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Abstract
In this paper, we propose a novel stochastic gradi-
ent estimator—ProbAbilistic Gradient Estimator
(PAGE)—for nonconvex optimization. PAGE is
easy to implement as it is designed via a small ad-
justment to vanilla SGD: in each iteration, PAGE
uses the vanilla minibatch SGD update with prob-
ability pt or reuses the previous gradient with a
small adjustment, at a much lower computational
cost, with probability 1 − pt. We give a simple
formula for the optimal choice of pt. Moreover,
we prove the first tight lower bound Ω(n +

√
n
ε2 )

for nonconvex finite-sum problems, which also
leads to a tight lower bound Ω(b +

√
b
ε2 ) for non-

convex online problems, where b := min{σ
2

ε2 , n}.
Then, we show that PAGE obtains the optimal
convergence results O(n+

√
n
ε2 ) (finite-sum) and

O(b +
√
b
ε2 ) (online) matching our lower bounds

for both nonconvex finite-sum and online prob-
lems. Besides, we also show that for nonconvex
functions satisfying the Polyak-Łojasiewicz (PL)
condition, PAGE can automatically switch to a
faster linear convergence rate O(· log 1

ε ). Finally,
we conduct several deep learning experiments
(e.g., LeNet, VGG, ResNet) on real datasets in
PyTorch showing that PAGE not only converges
much faster than SGD in training but also achieves
the higher test accuracy, validating the optimal
theoretical results and confirming the practical
superiority of PAGE.

1. Introduction
Nonconvex optimization is ubiquitous across many domains
of machine learning, including robust regression, low rank
matrix recovery, sparse recovery and supervised learning
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(Jain & Kar, 2017). Driven by the applied success of deep
neural networks (LeCun et al., 2015), and the critical place
nonconvex optimization plays in training them, research
in nonconvex optimization has been undergoing a renais-
sance (Ghadimi & Lan, 2013; Ghadimi et al., 2016; Zhou
et al., 2018; Fang et al., 2018; Li, 2019; Li & Richtárik,
2020).

1.1. The problem

Motivated by this development, we consider the general
optimization problem

min
x∈Rd

f(x), (1)

where f : Rd → R is a differentiable and possibly non-
convex function. We are interested in functions having the
finite-sum form

f(x) :=
1

n

n∑
i=1

fi(x), (2)

where the functions fi are also differentiable and possi-
bly nonconvex. Form (2) captures the standard empirical
risk minimization problems in machine learning (Shalev-
Shwartz & Ben-David, 2014). Moreover, if the number of
data samples n is very large or even infinite, e.g., in the
online/streaming case, then f(x) usually is modeled via the
online form

f(x) := Eζ∼D[F (x, ζ)], (3)

which we also consider in this work. For notational con-
venience, we adopt the notation of the finite-sum form (2)
in the descriptions and algorithms in the rest of this paper.
However, our results apply to the online form (3) as well
by letting fi(x) := F (x, ζi) and treating n as a very large
value or even infinite.

1.2. Gradient complexity

To measure the efficiency of algorithms for solving the
nonconvex optimization problem (1), it is standard to bound
the number of stochastic gradient computations needed to
find a solution of suitable characteristics. In this paper we
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use the standard term gradient complexity to describe such
bounds. In particular, our goal will be to find a (possibly
random) point x̂ ∈ Rd such that E[‖∇f(x̂)‖] ≤ ε, where
the expectation is with respect to the randomness inherent
in the algorithm. We use the term ε-approximate solution to
refer to such a point x̂.

Two of the most classical gradient complexity results for
solving problem (1) are those for gradient descent (GD) and
stochastic gradient descent (SGD). In particular, the gradient
complexity of GD is O(n/ε2) in this nonconvex regime, and
assuming that the stochastic gradient satisfies a (uniform)
bounded variance assumption (Assumption 1), the gradient
complexity of SGD is O(1/ε4). Note that although SGD has
a worse dependence on ε, it typically only needs to compute
a constant minibatch of stochastic gradients in each iteration
instead of the full batch (i.e., n stochastic gradients) used
in GD. Hence, SGD is better than GD if the number of data
samples n is very large or the error tolerance ε is not very
small.

There has been extensive research in designing gradient-
type methods with an improved dependence on n and/or
ε (Nesterov, 2004; Nemirovski et al., 2009; Ghadimi &
Lan, 2013; Ghadimi et al., 2016). In particular, the SVRG
method of Johnson & Zhang (2013), the SAGA method of
Defazio et al. (2014) and the SARAH method of Nguyen
et al. (2017) are representatives of what is by now a large
class of variance-reduced methods, which have played a par-
ticularly important role in this effort. However, the analyses
in these papers focused on the convex regime. Further-
more, several accelerated (momentum) methods have been
designed as well (Nesterov, 1983; Lan & Zhou, 2015; Lin
et al., 2015; Lan & Zhou, 2018; Allen-Zhu, 2017; Li & Li,
2020; Lan et al., 2019; Li et al., 2020b; Li, 2021), with
or without variance reduction. There are also some lower
bounds given by (Lan & Zhou, 2015; Woodworth & Srebro,
2016; Xie et al., 2019).

Coming back to problem (1) in the nonconvex regime stud-
ied in this paper, interesting recent development starts with
the work of Reddi et al. (2016), and Allen-Zhu & Hazan
(2016), who have concurrently shown that if f has the finite-
sum form (2), a suitably designed minibatch version of
SVRG enjoys the gradient complexityO(n+n2/3

/ε2), which
is an improvement on the O(n/ε2) gradient complexity of
GD. Subsequently, other variants of SVRG were shown to
posses the same improved rate, including those developed
by (Lei et al., 2017; Li & Li, 2018; Ge et al., 2019; Horváth
& Richtárik, 2019; Qian et al., 2019). More recently, Fang
et al. (2018) proposed the SPIDER method, and Zhou et al.
(2018) proposed the SNVRG method, both of them further
improve the gradient complexity to O(n+

√
n/ε2). Further

variants of the SARAH method (e.g., Wang et al., 2018; Li,
2019; Pham et al., 2019; Li et al., 2020a; Horváth et al.,

2020; Li & Richtárik, 2021) which also achieve the same
O(n +

√
n/ε2) gradient complexity have been developed.

Also there are some lower bounds given by (Fang et al.,
2018; Zhou & Gu, 2019; Arjevani et al., 2019). See Table 1
for an overview of results.

2. Our Contributions
As we show in through this work, despite enormous effort
by the community to design efficient methods for solving
(1) in the nonconvex regime, there is still a considerable gap
in our understanding. First, while optimal methods for (1)
in the finite-sum regime exist (e.g., SPIDER (Fang et al.,
2018), SpiderBoost (Wang et al., 2018), SARAH (Pham
et al., 2019), SSRGD (Li, 2019)), the known lower bound
Ω(
√
n/ε2) (Fang et al., 2018) used to establish their optimal-

ity works only for n ≤ O(1/ε4), i.e., in the small data regime
(see Table 1). Moreover, these methods are unnecessarily
complicated, often with a double loop structure, and reliance
on several hyperparameters. Besides, there is also no tight
lower bound to show the optimality of optimal methods in
the online regime.

In this paper, we resolve the above issues by designing a
simple ProbAbilistic Gradient Estimator (PAGE) described
in Algorithm 1 for achieving optimal convergence results in
nonconvex optimization. Moreover, PAGE is very simple
and easy to implement. In each iteration, PAGE uses mini-
batch SGD update with probability pt, or reuses the previous
gradient with a small adjustment (at a low computational
cost) with probability 1 − pt (see Line 4 of Algorithm 1).
We would like to highlight the following results:

•We provide tight lower bounds to close the gap for both
nonconvex finite-sum problem (2) and online problem (3)
(see Theorem 2 and Corollary 5). Our lower bounds are
based and inspired by recent work (Fang et al., 2018; Arje-
vani et al., 2019). Then we show the optimality of PAGE by
proving that PAGE achieves the optimal convergence results
matching our lower bounds for both nonconvex finite-sum
problem (2) and online problem (3) (see Corollaries 2 and
4). See Table 1 for a detailed comparison.

•Moreover, we show that PAGE can automatically switch
to a faster linear convergence O(· log 1

ε ) by exploiting the
local structure of the objective function, via the PL condi-
tion (Assumption 3), although the objective function f is
globally nonconvex. See the middle and the last row of
Table 1 (highlighted with green color). For example, PAGE
automatically switches from the sublinear rateO(n+

√
n/ε2)

to the faster linear rate O((n+
√
nκ) log 1

ε ) for nonconvex
finite-sum problem (2).

• PAGE is simple and easy to implement via a small adjust-
ment to vanilla minibatch SGD, and takes a lower compu-
tational cost than SGD (i.e., pt = 1 in Algorithm 1) since
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Table 1. Stochastic gradient complexity for finding an ε-approximate solution E[‖∇f(x̂)‖] ≤ ε for nonconvex problems

Problem Assumption Algorithm or Lower Bound Gradient complexity

Finite-sum (2) Asp. 2 GD (Nesterov, 2004) O( n
ε2

)

Finite-sum (2) Asp. 2
SVRG (Allen-Zhu & Hazan, 2016; Reddi et al., 2016)

SCSG (Lei et al., 2017),
SVRG+ (Li & Li, 2018)

O(n+ n2/3

ε2
)

Finite-sum (2) Asp. 2 SNVRG (Zhou et al., 2018),
Geom-SARAH (Horváth et al., 2020) Õ

(
n+

√
n
ε2

)
Finite-sum (2) Asp. 2

SPIDER (Fang et al., 2018),
SpiderBoost (Wang et al., 2018),

SARAH (Pham et al., 2019),
SSRGD (Li, 2019)

O(n+
√
n
ε2

)

Finite-sum (2) Asp. 2 PAGE (this paper) O(n+
√
n
ε2

)

Finite-sum (2) Asp. 2 Lower bound (Fang et al., 2018) Ω(
√
n
ε2

) if n ≤ O( 1
ε4

)

Finite-sum (2) Asp. 2 Lower bound (this paper) Ω(n+
√
n
ε2

)

Finite-sum (2) Asp. 2 and 3 (PL setting) PAGE (this paper) O
(
(n+

√
nκ) log 1

ε

) a

Online (3) b Asp. 1 and 2 SGD (Ghadimi et al., 2016;
Khaled & Richtárik, 2020; Li & Richtárik, 2020) O(σ

2

ε4
)

Online (3) Asp. 1 and 2 SCSG (Lei et al., 2017),
SVRG+ (Li & Li, 2018) O(b+ b2/3

ε2
)

Online (3) Asp. 1 and 2 SNVRG (Zhou et al., 2018),
Geom-SARAH (Horváth et al., 2020) Õ

(
b+

√
b
ε2

)
Online (3) Asp. 1 and 2

SPIDER (Fang et al., 2018),
SpiderBoost (Wang et al., 2018),

SARAH (Pham et al., 2019),
SSRGD (Li, 2019)

O(b+
√
b
ε2

)

Online (3) Asp. 1 and 2 PAGE (this paper) O(b+
√
b
ε2

) c

Online (3) Asp. 1 and 2 Lower bound (this paper) Ω(b+
√
b
ε2

)

Online (3) Asp. 1, 2 and 3 (PL setting) PAGE (this paper) O
(

(b+
√
bκ) log 1

ε

)
aNote that PAGE can switch to a faster linear convergence O(· log 1

ε
) instead of sublinear rate O(· 1

ε2
) by exploiting the local structure

of the objective function via the PL condition (Assumption 3).
bNote that we refer the online problem (3) as the finite-sum problem (2) with large or infinite n as discussed in the introduction Section

1.1. In this online case, the full gradient may not be available (e.g., if n is infinite), thus the bounded variance of stochastic gradient
Assumption 1 is needed in this case.

cIn the online case, b := min{σ
2

ε2
, n}, and σ is defined in Assumption 1. If n is very large, i.e., b := min{σ

2

ε2
, n} = σ2

ε2
, then

O(b+
√
b
ε2

) = O(σ
2

ε2
+ σ

ε3
) is better than the rate O(σ

2

ε4
) of SGD by a factor of 1

ε2
or σ

ε
.

b′ < b. We conduct several deep learning experiments (e.g.,
LeNet, VGG, ResNet) on real datasets in PyTorch show-
ing that PAGE indeed not only converges much faster than
SGD in training but also achieves higher test accuracy. This
validates our theoretical results and confirms the practical
superiority of PAGE.

2.1. The PAGE gradient estimator

In this section, we describe PAGE, an SGD variant em-
ploying a new, simple and optimal gradient estimator (see
Algorithm 1). In particular, PAGE was inspired by algorith-
mic design elements coming from methods such as SARAH
(Nguyen et al., 2017), SPIDER (Fang et al., 2018), SSRGD
(Li, 2019) (usage of a recursive estimator), and L-SVRG
(Kovalev et al., 2020) and SAGD (Bibi et al., 2018) (proba-

bilistic switching between two estimators to avoid a double
loop structure).

In each iteration, the gradient estimator gt+1 of PAGE is
defined in Line 4 of Algorithm 1, which indicates that PAGE
uses the vanilla minibatch SGD update with probability pt,
and reuses the previous gradient gt with a small adjustment
(which lowers the computational cost since b′ � b) with
probability 1 − pt. In particular, the pt ≡ 1 case reduces
to vanilla minibatch SGD, and to GD if we further set the
minibatch size to b = n. We give a simple formula for the
optimal choice of pt, i.e., pt ≡ b′

b+b′ is enough for PAGE to
obtain the optimal convergence rates. More details can be
found in the convergence results of Section 4.

Note that PAGE with constant probability pt ≡ p can be
reduced to an equivalent form of the double loop algorithm
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Algorithm 1 ProbAbilistic Gradient Estimator (PAGE)
Input: initial point x0, stepsize η, minibatch size b, b′ < b, probability {pt} ∈ (0, 1]
1: g0 = 1

b

∑
i∈I ∇fi(x0) // I denotes random minibatch samples with |I| = b

2: for t = 0, 1, 2, . . . do
3: xt+1 = xt − ηgt

4: gt+1 =


1
b

∑
i∈I
∇fi(xt+1) with probability pt

gt + 1
b′

∑
i∈I′

(∇fi(xt+1)−∇fi(xt)) with probability 1− pt

5: end for
Output: x̂T chosen uniformly from {xt}t∈[T ]

with geometric distribution Geom-SARAH (Horváth et al.,
2020), but our single-loop PAGE is more flexible and also
leads to simpler and better analysis. Similar to L-SVRG (Ko-
valev et al., 2020) which switches between GD and SVRG
probabilistically, L2S (Li et al., 2020a) switches between
GD and SARAH and uses a fixed probability p (i.e., equiv-
alent to Geom-SARAH (Horváth et al., 2020)). However,
PAGE is more general which switches between minibatch
SGD and minibatch SARAH and also allows a flexible prob-
ability pt. More importantly, the minibatch SGD update
instead of GD can allow PAGE to solve both nonconvex
finite-sum and online problems, while L2S (Li et al., 2020a)
can only deal with the finite-sum case. Besides, our con-
vergence analysis of PAGE is simple and clean, which is
totally different from L2S (Li et al., 2020a). Concretely, our
analysis of PAGE directly shows the decrease for each itera-
tion (see (19) or (22)), i.e., truly loopless analysis. However,
L2S (Li et al., 2020a) still uses a double loop analysis where
they transform the probabilistic switch steps to an equivalent
double loop structure and upper bound the variance term by
considering all inner loop iterations together not just one
iteration as ours (see Lemma 5 of L2S vs. our Lemma 3).

3. Notation and Assumptions
Let [n] denote the set {1, 2, · · · , n} and ‖ · ‖ denote the
Euclidean norm for a vector and the spectral norm for a
matrix. Let 〈u, v〉 denote the inner product of two vectors u
and v. We use O(·) and Ω(·) to hide the absolute constant,
and Õ(·) to hide the logarithmic factor. We will write ∆0 :=
f(x0)− f∗ and f∗ := minx∈Rd f(x).

In order to prove convergence results, one usually needs the
following standard assumptions depending on the setting
(see e.g., Ghadimi et al., 2016; Lei et al., 2017; Li & Li,
2018; Allen-Zhu, 2018; Zhou et al., 2018; Fang et al., 2018).

Assumption 1 (Bounded variance) The stochastic gradi-
ent has bounded variance if ∃σ > 0, such that

Ei[‖∇fi(x)−∇f(x)‖2] ≤ σ2, ∀x ∈ Rd. (4)

Assumption 2 (Average L-smoothness) A function f :

Rd → R is average L-smooth if ∃L > 0,

Ei[‖∇fi(x)−∇fi(y)‖2] ≤ L2‖x−y‖2, ∀x, y ∈ Rd. (5)

Moreover, we also prove faster linear convergence rates
for nonconvex functions under the Polyak-Łojasiewicz (PL)
condition (Polyak, 1963).

Assumption 3 (PL condition) A function f : Rd → R
satisfies PL condition 1 if ∃µ > 0, such that

‖∇f(x)‖2 ≥ 2µ(f(x)− f∗), ∀x ∈ Rd. (6)

4. General Convergence Results
In this section, we present two main convergence theorems
for PAGE (Algorithm 1): i) for nonconvex finite-sum prob-
lem (2) (Section 4.1), and ii) for nonconvex online problem
(3) (Section 4.2). Subsequently, we formulate several corol-
laries which lead to the optimal convergence results. Finally,
we provide tight lower bounds for both types of nonconvex
problems to close the gap and validate the optimality of
PAGE. See Table 1 for an overview.

4.1. Convergence for nonconvex finite-sum problems

In this section, we focus on the nonconvex finite-sum prob-
lems defined via (2). In this case, we do not need the
bounded variance assumption (Assumption 1).

Theorem 1 (Nonconvex finite-sum problem (2))
Suppose that Assumption 2 holds. Choose the stepsize
η ≤ 1

L
(

1+
√

1−p
pb′

) , minibatch size b = n, secondary mini-

batch size b′ < b, and probability pt ≡ p ∈ (0, 1]. Then
the number of iterations performed by PAGE sufficient for
finding an ε-approximate solution (i.e., E[‖∇f(x̂T )‖] ≤ ε)
of nonconvex finite-sum problem (2) can be bounded by

T =
2∆0L

ε2

(
1 +

√
1− p
pb′

)
.

1It is worth noting that the PL condition does not imply con-
vexity of f . For example, f(x) = x2 + 3 sin2 x is a nonconvex
function but it satisfies PL condition with µ = 1/32.
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Moreover, according to the gradient estimator of PAGE
(Line 4 of Algorithm 1), we know that it uses pb + (1 −
p)b′ stochastic gradients for each iteration on expectation.
Thus, the number of stochastic gradient computations (i.e.,
gradient complexity) is

#grad = b+ T (pb+ (1− p)b′)

= b+
2∆0L

ε2

(
1 +

√
1− p
pb′

)
(pb+ (1− p)b′) .

Note that the first b in #grad is due to the computation of
g0 (see Line 1 in Algorithm 1).

As we mentioned before, if we choose pt ≡ 1 and b = n
(see Line 4 of Algorithm 1), PAGE reduces to the vanilla
GD method. We now show that our main theorem indeed
recovers the convergence result of GD.

Corollary 1 (We recover GD by letting pt ≡ 1) Suppose
that Assumption 2 holds. Choose the stepsize η ≤ 1

L ,
minibatch size b = n and probability pt ≡ 1. Then PAGE
reduces to GD, and the number of iterations performed by
PAGE to find an ε-approximate solution of the nonconvex
finite-sum problem (2) can be bounded by T = 2∆0L

ε2 .
Moreover, the number of stochastic gradient computations
(i.e., gradient complexity) is

#grad = n+
2∆0Ln

ε2
= O

( n
ε2

)
.

Next, we provide a parameter setting that leads to the opti-
mal convergence result for nonconvex finite-sum problem
(2), which corresponds to the 6th row of Table 1. Note that
a fixed pt is enough for PAGE to obtain the optimal con-
vergence result although people can choose different pt in
practice.

Corollary 2 (Optimal result for problem (2)) Suppose
that Assumption 2 holds. Choose the stepsize
η ≤ 1

L(1+
√
b/b′)

, minibatch size b = n, secondary

minibatch size b′ ≤
√
b and probability pt ≡ b′

b+b′ . Then
the number of iterations performed by PAGE to find an
ε-approximate solution of the nonconvex finite-sum problem
(2) can be bounded by T = 2∆0L

ε2 (1 +
√
b
b′ ). Moreover, the

number of stochastic gradient computations (i.e., gradient
complexity) is

#grad ≤ n+
8∆0L

√
n

ε2
= O

(
n+

√
n

ε2

)
.

Finally, we establish a lower bound matching the above
upper bound, which shows that the convergence result ob-
tained by PAGE in Corollary 2 is indeed optimal. This
lower bound corresponds to the 8th row of Table 1.

Theorem 2 (Lower bound) For any L > 0, ∆0 > 0 and
n > 0, there exists a large enough dimension d and a
function f : Rd → R satisfying Assumption 2 in the finite-
sum case such that any linear-span first-order algorithm
needs Ω(n+ ∆0L

√
n

ε2 ) stochastic gradient computations in
order to finding an ε-approximate solution, i.e., a point x̂
such that E‖∇f(x̂)‖ ≤ ε.

4.2. Convergence for nonconvex online problems

In this section, we focus on the nonconvex online problems,
i.e., (3). Recall that we refer this online problem (3) as
the finite-sum problem (2) with large or infinite n. Also,
we need the bounded variance assumption (Assumption 1)
in this online case. Similarly, we first present the main
theorem in this online case and then provide corollaries with
the optimal convergence results. Finally, we provide tight
lower bound for validating the optimality of PAGE.

Theorem 3 (Nonconvex online problem (3)) Suppose
that Assumptions 1 and 2 hold. Choose the stepsize
η ≤ 1

L
(

1+
√

1−p
pb′

) , minibatch size b = min{d 2σ2

ε2 e, n},

secondary minibatch size b′ < b and probability
pt ≡ p ∈ (0, 1]. Then the number of iterations per-
formed by PAGE to find an ε-approximate solution
(E[‖∇f(x̂T )‖] ≤ ε) of nonconvex online problem (3) can
be bounded by

T =
4∆0L

ε2

(
1 +

√
1− p
pb′

)
+

1

p
.

Moreover, the number of stochastic gradient computations
(gradient complexity) #grad = b+ T (pb+ (1− p)b′) is

2b+
(1− p)b′

p
+

4∆0L

ε2

(
1 +

√
1− p
pb′

)
(pb+ (1− p)b′) .

Similarly, if we choose pt ≡ 1 (see Line 4 of Algorithm 1),
the PAGE method reduces to the vanilla minibatch SGD
method. Here we theoretically show that our main theorem
with pt ≡ 1 can recover the convergence result of SGD in
the following Corollary 3.

Corollary 3 (We recover SGD by letting pt ≡ 1)
Suppose that Assumptions 1 and 2 hold. Let stepsize η ≤ 1

L ,
minibatch size b = d 2σ2

ε2 e and probability pt ≡ 1, then
the number of iterations performed by PAGE to find an
ε-approximate solution of nonconvex online problem (3)
can be bounded by T = 4∆0L

ε2 + 1. Moreover, the number
of stochastic gradient computations (gradient complexity) is

#grad =
4σ2

ε2
+

8∆0Lσ
2

ε4
= O

(
σ2

ε4

)
.

Now, we provide a parameter setting that leads to the opti-
mal convergence result of our main theorem for nonconvex
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online problem (3), which corresponds to the 14th row of
Table 1. Similarly, a fixed pt is enough for PAGE to obtain
the optimal convergence result in this online case.

Corollary 4 (Optimal result for problem (3)) Suppose
that Assumptions 1 and 2 hold. Choose the stepsize
η ≤ 1

L(1+
√
b/b′)

, minibatch size b = min{d 2σ2

ε2 e, n}, sec-

ondary minibatch size b′ ≤
√
b and probability pt ≡ b′

b+b′ .
Then the number of iterations performed by PAGE sufficient
to find an ε-approximate solution of nonconvex online
problem (3) can be bounded by T = 4∆0L

ε2 (1 +
√
b
b′ ) + b+b′

b′ .
Moreover, the number of stochastic gradient computations
(i.e., gradient complexity) is

#grad ≤ 3b+
16∆0L

√
b

ε2
= O

(
b+

√
b

ε2

)
.

Before we provide our lower bound, we first recall the lower
bound established by Arjevani et al. (2019).

Theorem 4 (Arjevani et al., 2019) For any L > 0, ∆0 >
0 and σ2 > 0, there exists a large enough dimension d and
function f : Rd → R satisfying Assumptions 1 and 2 in the
online case (here n is infinite) such that any linear-span first-
order algorithm needs Ω(σ

2

ε2 + ∆0Lσ
ε3 ) stochastic gradient

computations in order to find an ε-approximate solution, i.e.,
a point x̂ such that E‖∇f(x̂)‖ ≤ ε.

Now, we provide a lower bound corollary which directly
follows from the lower bound Theorem 4 given by Arjevani
et al. (2019) and our Theorem 2. It indicates that the con-
vergence result obtained by PAGE in Corollary 4 is indeed
optimal.

Corollary 5 (Lower bound) For any L > 0, ∆0 > 0,
σ2 > 0 and n > 0, there exists a large enough dimen-
sion d and a function f : Rd → R satisfying Assumptions
1 and 2 in the online case (here n may be finite) such that
any linear-span first-order algorithm needs Ω(b+ ∆0L

√
b

ε2 ),
where b = min{σ

2

ε2 , n}, stochastic gradient computations
for finding an ε-approximate solution, i.e., a point x̂ such
that E‖∇f(x̂)‖ ≤ ε.

5. Better Convergence under PL Condition
In this section, we show that better convergence can be
achieved if the loss function f satisfies the PL condition
(Assumption 3). Note that under the PL condition, one can
obtain a faster linear convergence O(· log 1

ε ) (see Corol-
lary 6) rather than the sublinear convergence O(· 1

ε2 ) (see
Corollary 2). In many cases, although the loss function f is
globally nonconvex, some local regions (e.g., large gradient
regions) may satisfy the PL condition. We prove that PAGE
can automatically switch to the faster convergence rate in
these regions where f satisfies PL condition locally.

As in Section 4, here we also establish two main theorems
and the deduce corollaries for both finite-sum and online
regimes. The convergence results are also listed in Table 1
(i.e., the middle row and last row).

Theorem 5 (Nonconvex finite-sum problem (2) under PL)
Suppose that Assumptions 2 and 3 hold. Choose the stepsize
η ≤ min{ 1

L
(

1+
√

1−p
pb′

) , p
2µ}, minibatch size b = n,

secondary minibatch size b′ < b, and probability
pt ≡ p ∈ (0, 1]. Then the number of iterations per-
formed by PAGE sufficient for finding an ε-solution
(E[f(xT ) − f∗] ≤ ε) of nonconvex finite-sum problem (2)
can be bounded by

T =

((
1 +

√
1− p
pb′

)
κ+

2

p

)
log

∆0

ε
.

Moreover, the number of stochastic gradient computations
(i.e., gradient complexity) #grad = b+ T (pb+ (1− p)b′)
is

b+ (pb+ (1− p)b′)
((

1 +

√
1− p
pb′

)
κ+

2

p

)
log

∆0

ε
.

Corollary 6 Suppose that Assumptions 2 and 3 hold.
Let stepsize η ≤ min{ 1

L(1+
√
b/b′)

, b′

2µ(b+b′)}, minibatch

size b = n, secondary minibatch size b′ ≤
√
b, and

probability pt ≡ b′

b+b′ . Then the number of iterations
performed by PAGE to find an ε-solution of noncon-
vex finite-sum problem (2) can be bounded by T =(

(1 +
√
b
b′ )κ+ 2(b+b′)

b′

)
log ∆0

ε . Moreover, the number of
stochastic gradient computations (gradient complexity) is

#grad = O

(
(n+

√
nκ) log

1

ε

)
.

Remark: Note that Corollary 6 uses exactly the same pa-
rameter setting as in Corollary 2 in the large condition num-
ber case (i.e., κ := L

µ ≥ 2
√
n, then the stepsize turns to

η ≤ 1
L(1+

√
b/b′)

). Thus, PAGE can automatically switch to

this faster linear convergence rate O(· log 1
ε ) instead of the

sublinear convergenceO( ·ε2 ) in Corollary 2 in some regions
where f satisfies the PL condition locally.

Theorem 6 (Nonconvex online problem (3) under PL)
Suppose that Assumptions 1, 2 and 3 hold. Choose the
stepsize η ≤ min{ 1

L
(

1+
√

1−p
pb′

) , p
2µ}, minibatch size

b = min{d 2σ2

µε e, n}, secondary minibatch size b′ < b, and
probability pt ≡ p ∈ (0, 1]. Then the number of iterations
performed by PAGE sufficient for finding an ε-solution
(E[f(xT ) − f∗] ≤ ε) of nonconvex finite-sum problem (2)
can be bounded by

T =

((
1 +

√
1− p
pb′

)
κ+

2

p

)
log

2∆0

ε
.
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(1a) Different minibatch size b (1b) Different minibatch size b (1c) Different neural networks

Figure 1. LeNet and ResNet18 on MNIST dataset

Moreover, the number of stochastic gradient computations
(i.e., gradient complexity) #grad = b+ T (pb+ (1− p)b′)
is

b+ (pb+ (1− p)b′)
((

1 +

√
1− p
pb′

)
κ+

2

p

)
log

2∆0

ε
.

Corollary 7 Suppose that Assumptions 1, 2 and 3 hold.
Choose the stepsize η ≤ min{ 1

L(1+
√
b/b′)

, b′

2µ(b+b′)}, mini-

batch size b = min{d 2σ2

µε e, n}, secondary minibatch b′ ≤
√
b and probability pt ≡ b′

b+b′ . Then the number of
iterations performed by PAGE to find an ε-solution of
nonconvex online problem (3) can be bounded by T =(

(1 +
√
b
b′ )κ+ 2(b+b′)

b′

)
log 2∆0

ε . Moreover, the number of
stochastic gradient computations (gradient complexity) is

#grad = O

(
(b+

√
bκ) log

1

ε

)
.

6. Experiments
In this section, we conduct several deep learning experi-
ments for multi-class image classification. Concretely, we
compare our PAGE algorithm with vanilla SGD by running
standard LeNet (LeCun et al., 1998), VGG (Simonyan &
Zisserman, 2014) and ResNet (He et al., 2016) models on
MNIST (LeCun et al., 1998) and CIFAR-10 (Krizhevsky,
2009) datasets. We implement the algorithms in PyTorch
(Paszke et al., 2019) and run the experiments on several
NVIDIA Tesla V100 GPUs.

According to the update form in PAGE (see Line 4 of Al-
gorithm 1), PAGE enjoys a lower computational cost than
vanilla minibatch SGD (i.e., pt ≡ 1 in PAGE) since b′ < b.
Thus, in the experiments we want to show how the per-
formance of PAGE compares with vanilla minibatch SGD
under different minibatch sizes b (i.e., b = 64, 256, 512).
Note that we do not tune the parameters for PAGE, i.e.,
we set b′ =

√
b and pt ≡ b′

b+b′ =
√
b

b+
√
b

according to our
theoretical results (see e.g., Corollary 2 and 4). For the step-
size/learning rate η, we choose the same one for both PAGE
and minibatch SGD according to the theoretical results.

Concretely, in Figure 1, we choose standard minibatch b =
64 and b = 256 for both PAGE and vanilla minibatch SGD
for MNIST experiments. In Figure 2, we choose b = 256
and b = 512 for CIFAR-10 experiments. The first row of
Figures 1 and 2 denotes the training loss with respect to the
gradient computations, and the second row denotes the test
accuracy with respect to the gradient computations. Both
Figures 1 and 2 demonstrate that PAGE not only converges
much faster than SGD in training but also achieves higher
test accuracy (which is typically very important in practice,
e.g., lead to a better model). Moreover, the performance gap
between PAGE and SGD is larger when the minibatch size
b is larger (i.e, gap between solid lines in Figures 1a, 1b, 2a,
2b), which is consistent with the update form of PAGE, i.e, it
reuses the previous gradient with a small adjustment (lower
computational cost b′ =

√
b instead of b) with probability

1 − pt. The experimental results validate our theoretical
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(2a) Different minibatch size b (2b) Different minibatch size b (2c) Different neural networks

Figure 2. VGG16 and ResNet18 on CIFAR-10 dataset

(3a) Training/test loss (3b) Training/test accuracy

Figure 3. ResNet18 on MNIST dataset

results and confirm the practical superiority of PAGE.

In the following, we conduct extra experiments for compar-
ing the training loss and test loss (Figure 3a, 4a), and training
accuracy and test accuracy (Figure 3b, 4b) between PAGE
and SGD. Note that Figure 3 (i.e., 3a, 3b) uses MNIST
dataset and Figure 4 (i.e., 4a, 4b) uses CIFAR-10 dataset.
Figures (3a) and (4a) also demonstrate that PAGE converges
much faster than SGD both in training loss and test loss.
Moreover, Figures (3b) and (4b) demonstrate that PAGE
achieves the higher test accuracy than SGD and converges
faster in training accuracy. Thus, our PAGE is not only
converging faster than SGD in training but also achieves the
higher test accuracy (which is typically very important in
practice, e.g., lead to a better model). Again, the experimen-
tal results validate our theoretical results and confirm the
practical superiority of PAGE.

(4a) Training/test loss (4b) Training/test accuracy

Figure 4. ResNet34 on CIFAR-10 dataset

7. Conclusion
In this paper, we propose a simple and optimal PAGE algo-
rithm for both nonconvex finite-sum and online optimization.
We prove tight lower bounds and show that PAGE achieves
the optimal convergence results matching our lower bounds
for both nonconvex finite-sum problems and online prob-
lems. We also show that for nonconvex functions satisfying
the PL condition, PAGE can automatically switch to a faster
linear convergence rate. Besides, PAGE is easy to imple-
ment and we conduct several deep learning experiments
(e.g., LeNet, VGG, ResNet) in PyTorch which confirm the
practical superiority of PAGE. More importantly, the novel
convergence analysis of PAGE is very simple and clean.
Thus PAGE and its analysis can be easily adopted and gen-
eralized to other works. In fact, it already leads to some fur-
ther breakthroughs in communication-efficient distributed
learning (e.g., Gorbunov et al., 2021; Richtárik et al., 2021).
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A. Missing Proofs for Nonconvex Finite-Sum Problems
Appendix A and Appendix B provide proof details for nonconvex finite-sum and online problems, respectively. For the
PL setting where faster linear convergence rates can be obtained, Appendix C and Appendix D provide proof details for
nonconvex finite-sum and online problems under PL condition, respectively. Before providing the detailed proofs for main
theorems and corollaries, we first provide a lemma of smoothness and a general key technical lemma which are used in the
following Appendices A–D regardless of the settings.

Lemma 1 If function f(x) := 1
n

∑n
i=1 fi(x) is average L-smooth (see Assumption 2), i.e., if

Ei[‖∇fi(x)−∇fi(y)‖2] ≤ L2‖x− y‖2, ∀x, y ∈ Rd, (7)

then f is also L-smooth, i.e., ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖ and thus

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
L

2
‖y − x‖2, ∀x, y ∈ Rd. (8)

Proof of Lemma 1. First, we show the L-smoothness of f :

‖∇f(x)−∇f(y)‖ =
√
‖Ei[∇fi(x)−∇fi(y)]‖2

≤
√

Ei[‖∇fi(x)−∇fi(y)‖2]
(7)
≤

√
L2‖x− y‖2

= L‖x− y‖, (9)

where the first inequality uses Jensen’s inequality: g(E[x]) ≤ E[g(x)] for a convex function g. Then, inequality (8) holds
due to standard arguments (we do not claim any novelty here and include the following arguments for completeness):

f(y) = f(x) +

∫ 1

0

〈∇f(x+ τ(y − x)), y − x〉dτ

= f(x) + 〈∇f(x), y − x〉+

∫ 1

0

〈∇f(x+ τ(y − x))−∇f(x), y − x〉dτ

≤ f(x) + 〈∇f(x), y − x〉+

∫ 1

0

‖∇f(x+ τ(y − x))−∇f(x)‖‖y − x‖dτ

(9)
≤ f(x) + 〈∇f(x), y − x〉+

∫ 1

0

Lτ‖y − x‖2dτ

= f(x) + 〈∇f(x), y − x〉+
L

2
‖y − x‖2, (10)

where the first inequality uses Cauchy–Schwarz inequality 〈u, v〉 ≤ ‖u‖‖v‖. �

Now, we provide a key Lemma 2 which describes a useful relation between the function values after and before a gradient
descent step, i.e., between f(xt+1) and f(xt) with xt+1 := xt − ηgt for any gradient estimator gt ∈ Rd and stepsize η > 0.

Lemma 2 Suppose that function f is L-smooth and let xt+1 := xt − ηgt. Then for any gt ∈ Rd and η > 0, we have

f(xt+1) ≤ f(xt)− η

2
‖∇f(xt)‖2 −

( 1

2η
− L

2

)
‖xt+1 − xt‖2 +

η

2
‖gt −∇f(xt)‖2. (11)
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Proof of Lemma 2. Let x̄t+1 := xt − η∇f(xt). In view of L-smoothness of f , we have

f(xt+1)
(8)
≤ f(xt) + 〈∇f(xt), xt+1 − xt〉+

L

2
‖xt+1 − xt‖2

= f(xt) + 〈∇f(xt)− gt, xt+1 − xt〉+ 〈gt, xt+1 − xt〉+
L

2
‖xt+1 − xt‖2

= f(xt) + 〈∇f(xt)− gt,−ηgt〉 −
(1

η
− L

2

)
‖xt+1 − xt‖2

= f(xt) + η‖∇f(xt)− gt‖2 − η〈∇f(xt)− gt,∇f(xt)〉 −
(1

η
− L

2

)
‖xt+1 − xt‖2

= f(xt) + η‖∇f(xt)− gt‖2 − 1

η
〈xt+1 − x̄t+1, xt − x̄t+1〉 −

(1

η
− L

2

)
‖xt+1 − xt‖2

= f(xt) + η‖∇f(xt)− gt‖2 −
(1

η
− L

2

)
‖xt+1 − xt‖2

− 1

2η

(
‖xt+1 − x̄t+1‖2 + ‖xt − x̄t+1‖2 − ‖xt+1 − xt‖2

)
= f(xt) + η‖∇f(xt)− gt‖2 −

(1

η
− L

2

)
‖xt+1 − xt‖2

− 1

2η

(
η2‖∇f(xt)− gt‖2 + η2‖∇f(xt)‖2 − ‖xt+1 − xt‖2

)
= f(xt)− η

2
‖∇f(xt)‖2 −

( 1

2η
− L

2

)
‖xt+1 − xt‖2 +

η

2
‖gt −∇f(xt)‖2.

�

Now, we are ready to provide the detailed proofs for our main convergence theorem and corollaries for PAGE in the
nonconvex finite-sum case (i.e., problem (2)).

A.1. Proof of Main Theorem 1

In this appendix, we first restate our main convergence result (Theorem 1) in the nonconvex finite-sum case and then provide
its proof.

Theorem 1 (Main theorem for nonconvex finite-sum problem (2)) Suppose that Assumption 2 holds. Choose the step-
size

η ≤ 1

L
(

1 +
√

1−p
pb′

) ,
minibatch size b = n, secondary minibatch size b′ < b, and probability pt ≡ p ∈ (0, 1]. Then the number of iterations
performed by PAGE sufficient for finding an ε-approximate solution (i.e., E[‖∇f(x̂T )‖] ≤ ε) of nonconvex finite-sum
problem (2) can be bounded by

T =
2∆0L

ε2

(
1 +

√
1− p
pb′

)
. (12)

Moreover, the number of stochastic gradient computations (i.e., gradient complexity) is

#grad = b+ T (pb+ (1− p)b′) = b+
2∆0L

ε2

(
1 +

√
1− p
pb′

)
(pb+ (1− p)b′) . (13)

Note that the first b in #grad is due to the computation of g0 (see Line 1 in Algorithm 1).

Proof of Theorem 1. Note that since the average L-smoothness assumption (Assumption 2) holds for f , we know that f is
also L-smooth according to Lemma 1. Then according to the update step xt+1 := xt − ηgt (see Line 3 in Algorithm 1) and
Lemma 2, we have

f(xt+1) ≤ f(xt)− η

2
‖∇f(xt)‖2 −

( 1

2η
− L

2

)
‖xt+1 − xt‖2 +

η

2
‖gt −∇f(xt)‖2. (14)
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Now, we use the following Lemma 3 to bound the last variance term of (14) for this finite-sum case.

Lemma 3 Suppose that Assumption 2 holds. If the gradient estimator gt+1 is defined in Line 4 of Algorithm 1, then we have

E[‖gt+1 −∇f(xt+1)‖2] ≤ (1− pt)‖gt −∇f(xt)‖2 +
(1− pt)L2

b′
‖xt+1 − xt‖2. (15)

Proof of Lemma 3. According to the definition of PAGE gradient estimator in Line 4 of Algorithm 1:

gt+1 =


1
b

∑
i∈I
∇fi(xt+1) with probability pt,

gt + 1
b′

∑
i∈I′

(∇fi(xt+1)−∇fi(xt)) with probability 1− pt.
(16)

A direct calculation now reveals that

E[‖gt+1 −∇f(xt+1)‖2]

(16)
= ptE

∥∥∥∥∥1

b

∑
i∈I
∇fi(xt+1)−∇f(xt+1)

∥∥∥∥∥
2
+ (1− pt)E

∥∥∥∥∥gt +
1

b′

∑
i∈I′

(∇fi(xt+1)−∇fi(xt))−∇f(xt+1)

∥∥∥∥∥
2


= (1− pt)E

∥∥∥∥∥gt +
1

b′

∑
i∈I′

(∇fi(xt+1)−∇fi(xt))−∇f(xt+1)

∥∥∥∥∥
2
 (17)

= (1− pt)E

∥∥∥∥∥gt −∇f(xt) +
1

b′

∑
i∈I′

(∇fi(xt+1)−∇fi(xt))−∇f(xt+1) +∇f(xt)

∥∥∥∥∥
2


= (1− pt)E

∥∥∥∥∥ 1

b′

∑
i∈I′

(∇fi(xt+1)−∇fi(xt))−∇f(xt+1) +∇f(xt)

∥∥∥∥∥
2
+ (1− pt)‖gt −∇f(xt)‖2

=
1− pt
b′2

E

[∑
i∈I′

∥∥(∇fi(xt+1)−∇fi(xt)
)
−
(
∇f(xt+1)−∇f(xt)

)∥∥2

]
+ (1− pt)‖gt −∇f(xt)‖2

≤ 1− pt
b′

E[‖∇fi(xt+1)−∇fi(xt)‖2] + (1− pt)‖gt −∇f(xt)‖2

≤ (1− pt)L2

b′
‖xt+1 − xt‖2 + (1− pt)‖gt −∇f(xt)‖2, (18)

where (17) holds since we let b = n in this finite-sum case, the last inequality (18) is due to the average L-smoothness
Assumption 2 (i.e., (5)). �

Now, we continue to prove Theorem 1 using Lemma 3. We add (14) with η
2p × (15) (here we simply let pt ≡ p), and take

expectation to get

E
[
f(xt+1)− f∗ +

η

2p
‖gt+1 −∇f(xt+1)‖2

]
≤ E

[
f(xt)− f∗ − η

2
‖∇f(xt)‖2 −

( 1

2η
− L

2

)
‖xt+1 − xt‖2 +

η

2
‖gt −∇f(xt)‖2

]
+

η

2p
E
[
(1− p)‖gt −∇f(xt)‖2 +

(1− p)L2

b′
‖xt+1 − xt‖2

]
= E

[
f(xt)− f∗ +

η

2p
‖gt −∇f(xt)‖2 − η

2
‖∇f(xt)‖2 −

( 1

2η
− L

2
− (1− p)ηL2

2pb′

)
‖xt+1 − xt‖2

]
≤ E

[
f(xt)− f∗ +

η

2p
‖gt −∇f(xt)‖2 − η

2
‖∇f(xt)‖2

]
, (19)
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where the last inequality (19) holds due to 1
2η −

L
2 −

(1−p)ηL2

2pb′ ≥ 0 by choosing stepsize

η ≤ 1

L
(

1 +
√

1−p
pb′

) . (20)

Now, if we define Φt := f(xt)− f∗ + η
2p‖g

t −∇f(xt)‖2, then (19) can be written in the form

E[Φt+1] ≤ E[Φt]−
η

2
E[‖∇f(xt)‖2]. (21)

Summing up from t = 0 to T − 1, we get

E[ΦT ] ≤ E[Φ0]− η

2

T−1∑
t=0

E[‖∇f(xt)‖2]. (22)

Then according to the output of PAGE, i.e., x̂T is randomly chosen from {xt}t∈[T ] and Φ0 = f(x0) − f∗ + η
2p‖g

0 −

∇f(x0)‖2 = f(x0)− f∗ def
= ∆0, we have

E[‖∇f(x̂T )‖2] ≤ 2∆0

ηT
. (23)

If we set the number of iterations as

T =
2∆0

ε2η

(20)
=

2∆0L

ε2

(
1 +

√
1− p
pb′

)
, (24)

then (23) and Jensen’s inequality imply

E[‖∇f(x̂T )‖] ≤
√
E[‖∇f(x̂T )‖2] ≤

√
2∆0

ηT
= ε.

�

A.2. Proofs of Corollaries 1 and 2

Similarly, we first restate the corollaries and then provide their proofs respectively.

Corollary 1 (We recover GD by letting pt ≡ 1) Suppose that Assumption 2 holds. Choose the stepsize η ≤ 1
L , minibatch

size b = n and probability pt ≡ 1. Then PAGE reduces to GD, and the number of iterations performed by PAGE to find an
ε-approximate solution of the nonconvex finite-sum problem (2) can be bounded by T = 2∆0L

ε2 . Moreover, the number of
stochastic gradient computations (i.e., gradient complexity) is

#grad = n+
2∆0Ln

ε2
= O

( n
ε2

)
. (25)

Proof of Corollary 1. If the probability is set to p = 1, the term
√

1−p
pb′ disappears from the stepsize η, and the total number

of iterations T in Theorem 1. So, the bound on the stepsize simplified to η ≤ 1
L , and the total number of iterations simplifies

to T = 2∆0L
ε2 . We know that the gradient estimator of PAGE (Line 4 of Algorithm 1) uses pb+ (1− p)b′ = b stochastic

gradients in each iteration. Thus, the gradient complexity is #grad = b+ Tb = n+ 2∆0Ln
ε2 , as claimed. �

Corollary 2 (Optimal result for nonconvex finite-sum problem (2)) Suppose that Assumption 2 holds. Choose the step-
size η ≤ 1

L(1+
√
b/b′)

, minibatch size b = n, secondary minibatch size b′ ≤
√
b and probability pt ≡ b′

b+b′ . Then the number
of iterations performed by PAGE to find an ε-approximate solution of the nonconvex finite-sum problem (2) can be bounded
by T = 2∆0L

ε2 (1 +
√
b
b′ ). Moreover, the number of stochastic gradient computations (i.e., gradient complexity) is

#grad ≤ n+
8∆0L

√
n

ε2
= O

(
n+

√
n

ε2

)
. (26)
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Proof of Corollary 2. If we choose probability p = b′

b+b′ , then
√

1−p
pb′ =

√
b
b′ . Thus, according to Theorem 1, the stepsize

bound becomes η ≤ 1
L(1+

√
b/b′)

and the total number of iterations becomes T = 2∆0L
ε2 (1 +

√
b
b′ ). We know that the gradient

estimator of PAGE (Line 4 of Algorithm 1) uses pb+ (1− p)b′ = 2bb′

b+b′ stochastic gradients in each iteration on expectation.
Thus, the gradient complexity is

#grad = b+ T (pb+ (1− p)b′)

= b+
2∆0L

ε2

(
1 +

√
b

b′

)
2bb′

b+ b′

≤ b+
2∆0L

ε2

(
1 +

√
b

b′

)
2b′

≤ n+
8∆0L

√
n

ε2
,

where the last inequality is due to the parameter setting b = n and b′ ≤
√
b. �

A.3. Proof of Theorem 2

Before providing the proof for the lower bound theorem, we recall the standard definition of the algorithm class of linear-span
first-order algorithms.

Definition 1 (Linear-span first-order algorithm) Consider a (randomized) algorithm A starting with x0 and let xt be
the point obtained at iteration t ≥ 0. Then A is called a linear-span first-order algorithm if

xt ∈ Lin{x0, x1, . . . , xt−1,∇fi0(x0),∇fi1(x1), . . . ,∇fit−1(xt−1)}, (27)

where Lin denotes the linear span, and ij denotes the individual function (or multiple functions) chosen by A at iteration j.

We now restate the lower bound result (Theorem 2) and then provide its proof.

Theorem 2 (Lower bound) For any L > 0, ∆0 > 0 and n > 0, there exists a large enough dimension d and a
function f : Rd → R satisfying Assumption 2 in the finite-sum case such that any linear-span first-order algorithm needs
Ω(n + ∆0L

√
n

ε2 ) stochastic gradient computations in order to finding an ε-approximate solution, i.e., a point x̂ such that
E‖∇f(x̂)‖ ≤ ε.

Proof of Theorem 2. Consider the function f(x) = 1
n

∑n
i=1 fi(x), where

fi(x) := c〈vi, x〉+
L

2
‖x‖2 (28)

for some constant c. First, we show that f : Rd → R satisfies Assumption 2 as follows:

Ei[‖∇fi(x)−∇fi(y)‖2] = Ei[‖(cvi + Lx)− (cvi + Ly)‖2]

= Ei[‖L(x− y)‖2]

= L2‖x− y‖2.

Without loss of generality, we assume that x0 = 0. Otherwise one can consider the shifted function f(x+ x0) instead. Now,
we compute ∆0 as follows:

f(x0)− f∗ = f(0)− f(x∗)

= 0−

(
c

n

n∑
i=1

〈vi, x∗〉+
L

2
‖x∗‖2

)

=
c2

2Ln2

∥∥∥∥ n∑
i=1

vi

∥∥∥∥2

(29)

= ∆0, (30)
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where the equality (29) is due to x∗ = − c
Ln

∑n
i=1 vi, and the last equality holds by choosing the appropriate parameter c.

Note that we only need to consider the case ε ≤ O(
√

∆0L) since the gradient norm at the initial point x0 already achieves
this order, i.e., ‖∇f(x0)‖ ≤

√
2∆0L. Indeed, since

f∗ ≤ f
(
x0 − 1

L
∇f(x0)

)
≤ f(x0) +

〈
∇f(x0),− 1

L
∇f(x0)

〉
+
L

2

∥∥∥∥ 1

L
∇f(x0)

∥∥∥∥2

(31)

= f(x0)− 1

2L
‖∇f(x0)‖2,

where the inequality (31) uses the L-smoothness of f (see Lemma 1), we have ‖∇f(x0)‖ ≤
√

2L(f(x0)− f∗) =
√

2∆0L.

Now according to the definition of linear-span first-order algorithms (i.e., Definition 1) and noting that the stochastic gradient
is ∇fi(x) = cvi + Lx and x0 = 0, after querying t stochastic gradients, we have

xt ∈ Lin{vi0 , vi1 , . . . , vit−1}, (32)

where i0, i1, . . . , it−1 denote the t functions which are queried for stochastic gradient computations. For the gradient norm,
we have

‖∇f(x)‖ =

∥∥∥∥ cn
n∑
i=1

vi + Lx

∥∥∥∥. (33)

If we choose {vi}i∈[n] to be orthogonal vectors, for example, choose v1 = (1, 1, . . . , 1, 0, . . . , 0)T (the first dn elements are
1 and all remaining are 0), v2 = (0, 0, . . . , 0, 1, 1, . . . , 1, 0, . . . , 0)T (the elements with indices from d

n + 1 to 2d
n are 1 and

others are 0), . . ., vi (the elements with indices from (i−1)d
n + 1 to id

n are 1 and others are 0). In other words, we divide
the indices {1, 2, . . . , d} into n parts, and set one part to be 1 and other parts to be 0 for each vi. Note that vi ∈ Rd, for all
i ∈ [n]. Thus, if fewer than n

2 functions have been queried for stochastic gradient computations, then according to (32) we
know that the current point x belongs to a subspace with dimension at most dn ×

n
2 = d

2 in Rd. Moreover, according to (33)
we have

‖∇f(x)‖ ≥ c

n

√
d

2
= Ω(ε), (34)

where the last equality holds by choosing appropriate parameters c and d.

So far, we have shown a lower bound of Ω(n) stochastic gradient computations for any linear-span first-order algorithm
finding an ε-approximate solution. For the second term Ω(∆0L

√
n

ε2 ), we directly use the previous lower bound provided by
Fang et al. (2018). They proved this lower bound term in the small n case, i.e., n ≤ O(∆0

2L2

ε4 ). Here we recall their lower
bound theorem.

Theorem 7 (Fang et al., 2018) For any L > 0, ∆0 > 0 and n ≤ O(∆0
2L2

ε4 ), there exists a large enough dimension d
and a function f : Rd → R satisfying Assumption 2 in the finite-sum case such that any linear-span first-order algorithm
needs Ω(∆0L

√
n

ε2 ) stochastic gradient computations in order to finding an ε-approximate solution, i.e., a point x̂ such that
E‖∇f(x̂)‖ ≤ ε.

Now, the lower bound Ω(n+ ∆0L
√
n

ε2 ) is proved by combining the term Ω(∆0L
√
n

ε2 ) in the above theorem and Ω(n) in our
previous arguments. �
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B. Missing Proofs for Nonconvex Online Problems
In this appendix, we provide the detailed proofs for our main convergence theorem and its corollaries for PAGE in the
nonconvex online case (i.e., problem (3)). Recall that we refer this online problem (3) as the finite-sum problem (2) with
large or infinite n. Also, we need the bounded variance assumption (Assumption 1) in this online case.

B.1. Proof of Main Theorem 3

Similarly to Appendix A.1, we first restate the main convergence result (Theorem 3) in the nonconvex online case and then
provide its proof.

Theorem 3 (Main theorem for nonconvex online problem (3)) Suppose that Assumptions 1 and 2 hold. Choose the
stepsize

η ≤ 1

L
(

1 +
√

1−p
pb′

) ,
minibatch size b = min{d 2σ2

ε2 e, n}, secondary minibatch size b′ < b and probability pt ≡ p ∈ (0, 1]. Then the number of
iterations performed by PAGE to find an ε-approximate solution (E[‖∇f(x̂T )‖] ≤ ε) of nonconvex online problem (3) can
be bounded by

T =
4∆0L

ε2

(
1 +

√
1− p
pb′

)
+

1

p
. (35)

Moreover, the number of stochastic gradient computations (gradient complexity) is

#grad = b+ T (pb+ (1− p)b′) = 2b+
(1− p)b′

p
+

4∆0L

ε2

(
1 +

√
1− p
pb′

)
(pb+ (1− p)b′) . (36)

Proof of Theorem 3. Similarly, we know that f is also L-smooth according to Lemma 1. Then according to the update step
xt+1 := xt − ηgt (see Line 3 in Algorithm 1) and Lemma 2, we have

f(xt+1) ≤ f(xt)− η

2
‖∇f(xt)‖2 −

( 1

2η
− L

2

)
‖xt+1 − xt‖2 +

η

2
‖gt −∇f(xt)‖2. (37)

Now, we use the following Lemma 4 to bound the last variance term of (37) for this online case.

Lemma 4 Suppose that Assumptions 1 and 2 hold. If the gradient estimator gt+1 is defined in Line 4 of Algorithm 1, then
we have

E[‖gt+1 −∇f(xt+1)‖2] ≤ (1− pt)‖gt −∇f(xt)‖2 +
(1− pt)L2

b′
‖xt+1 − xt‖2 + 1{b<n}

ptσ
2

b
. (38)

Proof of Lemma 4. According to the definition of PAGE gradient estimator in Line 4 of Algorithm 1

gt+1 =


1
b

∑
i∈I
∇fi(xt+1) with probability pt,

gt + 1
b′

∑
i∈I′

(∇fi(xt+1)−∇fi(xt)) with probability 1− pt,
(39)
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we have

E[‖gt+1 −∇f(xt+1)‖2]

(39)
= ptE

∥∥∥∥∥1

b

∑
i∈I
∇fi(xt+1)−∇f(xt+1)

∥∥∥∥∥
2
+ (1− pt)E

∥∥∥∥∥gt +
1

b′

∑
i∈I′

(∇fi(xt+1)−∇fi(xt))−∇f(xt+1)

∥∥∥∥∥
2


= 1{b<n}
ptσ

2

b
+ (1− pt)E

∥∥∥∥∥gt +
1

b′

∑
i∈I′

(∇fi(xt+1)−∇fi(xt))−∇f(xt+1)

∥∥∥∥∥
2
 (40)

= 1{b<n}
ptσ

2

b
+ (1− pt)E

∥∥∥∥∥gt −∇f(xt) +
1

b′

∑
i∈I′

(∇fi(xt+1)−∇fi(xt))−∇f(xt+1) +∇f(xt)

∥∥∥∥∥
2


= 1{b<n}
ptσ

2

b
+ (1− pt)‖gt −∇f(xt)‖2 + (1− pt)E

∥∥∥∥∥ 1

b′

∑
i∈I′

(∇fi(xt+1)−∇fi(xt))−∇f(xt+1) +∇f(xt)

∥∥∥∥∥
2


= 1{b<n}
ptσ

2

b
+ (1− pt)‖gt −∇f(xt)‖2 +

1− pt
b′2

E

[∑
i∈I′

∥∥(∇fi(xt+1)−∇fi(xt)
)
−
(
∇f(xt+1)−∇f(xt)

)∥∥2

]

≤ 1{b<n}
ptσ

2

b
+ (1− pt)‖gt −∇f(xt)‖2 +

1− pt
b′

E[‖∇fi(xt+1)−∇fi(xt)‖2]

≤ 1{b<n}
ptσ

2

b
+ (1− pt)‖gt −∇f(xt)‖2 +

(1− pt)L2

b′
‖xt+1 − xt‖2, (41)

where (40) is due to Assumption 1, i.e., (4) (where 1{·} denotes the indicator function), the last inequality (41) is due to the
average L-smoothness Assumption 2, i.e., (5). �

Now, we continue to prove Theorem 3 using Lemma 4. We add (37) with η
2p × (38) (here we simply let pt ≡ p), and take

expectation to get

E
[
f(xt+1)− f∗ +

η

2p
‖gt+1 −∇f(xt+1)‖2

]
≤ E

[
f(xt)− f∗ − η

2
‖∇f(xt)‖2 −

( 1

2η
− L

2

)
‖xt+1 − xt‖2 +

η

2
‖gt −∇f(xt)‖2

]
+

η

2p
E
[
(1− p)‖gt −∇f(xt)‖2 +

(1− p)L2

b′
‖xt+1 − xt‖2 + 1{b<n}

pσ2

b

]
= E

[
f(xt)− f∗ +

η

2p
‖gt −∇f(xt)‖2 − η

2
‖∇f(xt)‖2 + 1{b<n}

ησ2

2b

−
( 1

2η
− L

2
− (1− p)ηL2

2pb′

)
‖xt+1 − xt‖2

]
≤ E

[
f(xt)− f∗ +

η

2p
‖gt −∇f(xt)‖2 − η

2
‖∇f(xt)‖2 + 1{b<n}

ησ2

2b

]
, (42)

where the last inequality (42) holds due to 1
2η −

L
2 −

(1−p)ηL2

2pb′ ≥ 0 by choosing stepsize

η ≤ 1

L
(

1 +
√

1−p
pb′

) . (43)

Now, if we define Φt := f(xt)− f∗ + η
2p‖g

t −∇f(xt)‖2, then (42) turns to

E[Φt+1] ≤ E[Φt]−
η

2
E[‖∇f(xt)‖2] + 1{b<n}

ησ2

2b
. (44)



PAGE: A Simple and Optimal Probabilistic Gradient Estimator for Nonconvex Optimization

Summing up it from t = 0 for T − 1, we have

E[ΦT ] ≤ E[Φ0]− η

2

T−1∑
t=0

E[‖∇f(xt)‖2] + 1{b<n}
ηTσ2

2b
. (45)

Then, according to the output of PAGE, i.e., x̂T is randomly chosen from {xt}t∈[T ], we have

E[‖∇f(x̂T )‖2] ≤ 2E[Φ0]

ηT
+ 1{b<n}

σ2

b
. (46)

For the term E[Φ0], we have

E[Φ0] := E
[
f(x0)− f∗ +

η

2p
‖g0 −∇f(x0)‖2

]

= E

f(x0)− f∗ +
η

2p

∥∥∥∥∥1

b

∑
i∈I
∇fi(x0)−∇f(x0)

∥∥∥∥∥
2
 (47)

≤ f(x0)− f∗ + 1{b<n}
ησ2

2pb
, (48)

where (47) follows from the definition of g0 (see Line 1 of Algorithm 1), and (48) is due to Assumption 1, i.e., (4) (where
1{·} denotes the indicator function). Plugging (48) into (46) and noting that ∆0 := f(x0)− f∗, we have

E[‖∇f(x̂T )‖2] ≤ 2∆0

ηT
+ 1{b<n}

σ2

pbT
+ 1{b<n}

σ2

b

≤ 2∆0

ηT
+

ε2

2pT
+
ε2

2
(49)

= ε2, (50)

where (49) follows from the parameter setting of minibatch size b = min{d 2σ2

ε2 e, n}, and the last equality (50) holds by
letting the number of iterations

T =
4∆0

ε2η
+

1

p

(43)
=

4∆0L

ε2

(
1 +

√
1− p
pb′

)
+

1

p
. (51)

Now, the proof is finished since

E[‖∇f(x̂T )‖] ≤
√
E[‖∇f(x̂T )‖2] = ε. (52)

�

B.2. Proofs of Corollaries 3, 4 and 5

Similarly to Appendix A.2, we first restate the corollaries in this online case and then provide their proofs, respectively.

Corollary 3 (We recover SGD by letting pt ≡ 1) Suppose that Assumptions 1 and 2 hold. Let stepsize η ≤ 1
L , minibatch

size b = d 2σ2

ε2 e and probability pt ≡ 1, then the number of iterations performed by PAGE to find an ε-approximate
solution of nonconvex online problem (3) can be bounded by T = 4∆0L

ε2 + 1. Moreover, the number of stochastic gradient
computations (gradient complexity) is

#grad =
4σ2

ε2
+

8∆0Lσ
2

ε4
= O

(
σ2

ε4

)
. (53)

Proof of Corollary 3. If the probability parameter is set to p = 1, then
√

1−p
pb′ disappears from the stepsize η, and the total

number of iterations T in Theorem 3. Hence, the stepsize rule simplifies to η ≤ 1
L , and the total number of iterations

becomes T = 4∆0L
ε2 + 1. We know that the gradient estimator of PAGE (Line 4 uses pb+ (1− p)b′ = b stochastic gradients

in each iteration. Thus, the gradient complexity is #grad = b+ Tb = 4σ2

ε2 + 8∆0Lσ
2

ε4 . �



PAGE: A Simple and Optimal Probabilistic Gradient Estimator for Nonconvex Optimization

Corollary 4 (Optimal result for nonconvex online problem (3)) Suppose that Assumptions 1 and 2 hold. Choose the
stepsize η ≤ 1

L(1+
√
b/b′)

, minibatch size b = min{d 2σ2

ε2 e, n}, secondary minibatch size b′ ≤
√
b and probability pt ≡ b′

b+b′ .
Then the number of iterations performed by PAGE sufficient to find an ε-approximate solution of nonconvex online problem
(3) can be bounded by T = 4∆0L

ε2 (1 +
√
b
b′ ) + b+b′

b′ . Moreover, the number of stochastic gradient computations (i.e., gradient
complexity) is

#grad ≤ 3b+
16∆0L

√
b

ε2
= O

(
b+

√
b

ε2

)
. (54)

Proof of Corollary 4. If we choose probability p = b′

b+b′ , then
√

1−p
pb′ =

√
b
b′ . Thus, according to Theorem 3, the stepsize

bound becomes η ≤ 1
L(1+

√
b/b′)

and the total number of iterations becomes T = 4∆0L
ε2 (1 +

√
b
b′ ) + b+b′

b′ . Since the gradient

estimator of PAGE (Line 4 of Algorithm 1) uses pb+ (1− p)b′ = 2bb′

b+b′ stochastic gradients in each iteration in expectation,
the gradient complexity is

#grad = b+ T (pb+ (1− p)b′)

= b+

(
4∆0L

ε2

(
1 +

√
b

b′

)
+
b+ b′

b′

)
2bb′

b+ b′

= 3b+
4∆0L

ε2

(
1 +

√
b

b′

) 2bb′

b+ b′

≤ 3b+
4∆0L

ε2

(
1 +

√
b

b′

)
2b′

≤ 3b+
16∆0L

√
b

ε2
,

where the last inequality is due to the parameter setting b′ ≤
√
b. �

Corollary 5 (Lower bound) For any L > 0, ∆0 > 0, σ2 > 0 and n > 0, there exists a large enough dimension d and
a function f : Rd → R satisfying Assumptions 1 and 2 in the online case (here n may be finite) such that any linear-
span first-order algorithm needs Ω(b+ ∆0L

√
b

ε2 ), where b = min{σ
2

ε2 , n}, stochastic gradient computations for finding an
ε-approximate solution, i.e., a point x̂ such that E‖∇f(x̂)‖ ≤ ε.

Proof of Corollary 5. This lower bound directly follows from the lower bound Theorem 4 given by Arjevani et al. (2019)
and our Theorem 2. �
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C. Missing Proofs for Nonconvex Finite-Sum Problems under PL Condition
In this appendix, we provide detailed proofs for the main convergence theorem and its corollary for nonconvex finite-sum
problems under the PL condition (i.e., Assumption 3).

Similar to Lemma 2, we provide the following Lemma 5 which describes a useful relation between the function values after
and before a gradient descent step in this PL setting.

Lemma 5 Suppose that function f is L-smooth and satisfies PL condition (6). Let xt+1 := xt − ηgt. Then for any gt ∈ Rd
and η > 0, we have

f(xt+1)− f∗ ≤ (1− µη)(f(xt)− f∗)−
( 1

2η
− L

2

)
‖xt+1 − xt‖2 +

η

2
‖gt −∇f(xt)‖2. (55)

Proof of Lemma 5. According to Lemma 2, we have

f(xt+1) ≤ f(xt)− η

2
‖∇f(xt)‖2 −

( 1

2η
− L

2

)
‖xt+1 − xt‖2 +

η

2
‖gt −∇f(xt)‖2. (56)

Then, by plugging the PL condition (6), i.e.,

‖∇f(x)‖2 ≥ 2µ(f(x)− f∗),

into (56), we get

f(xt+1)− f∗ ≤ (1− µη)(f(xt)− f∗)−
( 1

2η
− L

2

)
‖xt+1 − xt‖2 +

η

2
‖gt −∇f(xt)‖2. (57)

�

Now we restate the main convergence theorem under the PL condition and then provide its proof.

Theorem 5 (Main theorem for nonconvex finite-sum problem (2) under PL condition) Suppose that Assumptions 2
and 3 hold. Choose the stepsize

η ≤ min

 1

L
(

1 +
√

1−p
pb′

) , p

2µ

 ,

minibatch size b = n, secondary minibatch size b′ < b, and probability pt ≡ p ∈ (0, 1]. Then the number of iterations
performed by PAGE sufficient for finding an ε-solution (E[f(xT )− f∗] ≤ ε) of nonconvex finite-sum problem (2) can be
bounded by

T =

((
1 +

√
1− p
pb′

)
κ+

2

p

)
log

∆0

ε
. (58)

Moreover, the number of stochastic gradient computations (i.e., gradient complexity) is

#grad = b+ T (pb+ (1− p)b′) = b+ (pb+ (1− p)b′)
((

1 +

√
1− p
pb′

)
κ+

2

p

)
log

∆0

ε
. (59)

Proof of Theorem 5. According to Lemma 5 and Lemma 3, we add (55) with β × (15) (here we simply let pt ≡ p), and
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take expectation to get

E
[
f(xt+1)− f∗ + β‖gt+1 −∇f(xt+1)‖2

]
≤ E

[
(1− µη)(f(xt)− f∗)−

( 1

2η
− L

2

)
‖xt+1 − xt‖2 +

η

2
‖gt −∇f(xt)‖2

]
+ βE

[
(1− p)‖gt −∇f(xt)‖2 +

(1− p)L2

b′
‖xt+1 − xt‖2

]
= E

[
(1− µη)(f(xt)− f∗) +

(η
2

+ (1− p)β
)
‖gt −∇f(xt)‖2

−
( 1

2η
− L

2
− (1− p)βL2

b′

)
‖xt+1 − xt‖2

]
≤ E

[
(1− µη)

(
f(xt)− f∗ + β‖gt −∇f(xt)‖2

)]
, (60)

where the last inequality (60) holds by choosing the stepsize

η ≤ min

 1

L
(

1 +
√

1−p
pb′

) , p

2µ

 , (61)

and β ≥ η
p . Now, we define Φt := f(xt)− f∗ + β‖gt −∇f(xt)‖2, then (60) turns to

E[Φt+1] ≤ (1− µη)E[Φt]. (62)

Telescoping it from t = 0 for T − 1, we have

E[ΦT ] ≤ (1− µη)TE[Φ0]. (63)

Note that Φ0 = f(x0)− f∗ + β‖g0 −∇f(x0)‖2 = f(x0)− f∗ def
= ∆0, we have

E[f(xT )− f∗] ≤ (1− µη)T∆0 = ε, (64)

where the last equality (64) holds by letting the number of iterations

T =
1

µη
log

∆0

ε

(61)
=

((
1 +

√
1− p
pb′

)
κ+

2

p

)
log

∆0

ε
, (65)

where κ := L
µ . �

Now, we restate the its corollary in which a detailed convergence result is obtained by giving a specific parameter setting
and then provide its proof.

Corollary 6 (Nonconvex finite-sum problem (2) under PL condition) Suppose that Assumptions 2 and 3 hold. Let step-
size η ≤ min{ 1

L(1+
√
b/b′)

, b′

2µ(b+b′)}, minibatch size b = n, secondary minibatch size b′ ≤
√
b, and probability pt ≡ b′

b+b′ .
Then the number of iterations performed by PAGE to find an ε-solution of nonconvex finite-sum problem (2) can be bounded
by T =

(
(1 +

√
b
b′ )κ+ 2(b+b′)

b′

)
log ∆0

ε . Moreover, the number of stochastic gradient computations (gradient complexity) is

#grad ≤ n+ (4
√
nκ+ 4n) log

∆0

ε
= O

(
(n+

√
nκ) log

1

ε

)
. (66)

Proof of Corollary 6. If we choose probability p = b′

b+b′ , then this term
√

1−p
pb′ =

√
b
b′ . Thus, according to Theorem

5, the stepsize η ≤ min{ 1
L(1+

√
b/b′)

, b′

2µ(b+b′)} and the total number of iterations T =
(

(1 +
√
b
b′ )κ+ 2(b+b′)

b′

)
log ∆0

ε .
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According to the gradient estimator of PAGE (Line 4 of Algorithm 1), we know that it uses pb+ (1− p)b′ = 2bb′

b+b′ stochastic
gradients for each iteration on the expectation. Thus, the gradient complexity

#grad = b+ T (pb+ (1− p)b′)

= b+
2bb′

b+ b′

(
(1 +

√
b

b′
)κ+

2(b+ b′)

b′

)
log

∆0

ε

= b+

(
2bb′

b+ b′
(1 +

√
b

b′
)κ+ 4b

)
log

∆0

ε

≤ b+

(
2b′(1 +

√
b

b′
)κ+ 4b

)
log

∆0

ε

≤ n+ (4
√
nκ+ 4n) log

∆0

ε
,

where the last inequality is due to the parameter setting b = n and b′ ≤
√
b. �



PAGE: A Simple and Optimal Probabilistic Gradient Estimator for Nonconvex Optimization

D. Missing Proofs for Nonconvex Online Problems under PL Condition
In this appendix, we provide detailed proofs for the main convergence theorem and its corollary for nonconvex online
problems under the PL condition (i.e., Assumption 3). Recall that we refer this online problem (3) as the finite-sum problem
(2) with large or infinite n. Also, we need the bounded variance assumption (Assumption 1) in this online case.

We first restate the main convergence theorem under the PL condition and then provide its proof.

Theorem 6 (Main theorem for nonconvex online problem (3) under PL condition) Suppose that Assumptions 1, 2 and
3 hold. Choose the stepsize

η ≤ min

 1

L
(

1 +
√

1−p
pb′

) , p

2µ


minibatch size b = min{d 2σ2

µε e, n}, secondary minibatch size b′ < b, and probability pt ≡ p ∈ (0, 1]. Then the number of
iterations performed by PAGE sufficient for finding an ε-solution (E[f(xT )− f∗] ≤ ε) of nonconvex finite-sum problem (2)
can be bounded by

T =

((
1 +

√
1− p
pb′

)
κ+

2

p

)
log

2∆0

ε
. (67)

Moreover, the number of stochastic gradient computations (i.e., gradient complexity) is

#grad = b+ T (pb+ (1− p)b′) = b+ (pb+ (1− p)b′)
((

1 +

√
1− p
pb′

)
κ+

2

p

)
log

2∆0

ε
. (68)

Proof of Theorem 6. According to Lemma 5 and Lemma 4, we add (55) with β × (38) (here we simply let pt ≡ p), and
take expectation to get

E
[
f(xt+1)− f∗ + β‖gt+1 −∇f(xt+1)‖2

]
≤ E

[
(1− µη)(f(xt)− f∗)−

( 1

2η
− L

2

)
‖xt+1 − xt‖2 +

η

2
‖gt −∇f(xt)‖2

]
+ βE

[
(1− p)‖gt −∇f(xt)‖2 +

(1− p)L2

b′
‖xt+1 − xt‖2 + 1{b<n}

pσ2

b

]
= E

[
(1− µη)(f(xt)− f∗) +

(η
2

+ (1− p)β
)
‖gt −∇f(xt)‖2 + 1{b<n}

βpσ2

b

−
( 1

2η
− L

2
− (1− p)βL2

b′

)
‖xt+1 − xt‖2

]
≤ E

[
(1− µη)

(
f(xt)− f∗ + β‖gt −∇f(xt)‖2

)
+ 1{b<n}

βpσ2

b

]
, (69)

where the last inequality (69) holds by choosing the stepsize

η ≤ min

 1

L
(

1 +
√

1−p
pb′

) , p

2µ

 , (70)

and β ≥ η
p . Now, we define Φt := f(xt)− f∗ + β‖gt −∇f(xt)‖2 and choose β = η

p , then (69) turns to

E[Φt+1] ≤ (1− µη)E[Φt] + 1{b<n}
ησ2

b
. (71)

Telescoping it from t = 0 for T − 1, we have

E[ΦT ] ≤ (1− µη)TE[Φ0] + 1{b<n}
σ2

bµ
=
ε

2
+
ε

2
(72)
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where the last equality (72) holds by letting the minibatch size b = min{d 2σ2

µε e, n} and the number of iterations

T =
1

µη
log

2∆0

ε

(70)
=

((
1 +

√
1− p
pb′

)
κ+

2

p

)
log

2∆0

ε
, (73)

where κ := L
µ . �

Now, we restate the its corollary in which a detailed convergence result is obtained by giving a specific parameter setting
and then provide its proof.

Corollary 7 (Nonconvex online problem (3) under PL condition) Suppose that Assumptions 1, 2 and 3 hold. Choose
the stepsize η ≤ min{ 1

L(1+
√
b/b′)

, b′

2µ(b+b′)}, minibatch size b = min{d 2σ2

µε e, n}, secondary minibatch b′ ≤
√
b and

probability pt ≡ b′

b+b′ . Then the number of iterations performed by PAGE to find an ε-solution of nonconvex online problem

(3) can be bounded by T =
(

(1 +
√
b
b′ )κ+ 2(b+b′)

b′

)
log 2∆0

ε . Moreover, the number of stochastic gradient computations
(gradient complexity) is

#grad = O

(
(b+

√
bκ) log

1

ε

)
. (74)

Proof of Corollary 7. If we choose probability p = b′

b+b′ , then this term
√

1−p
pb′ =

√
b
b′ . Thus, according to Theorem

6, the stepsize η ≤ min{ 1
L(1+

√
b/b′)

, b′

2µ(b+b′)} and the total number of iterations T =
(

(1 +
√
b
b′ )κ+ 2(b+b′)

b′

)
log 2∆0

ε .

According to the gradient estimator of PAGE (Line 4 of Algorithm 1), we know that it uses pb+ (1− p)b′ = 2bb′

b+b′ stochastic
gradients for each iteration on the expectation. Thus, the gradient complexity

#grad = b+ T (pb+ (1− p)b′)

= b+
2bb′

b+ b′

(
(1 +

√
b

b′
)κ+

2(b+ b′)

b′

)
log

2∆0

ε

= b+

(
2bb′

b+ b′
(1 +

√
b

b′
)κ+ 4b

)
log

2∆0

ε

≤ b+

(
2b′(1 +

√
b

b′
)κ+ 4b

)
log

2∆0

ε

≤ b+ (4
√
bκ+ 4b) log

2∆0

ε
,

where the last inequality is due to the parameter setting b′ ≤
√
b. �


