ωt ∈ Rp×d, number of re-utilized directions r,
real data X ∈ Rd×n, synthetic data F ∈ Rd×n

Compute dΩt ∈ Rp, vector of sliced distances for each
row of Ωt using Run-Sort-ReRun
Initialize Ωt+1 ∈ Rd×p
zt = argsort(dΩt) // descending
Ωt+1[0:r, :] = Ωt[zt[0:r], :] // keep rows with largest
distances
for i = 1 to p− r do

Sample xi from X , yi from F
Ωt+1[r + i, :] = {(xi − yi)/‖xi − yi‖}

end for
return Ωt+1

ples for sorting. Compared to the standard sliced Wasser-
stein distance, the increment is linear in the large batch size
b. In practice, this is generally much smaller than the mem-
ory required by model intermediate activations, weights
and gradients, especially for very large modern generative
networks, so it is possible to store these in the GPU. Al-
ternatively, they can be stored in the main system memory,
and the sorting performed by the CPU.

In summary, Run-Sort-ReRun offers a trade-off between
extra training time and memory, and the ability to capture
more nuances of the target distribution by effectively con-
sidering larger batch sizes. Moreover, it still remains prac-
tically superior to computing to the full Wasserstein dis-
tance, which requires solving the optimal assignment prob-
lem which can be O(b3 log b) (Pele & Werman, 2009).

4. Experiments

4.1. Matching Distributions of Inception Features

A common metric for evaluating the performance of a gen-
erative model is the Fréchet Inception Distance or FID
score (Heusel et al., 2017). This metric consists in fitting
Gaussian distributions to the real and generated image fea-
tures as extracted by an Inception network (Szegedy et al.,
2016), and then computing the 2-Wasserstein distance (in
closed form) between the two Gaussians. Typically, tens of
thousands of samples from both the real data and the gen-
erated data distribution are used to fit the Gaussians. Train-
ing a generator to directly optimize this metric remained
impractical due to the large number of samples required
and the memory needed to use both the generator and the
Inception networks.

In this section, we experimentally validate the ability of
the Run-Sort-ReRun algorithm to overcome limitations in

Run-Sort-ReRun: Escaping Batch Size Limitations in Sliced Wasserstein Generative Models

batch size by demonstrating the direct optimization of the
sliced Wasserstein distance between Inception features of
thousands of samples of real and generated images. In the
Run step, we randomly sample thousands of real images
from the dataset and generate the same amount of synthetic
images with the generator. Then, we project the Inception
features to 1-D using the projection directions as described
in Section 3.3. We Sort the real images and synthetic im-
ages according to their projected Inception features. In the
ReRun step, we backpropagate and accumulate gradients
for the sliced Wasserstein distance loss between the sorted
embeddings of synthetic images and their corresponding
embeddings of real images. Note that the memory required
to store both the generator and Inception models is not a
problem for Run-Sort-ReRun since it is designed to pro-
cess arbitrarily small batches at a time. Importantly, we
directly minimize the discrepancy between the two full dis-
tributions using arbitrarily population sizes, without any as-
sumptions of Gaussianity.

In our experiments, we used the Run-Sort-ReRun algo-
rithm to fine-tune two state-of-the-art GAN models. The
first model is E2GAN (Tian et al., 2020), a Generator archi-
tecture obtained by neural architecture search. We use this
model on CIFAR-10 (Krizhevsky et al., 2009), with 50,000
training images of size 32× 32 and STL-10 (Coates et al.,
2011), with 105,000 training images of size 96 × 96. We
use large batch size b = 16000 and p = 4000 projection
directions and r = 1333. To compute the FID scores, we
use the statistics provided by the authors of (Heusel et al.,
2017). The second model is StyleGAN-v2 (Karras et al.,
2020b). For this model we conducted experiments on the
LSUN Church datasets (Yu et al., 2015) for images of size
256x256, using large batch size b = 8192 and p = 4000,
r = 1333. For all models we use the Adam optimizer with
learning rate 10−4.

We feed the output of the generator model to an Inception
V3 (Szegedy et al., 2016) network and extract feature em-
beddings of dimension of 2048, which are then projected
and used to compute the average 1-D 2-Wasserstein dis-
tance with Run-Sort-ReRun. Thus, we directly optimize
the generator to match the distribution of inception fea-
tures. Note that linear projections in the space of Incep-
tion features correspond to non-linear projections in image
space. This can be seen as a particular case of the Gener-
alized sliced Wasserstein distance (Kolouri et al., 2019a).
Table 1 shows FID scores on test set obtained by this pro-
cedure2. Notably, the FID decreases significantly with re-
spect to the baseline, and the obtained scores outperform
the most advanced GAN models. Figure 3 shows a PCA
plot of the inception embeddings for the CIFAR-10 dataset.

2FID score on CIFAR-10 train set (50K samples) is 3.13 for
ours, 11.0 for baseline.

CIFAR-10
Method FID ↓
E2GAN (Tian et al., 2020) 11.26
DiffAugment-CR-BigGAN (Zhao et al., 2020) 8.49
Mix-BigGAN (Tang, 2020) 8.17
StyleGAN-v2 + ADA (Karras et al., 2020a) 7.1
E2GAN + RSR (Ours) 4.9

STL-10
Method FID ↓
Auto GAN (Gong et al., 2019) 31.01
DEGAS (Doveh & Giryes, 2019) 28.76
E2GAN (Tian et al., 2020) 25.35
E2GAN + RSR (Ours) 8.6

LSUN Church
Method FID ↓
StyleGAN-v2 (Karras et al., 2020b) 3.86
StyleGAN-v2 + converted weights 5.93
StyleGAN-v2 + converted weights + RSR (Ours) 3.14

Table 1. FID scores on CIFAR-10, STL-10 and LSUN Church.
For CIFAR-10 and STL-10, we finetune a baseline method (Tian
et al., 2020) using the Run-Sort-ReRun (RSR) algorithm with
large batch sizes of 16,000 samples. For LSUN Church, we fine-
tune a StyleGAN-v2 model (Karras et al., 2020b) with 8192 sam-
ples per batch.

With Run-Sort-ReRun the generated distribution is refined
to more accurately match the ground truth. Although the
Gaussian assumption of the FID score is clearly violated,
the fitted Gaussians also get closer when the full distribu-
tions are matched, decreasing the FID score.

4.2. Ablation Study on Effective Batch Size

The central motivation for Run-Sort-ReRun is that com-
puting the empirical distance between distributions bene-
fits from observing larger batches of samples (Weed et al.,
2019; Deshpande et al., 2019). We validate this idea by per-
forming an ablation study on the large batch size parameter
b. The results are shown in Table 2. For different values
of b, we adapt the number of iterations such that in all ex-
periments the total number of samples seen during training
is the same (in this case ∼ 5M). We observe a notorious
decrease in FID score at b = 1024, a batch size that would
be completely impractical under traditional methods, justi-
fying the utility of the proposed method.

4.3. On Generated Image Quality

A natural question is whether the direct optimization of the
distribution of Inception features leads to higher quality
samples. We observed that in general there is not a no-

Run-Sort-ReRun: Escaping Batch Size Limitations in Sliced Wasserstein Generative Models

Ground Truth E2GAN w/ random weights

E2GAN baseline FID=11.26 E2GAN+RSR FID=6.99

Figure 3. PCA projections of Inception features for CIFAR-10
dataset. Run-Sort-ReRun refines the distribution of samples gen-
erated by the baseline E2GAN (Tian et al., 2020) to more accu-
rately match the ground truth distribution.

torious increase in image quality (see Figure 4). However,
improvements in generated image quality can be obtained
with Run-Sort-ReRun by using four rather than just one
layer of the Inception network. In Figure 5 we show the
result of applying Run-Sort-ReRun to the concatenation of
the output of the first four blocks of the Inception-V3 net-
work. To reduce the dimensionality of the first layers, we
applied spatial average pooling to finally obtain features of
dimensions 2304, 1728, 3072 and 2048 which we concate-
nate into a vector of dimension 9152. We use large batch
size b = 16000, p = 4000 and r = 1333. A compari-
son between images generated by the baseline (Tian et al.,
2020) trained on STL-10 and the baseline finetuned with

CIFAR-10
Large batch size b FID ↓
Baseline 11.26
RSR, b = 256 10.02
RSR, b = 1024 7.39
RSR, b = 2048 7.23
RSR, b = 8192 6.99

Table 2. Ablation study on the large batch size parameter b. We
finetune the baseline method (Tian et al., 2020) using Run-Sort-
ReRun (RSR) for different values of b. The number of iterations is
adjusted so that all models see the same total number of samples.

Run-Sort-ReRun is shown in Figure 5. To better distin-
guish the improvement in synthetic image quality, we sep-
arated the generated images by class using an external clas-
sifier trained on STL-10. Investigating other image features
that can result in better image quality when the distribution
is matched to the extent that Run-Sort-ReRun allows re-
mains an interesting avenue for future work.

5. Related Work

Generative Adversarial Networks Generative adversar-
ial networks (GANs) formulate generative modeling as a
two-player game. A generator learns to generate plausible
data, and a discriminator learns to distinguish the synthetic
data from real data (Goodfellow et al., 2014). Both gener-
ator and discriminator are parameterized using deep neural
networks and trained via stochastic gradient descent. There
are various applications of GANs in different areas, such
as computer vision (Zhu et al., 2017; Radford et al., 2015;
Denton et al., 2015; Dumoulin et al., 2016; Ledig et al.,
2017; Reed et al., 2016; Isola et al., 2017) and language
translation (Conneau et al., 2018; Wu et al., 2018). Some
popular models include DCGAN (Radford et al., 2015),
PGGAN (Karras et al., 2017), StyleGAN (Karras et al.,
2019; 2020b), BigGAN (Brock et al., 2018), to name a
few. In the original formulation (Goodfellow et al., 2014),
a GAN minimizes the Jensen-Shannon divergence between
the true data distribution and the generated probability dis-
tribution induced in the data space by the generator. How-
ever, this divergence can lead to gradient vanishing or mode
collapse. To mitigate the problems, many other variants
have been proposed, which use some divergence like KL-
divergence (Sønderby et al., 2016), Least Squares (Mao
et al., 2017) and Wasserstein distance (Arjovsky et al.,
2017), to measure the distance between the distributions.

Wasserstein Distance Wasserstein distance (Rubner
et al., 1998; Peyré et al., 2019) considers the minimal
transformation between two distributions of points, accord-
ing to some measure of transportation cost. Due to its
ability to overcome vanishing gradients, some works train
GANs based on the Wasserstein distance (Arjovsky et al.,
2017; Arjovsky & Bottou, 2017). Although the Wasserstein
distance-based GANs have been successful in several com-
plex generative tasks, they suffer from the “curse of dimen-
sionality” (Weed et al., 2019). To tackle the instability and
complexity, sliced versions of the 2-Wasserstein distance
were proposed, which only requires estimating distances
of 1-D distributions (Gulrajani et al., 2017; Kolouri et al.,
2019b; Deshpande et al., 2018; Deshpande et al., 2019; Wu
et al., 2019; Nguyen et al., 2020). However, in those meth-
ods, the batch size one can consider is typically under un-
avoidable real-world constraints, e.g., GPU memory limi-

Run-Sort-ReRun: Escaping Batch Size Limitations in Sliced Wasserstein Generative Models

Baseline:
FID=5.93

Pytorch ckp
Converted from TF ckp

1900 eps:
FID=3.14

Baseline: StyleGAN2 (Karras et al., 2020b), (FID 5.93) StyleGAN2 finetuned with RSR, (FID 3.14)

Figure 4. Results of StyleGAN2 on LSUN Churches4. We observe that directly optimizing the distribution of Inception features improves
the FID score over the state-of-the-art methods.

Baseline (Tian et al., 2020) (FID 25.35) Baseline + RSR (FID 14.39)

Figure 5. Qualitative comparison between baseline E2GAN (Tian et al., 2020) and the same baseline finetuned with Run-Sort-ReRun on
the features produced by four different layers of the Inception network, using an effective batch size of 16,000. An external pre-trained
classifier was used on the generated samples to separate samples of different classes (top: cat, bottom: truck). Besides decreasing the
FID score, the samples of the model trained with the proposed method exhibit better defined shapes. Best appreciated in electronic
format.

Run-Sort-ReRun: Escaping Batch Size Limitations in Sliced Wasserstein Generative Models

tation. This limits the possibility of representing complex
target distributions and may lead to the classical “mode col-
lapse” problem (see Figure 1), which is addressed in this
paper. The Wasserstein distance is also often used in mea-
suring the performance of a generator with Fréchet incep-
tion distances (FID) (Heusel et al., 2017).

6. Conclusion

Since the surge in popularity of implicit deep generative
models began in 2014, a lot of progress has been achieved
both in training strategies and loss functions. Central to
this progress has been the quest for useful trainable metrics
for comparing two empirical distributions. In this paper,
we focus on a key aspect of this comparison: the num-
ber of samples considered when computing a cost for the
discrepancy between distributions. The motivation is that
the larger the number of samples, the more the statistical
nuances and complexities of the target distribution can be
captured. However, existing methods are constrained in the
number of samples they can process in one learning iter-
ation, due to hardware memory limitations. With this in
mind, we proposed the Run-Sort-ReRun algorithm. Build-
ing on the successful sliced Wasserstein distance, Run-
Sort-ReRun is able to compute a cost function for the mis-
match between real and generated distributions considering
an arbitrarily large number of samples, yet in practice pro-
cessing only one small batch at a time. Experimentally, we
demonstrated the validity of the approach by matching the
distributions of deep image features using batches of thou-
sands of samples. When the deep features are extracted
with an Inception network, we can directly optimize the
popular FID score, obtaining simple models that outper-
form the most advanced GAN models under this metric.

Acknowledgements

JL was supported by SNI, ANII and CSIC grant I+D 2018-
256. Experiments were partially carried out using Clus-
terUY, the National Center for Supercomputing, Uruguay.
WC and QQ were supported by the DARPA TAMI pro-
gram.

References
Arjovsky, M. and Bottou, L. Towards principled methods

for training generative adversarial networks. Interna-
tional Conference on Learning Representations, 2017.

Arjovsky, M., Chintala, S., and Bottou, L. Wasserstein gen-
erative adversarial networks. In International conference
on machine learning, 2017.

Bonneel, N., Rabin, J., Peyré, G., and Pfister, H. Sliced and

radon wasserstein barycenters of measures. Journal of
Mathematical Imaging and Vision, 51(1):22–45, 2015.

Bonnotte, N. Unidimensional and evolution methods for
optimal transportation. PhD thesis, Paris 11, 2013.

Brock, A., Donahue, J., and Simonyan, K. Large scale gan
training for high fidelity natural image synthesis. Inter-
national Conference on Learning Representations, 2018.

Coates, A., Ng, A., and Lee, H. An analysis of single-layer
networks in unsupervised feature learning. In interna-
tional conference on artificial intelligence and statistics,
2011.

Conneau, A., Lample, G., Ranzato, M., Denoyer, L., and
Jégou, H. Word translation without parallel data. In
International Conference on Learning Representations,
2018.

Denton, E., Chintala, S., Szlam, A., and Fergus, R. Deep
generative image models using a laplacian pyramid of
adversarial networks. Advances in Neural Information
Processing Systems, 2015.

Deshpande, I., Zhang, Z., and Schwing, A. G. Genera-
tive modeling using the sliced wasserstein distance. In
Conference on Computer Vision and Pattern Recogni-
tion, 2018.

Deshpande, I., Hu, Y., Sun, R., Pyrros, A., Siddiqui, N.,
Koyejo, S., Zhao, Z., Forsyth, D., and Schwing, A. G.
Max-sliced wasserstein distance and its use for gans. In
Conference on Computer Vision and Pattern Recogni-
tion, 2019.

Deshpande, I., Hu, Y.-T., Sun, R., Pyrros, A., Siddiqui, N.,
Koyejo, S., Zhao, Z., Forsyth, D., and Schwing, A. G.
Max-sliced wasserstein distance and its use for gans. In
Conference on Computer Vision and Pattern Recogni-
tion, 2019.

Doveh, S. and Giryes, R. Degas: Differentiable efficient
generator search. arXiv preprint arXiv:1912.00606,
2019.

Dumoulin, V., Belghazi, I., Poole, B., Mastropietro, O.,
Lamb, A., Arjovsky, M., and Courville, A. Adversarially
learned inference. International Conference on Learning
Representations, 2016.

Gong, X., Chang, S., Jiang, Y., and Wang, Z. Autogan:
Neural architecture search for generative adversarial net-
works. In International Conference on Computer Vision,
2019.

Run-Sort-ReRun: Escaping Batch Size Limitations in Sliced Wasserstein Generative Models

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio,
Y. Generative adversarial nets. In Advances in Neural
Information Processing Systems, 2014.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and
Courville, A. C. Improved training of wasserstein gans.
In Advances in Neural Information Processing Systems,
2017.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and
Hochreiter, S. Gans trained by a two time-scale up-
date rule converge to a local nash equilibrium. In Inter-
national Conference on Neural Information Processing
Systems, 2017.

Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A. A. Image-to-
image translation with conditional adversarial networks.
In Conference on Computer Vision and Pattern Recogni-
tion, 2017.

Karras, T., Aila, T., Laine, S., and Lehtinen, J. Progres-
sive growing of gans for improved quality, stability, and
variation. arXiv preprint arXiv:1710.10196, 2017.

Karras, T., Laine, S., and Aila, T. A style-based genera-
tor architecture for generative adversarial networks. In
Conference on Computer Vision and Pattern Recogni-
tion, 2019.

Karras, T., Aittala, M., Hellsten, J., Laine, S., Lehtinen, J.,
and Aila, T. Training generative adversarial networks
with limited data. arXiv preprint arXiv:2006.06676,
2020a.

Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J.,
and Aila, T. Analyzing and improving the image qual-
ity of stylegan. In Conference on Computer Vision and
Pattern Recognition, 2020b.

Kolouri, S., Rohde, G. K., and Hoffmann, H. Sliced
wasserstein distance for learning gaussian mixture mod-
els. In Conference on Computer Vision and Pattern
Recognition, 2018.

Kolouri, S., Nadjahi, K., Simsekli, U., Badeau, R., and
Rohde, G. K. Generalized sliced wasserstein distances.
arXiv preprint arXiv:1902.00434, 2019a.

Kolouri, S., Pope, P. E., Martin, C. E., and Rohde, G. K.
Sliced wasserstein auto-encoders. In International Con-
ference on Learning Representations, 2019b.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham,
A., Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang,
Z., et al. Photo-realistic single image super-resolution
using a generative adversarial network. In Conference
on Computer Vision and Pattern Recognition, 2017.

Li, C.-L., Chang, W.-C., Cheng, Y., Yang, Y., and Póczos,
B. Mmd gan: Towards deeper understanding of moment
matching network. arXiv preprint arXiv:1705.08584,
2017.

Mao, X., Li, Q., Xie, H., Lau, R. Y., Wang, Z., and
Paul Smolley, S. Least squares generative adversarial
networks. In International Conference on Computer Vi-
sion, 2017.

Mroueh, Y., Sercu, T., and Goel, V. Mcgan: Mean and co-
variance feature matching gan. In International confer-
ence on machine learning, pp. 2527–2535. PMLR, 2017.

Nguyen, K., Ho, N., Pham, T., and Bui, H. Distributional
sliced-wasserstein and applications to generative model-
ing. arXiv preprint arXiv:2002.07367, 2020.

Pele, O. and Werman, M. Fast and robust earth mover’s
distances. In 2009 IEEE 12th international conference
on computer vision, pp. 460–467. IEEE, 2009.

Peyré, G., Cuturi, M., et al. Computational optimal trans-
port: With applications to data science. Foundations and
Trends® in Machine Learning, 11(5-6):355–607, 2019.

Rabin, J., Peyré, G., Delon, J., and Bernot, M. Wasserstein
barycenter and its application to texture mixing. In In-
ternational Conference on Scale Space and Variational
Methods in Computer Vision, pp. 435–446. Springer,
2011.

Radford, A., Metz, L., and Chintala, S. Unsupervised rep-
resentation learning with deep convolutional generative
adversarial networks. arXiv preprint arXiv:1511.06434,
2015.

Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B.,
and Lee, H. Generative adversarial text to image synthe-
sis. In International Conference on Machine Learning,
2016.

Rubner, Y., Tomasi, C., and Guibas, L. J. A metric for dis-
tributions with applications to image databases. In Inter-
national Conference on Computer Vision. IEEE, 1998.

Sommerfeld, M., Schrieber, J., Zemel, Y., and Munk, A.
Optimal transport: Fast probabilistic approximation with
exact solvers. Journal of Machine Learning Research, 20
(105):1–23, 2019.

Run-Sort-ReRun: Escaping Batch Size Limitations in Sliced Wasserstein Generative Models

Sønderby, C. K., Caballero, J., Theis, L., Shi, W., and
Huszár, F. Amortised map inference for image super-
resolution. International Conference on Learning Rep-
resentations, 2016.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wo-
jna, Z. Rethinking the inception architecture for com-
puter vision. In Conference on Computer Vision and
Pattern Recognition, 2016.

Tang, S. Lessons learned from the training of gans on arti-
ficial datasets. IEEE Access, 8:165044–165055, 2020.

Tian, Y., Wang, Q., Huang, Z., Li, W., Dai, D., Yang, M.,
Wang, J., and Fink, O. Off-policy reinforcement learn-
ing for efficient and effective gan architecture search. In
European Conference on Computer Vision, 2020.

Villani, C. Optimal transport: old and new, volume 338.
Springer Science & Business Media, 2008.

Weed, J., Bach, F., et al. Sharp asymptotic and finite-
sample rates of convergence of empirical measures in
wasserstein distance. Bernoulli, 25(4A):2620–2648,
2019.

Wu, J., Huang, Z., Acharya, D., Li, W., Thoma, J., Paudel,
D. P., and Gool, L. V. Sliced wasserstein generative
models. In Conference on Computer Vision and Pattern
Recognition, 2019.

Wu, L., Xia, Y., Tian, F., Zhao, L., Qin, T., Lai, J., and Liu,
T.-Y. Adversarial neural machine translation. In Asian
Conference on Machine Learning, 2018.

Yu, F., Seff, A., Zhang, Y., Song, S., Funkhouser, T.,
and Xiao, J. Lsun: Construction of a large-scale im-
age dataset using deep learning with humans in the loop.
arXiv preprint arXiv:1506.03365, 2015.

Zhao, S., Liu, Z., Lin, J., Zhu, J.-Y., and Han, S. Differen-
tiable augmentation for data-efficient gan training. arXiv
preprint arXiv:2006.10738, 2020.

Zhu, J.-Y., Park, T., Isola, P., and Efros, A. A. Unpaired
image-to-image translation using cycle-consistent adver-
sarial networks. In International Conference on Com-
puter Vision, 2017.

