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Abstract

Existing work on privacy-preserving machine
learning with Secure Multiparty Computation
(MPC) is almost exclusively focused on model
training and on inference with trained mod-
els, thereby overlooking the important data pre-
processing stage. In this work, we propose the
first MPC based protocol for private feature selec-
tion based on the filter method, which is indepen-
dent of model training, and can be used in com-
bination with any MPC protocol to rank features.
We propose an efficient feature scoring protocol
based on Gini impurity to this end. To demon-
strate the feasibility of our approach for practical
data science, we perform experiments with the
proposed MPC protocols for feature selection in
a commonly used machine-learning-as-a-service
configuration where computations are outsourced
to multiple servers, with semi-honest and with
malicious adversaries. Regarding effectiveness,
we show that secure feature selection with the
proposed protocols improves the accuracy of clas-
sifiers on a variety of real-world data sets, without
leaking information about the feature values or
even which features were selected. Regarding
efficiency, we document runtimes ranging from
several seconds to an hour for our protocols to
finish, depending on the size of the data set and
the security settings.

1. Introduction

Machine learning (ML) thrives because of the availability of
an abundant amount of data, and of computational resources
and devices to collect and process such data. In many ef-
fective ML applications, the data that is consumed during
ML model training and inference is often of a very personal
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nature. Protection of user data has become a significant
concern in ML model development and deployment, giving
rise to laws to safeguard the privacy of users, such as the Eu-
ropean General Data Protection Regulation (GDPR) and the
California Customer Privacy Act (CCPA). Cryptographic
protocols that allow computations on encrypted data are an
increasingly important mechanism to enable data science ap-
plications while complying with privacy regulations. In this
paper, we contribute to the field of privacy-preserving ma-
chine learning (PPML), a burgeoning and interdisciplinary
research area at the intersection of cryptography and ML
that has gained significant traction in tackling privacy issues.

In particular, we use techniques from Secure Multiparty
Computation (MPC), an umbrella term for cryptographic
approaches that allow two or more parties to jointly com-
pute a specified output from their private information in a
distributed fashion, without actually revealing their private
information to each other (Cramer et al., 2015). We con-
sider the scenario where different data owners or enterprises
are interested in training an ML model over their combined
data. There is a lot of potential in training ML models over
the aggregated data from multiple enterprises. First of all,
training on more data typically yields higher quality ML
models. For instance, one could train a more accurate model
to predict the length of hospital stay of COVID-19 patients
when combining data from multiple clinics. This is an appli-
cation where the data is horizontally distributed, meaning
that each data owner or enterprise has records/rows of the
data. Furthermore, being able to combine different data
sets enables new applications that pool together data from
multiple enterprises, or even from different entities within
the same enterprise. An example of this would be an ML
model that relies on lab test results as well as healthcare
bill payment information about patients, which are usually
managed by different departments within a hospital system.
This is an example of an application where the data is verti-
cally distributed, i.e. each data owner has their own columns.
While there are clear advantages to training ML models over
data that is distributed across multiple data owners, often
these data owners do not want to disclose their data to each
other, because the data in itself constitutes a competitive
advantage, or because the data owners need to comply with
data privacy regulations. These roadblocks can even affect
different departments within the same enterprise, such as
different clinics within a healthcare system.
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Figure 1. Overview of private feature selection and model training in 3PC setting with computing servers (parties) Alice, Bob, and Carol.

During the last decade, cryptographic protocols designed
with MPC have been developed for training of ML models
over aggregated data, without the need for the individual
data owners or enterprises to reveal their data to anyone in
an unencrypted manner. This existing work includes MPC
protocols for training of decision tree models (Lindell &
Pinkas, 2000; De Hoogh et al., 2014; Choudhary et al., 2020;
Abspoel et al., 2021), linear regression models (Nikolaenko
et al., 2013; De Cock et al., 2015; Agarwal et al., 2019),
and neural network architectures (Mohassel & Zhang, 2017;
Agrawal et al., 2019; Wagh et al., 2019; Guo et al., 2020; De
Cock et al., 2021). Existing approaches assume that the data
sets are pre-processed and clean, with features that have
been pre-selected and constructed. In practical data science
projects, model building constitutes only a small part of the
workflow: real-world data sets must be cleaned and pre-
processed, outliers must be removed, training features must
be selected, and missing values need to be addressed before
model training can begin. Data scientists are estimated to
spend 50% to 80% of their time on data wrangling as op-
posed to model training itself (Lohr, 2014). PPML solutions
will not be adopted in practice if they do not encompass
these data preparation steps. Indeed, there is little point
in preserving the privacy of clean data sets during model
training — which is currently already possible — if the raw
data has to be leaked first to arrive at those clean data sets!

In this paper, we contribute to filling this gap in the open
literature by proposing the first MPC based protocol for
privacy-preserving feature selection. Feature selection is
the process of selecting a subset of relevant features for
model training (Chandrashekar & Sahin, 2014). Using a
well chosen subset of features can lead to more accurate
models, as well as efficiency gains during model training.
A commonly used technique for feature selection is the so-
called filter method in which features are ranked according
to a score indicative of their predictive ability, and subse-
quently the highest ranked features are retained. Despite of
its known shortcomings, including the fact that it considers
each feature in isolation and ignores feature dependencies,
the filter method is popular in practical data science because
it is computationally very efficient, and independent of any

specific ML model architecture.

The MPC based protocol g TeEr—Fs for private feature
selection that we propose in this paper can be used in combi-
nation with any MPC protocol to rank features in a privacy-
preserving manner. Well-known techniques to score features
in terms of their informativeness include mutual informa-
tion (MI), Gini impurity (GI), and Pearson’s correlation
coefficient (PCC). We propose an efficient feature scoring
protocol mms—_gini based on Gini impurity, leaving the de-
velopment of privacy-preserving protocols for other feature
scoring techniques as future work. The computation of a GI
score for continuous valued features traditionally requires
sorting of the feature values to determine candidate split
points in the feature value range. As sorting is an expen-
sive operation to perform in a privacy-preserving way, we
instead propose a “mean-split Gini score” (MS-GINI) that
avoids the need for sorting by selecting the mean of the fea-
ture values as the split point. As we show in Sec. 5, feature
selection with MS-GINI leads to accuracy improvements
that are on par with those obtained with GI, PCC, and MI
in the data sets used in our experiments. Depending on the
application and the data set at hand, one may want to use a
different feature scoring technique, in combination with our
protocol 7 TER—Fs for private feature selection.

Fig. 1 illustrates the flow of private feature selection and
subsequent model training at a high level in an outsourced
“ML as a service setting” with three computing servers,
nicknamed Alice, Bob, and Carol (three-party computa-
tion, 3PC). 3PC with honest majority, i.e. with at most one
server being corrupted, is a configuration that is often used
in MPC because this setup allows for some of the most
efficient MPC schemes. In Step 1 of Fig. 1, each of m
data owners sends secret shares of their data to the three
servers (parties). While the secret shared data can be triv-
ially revealed by combining shares, no information about
the data is revealed by the shares received by any single
server, meaning that none of the servers by themselves learn
anything about the actual values of the data. In Step 2A, the
three servers execute protocols myvs—gini and 7 TER—Fs tO
create a reduced version of the data set that contains only
the selected features. Throughout this process, none of the
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parties learns the values of the data or even which features
are selected, as all computations are done over secret shares.
Next, in Step 2B, the parties train an ML model over the
pre-processed data, without leaking any intermediate infor-
mation, using existing privacy-preserving training protocols,
e.g., a privacy-preserving protocol for logistic regression
training (De Cock et al., 2021). Finally, in Step 3, the servers
can disclose the trained model to the intended model owner
by revealing their shares. Steps 1 and 3 are trivial as they fol-
low directly from the choice of the underlying MPC scheme
(see Sec. 2.2). MPC protocols for Step 2B have previously
been proposed. The focus of this paper is on Step 2A. Our
approach works in scenarios where the data is horizontally
partitioned (each data owner has one or more of the rows or
instances), scenarios where the data is vertically partitioned
(each data owner has some of the columns or attributes), or
any other partition.

After presenting preliminaries about Gini impurity and MPC
in Sec. 2, and discussing related work in Sec. 3, we present
our main protocol 7 Ter—Fs for private feature selection
and the supporting protocols mgn—fs and mTums—gini in
Sec. 4. In Sec. 5 we demonstrate the feasibility of our
approach for practical data science in terms of accuracy and
runtime results through experiments executed on real-world
data sets. In our experiments, we consider honest-majority
3PC settings with semi-honest as well as malicious adver-
saries. While parties corrupted by semi-honest adversaries
follow the protocol instructions correctly but try to obtain
additional information, parties corrupted by malicious ad-
versaries can deviate from the protocol instructions. Defend-
ing against the latter comes at a higher computational cost
which, as we show, can be mitigated by using a recently
proposed MPC scheme for 4PC.

2. Preliminaries
2.1. Feature Selection based on Gini Impurity

Assume that we have a set S of m training examples, where
each training example consists of an input feature vector
(x1,...,p) and a corresponding label y. Throughout this
paper, we assume that there are n possible class labels. We
wish to induce an ML model from this training data that
can infer, for a previously unseen input feature vector, a
label y as accurately as possible. Not all p features may
be equally beneficial to this end. In the filter approach to
feature selection, all features are first assigned a score that
is indicative of their predictive ability. Subsequently only
the best scoring features are retained. A well-known feature
scoring criterion is Gini impurity, made popular as part
of the classification and regression tree algorithm (CART)
(Breiman et al., 1984).

If the j'" feature F; is a discrete feature that can assume £
different values, then it induces a partition S;US;U. .. US,

of S in which S; is the set of instances that have the i*" value
for the j*" feature. The Gini impurity of S; is defined as:

GS) =Y pe-(l-p)=1->p2 ()
c=1 c=1

where p, is the probability of a randomly selected instance
from S; belonging to the ¢! class. The Gini score of feature
F} is a weighted average of the Gini impurities of the S;’s:
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o=y 12
1=1

1 e

Conceptually, G(F;) estimates the likelihood of a randomly
selected instance to be misclassified based on knowledge of
the value of the j th feature. During feature selection, the &
features with the lowest Gini scores are retained.

If F; is a feature with continuous values, then G(F}) is
defined as the weighted average of the Gini impurities of a
set S<¢ containing all instances for which the j* feature
value is smaller than or equal to 6, and a set S~y with all
instances for which the j*” feature value is larger than 6. In
the CART algorithm, an optimal threshold 6 is determined
based on sorting of all the instances on their feature values.
Since privacy-preserving sorting is a time-consuming op-
eration in MPC (Bogdanov et al., 2013; Goodrich, 2014),
in Sec. 4.2 we propose a more straightforward approach
for threshold selection which, as we show in Sec. 5, yields
desirable improvements in accuracy.

2.2. Secure Multiparty Computation

Protocols for MPC enable a set of parties to jointly compute
the output of a function over each of the parties’ private
inputs, without requiring parties to disclose their input to
anyone. MPC is concerned with the protocol execution
coming under attack by an adversary which may corrupt
parties to learn private information or cause the result of the
computation to be incorrect. MPC protocols are designed
to prevent such attacks being successful, and use proven
cryptographic techniques to guarantee privacy.

Adversarial Model: An adversary A can corrupt any num-
ber of parties. In a dishonest-majority setting, half or more
of the parties may be corrupt, while in an honest-majority
setting, more than half of the parties are honest (not cor-
rupted). Furthermore, A can be a semi-honest or a malicious
adversary. While a party corrupted by a semi-honest or “pas-
sive” adversary follows the protocol instructions correctly
but tries to obtain additional information, parties corrupted
by malicious or “active” adversaries can deviate from the
protocol instructions. The protocols in Sec. 4 are sufficiently
generic to be used in dishonest-majority as well as honest-
majority settings, with passive or active adversaries. This is
achieved by changing the underlying MPC scheme to align
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with the desired security setting. Some of the most efficient
MPC schemes have been developed for 3 parties, out of
which at most one is corrupted. We evaluate the runtime
of our protocols in this honest-majority 3PC setting, which
is growing in popularity in the PPML literature, e.g. (Dal-
skov et al., 2020b; Kumar et al., 2020; Riazi et al., 2018;
Wagh et al., 2019), and in the case of malicious adversaries
we demonstrate how even better runtimes can be obtained
with a recently proposed MPC scheme for 4PC with one
corruption (Dalskov et al., 2020a).

In the MPC schemes used in this paper, all computations by
the parties (servers) are done over integers in aring Z,. Raw
data in ML applications is often real-valued. As is common
in the MPC literature, we convert real numbers to integers
using a fixed-point representation (Catrina & Saxena, 2010).
After this conversion, the data owners secret share their
values with the parties using a secret sharing scheme and
proceed by performing operations over the secret shares.

For the passive 3PC setting, we follow a replicated secret
sharing scheme from Araki et al. (2016). To share a secret
value * € Z, among parties P;, P> and Ps, the shares
21,2, w3 are chosen uniformly at random in Z, with the
constraint that 1 + x2 + 3 = * mod q. P; receives x
and zo, P» receives x5 and x3, and P5 receives x3 and 7.
Note that it is necessary to combine the shares available
to two parties in order to recover x, and no information
about the secret shared value x is revealed to any single
party. For short, we denote this secret sharing by [z],.
Let [z]4. [y], be secret shared values and ¢ be a constant,
the following computations can be done locally by parties
without communication:

* Addition (z = x + y): Each party P; gets shares of z by
computing 2; = 2; + ¥; and 2(; 41 mod 3) = Z(i+1 mod 3)
+ Y(i+1 mod 3)- This is denoted by [z], + [z]q + [¥]q-

* Subtraction [z], + [z], — [¥], is performed analogously.

* Multiplication by a constant (z = c¢ - z): Each party
multiplies its local shares of x by c to obtain shares of z.
This is denoted by [z], < ¢ [z],

¢ Addition of a constant (z = x + ¢): P; and P3; add
c to their share x; of x to obtain z;, while the parties
set zo = x9 and z3 = x3. This will be denoted by
[g < [z]q + ¢

The main advantage of replicated secret sharing compared
to other secret sharing schemes is that replicated shares
enables a very efficient procedure for multiplying secret
shared values. To compute -y = (21 +z2+x3)(y1 +y2 +
y3), the parties locally perform the following computations:
Py computes 21 = x1-y1 + T1-Y2 + T2-y1, P computes 2o
=9 Y2 + 22 Y3 + 3 -y2 and P53 computes z3 = x3 - y3 +
T3 -Yy1 + x1 - y3. By doing so, without any interaction, each
P; obtains z; such that z; + 22 + 23 = ¢ -y mod q. After
that, the parties are required to convert from this additive

secret sharing representation back to the original replicated
secret sharing representation (which requires that the parties
add a secret sharing of zero and that each party sends one
share to one other party for a total communication of three
shares). See (Araki et al., 2016) for more details.

In the active 3PC setting, we use the MPC scheme SYRepli-
cated2k recently proposed by Dalskov et al. (2020a). In this
MPC scheme, the parties are prevented from deviating from
the protocol and from gaining knowledge from other parties
through the use of information-theoretic message authen-
tication codes (MACs). In addition to computations over
secret shares of the data, the parties also perform computa-
tions required for MACs. See (Dalskov et al., 2020a) for
details. Finally, we use the MPC scheme recently proposed
by Dalskov et al. (2020a) for the active 4PC setting, where
the computations are outsourced to four servers out of which
at most one has been corrupted by a malicious adversary.

Building Blocks: Building on the cryptographic primitives
listed above for addition and multiplication of secret shared
values, MPC protocols for other operations have been devel-
oped in the literature. In this paper, we use:

* Secure matrix multiplication mppmm: at the start of this
protocol, the parties have secret sharings [A] and [B] of
matrices A and B; at the end, the parties have a secret
sharing [C] of the product of the matrices, C = A x B.
Tpmm can be constructed as a direct extension of the
secure multiplication protocol for two integers, which
we will denote as mpy in the remainder of the paper.
Similarly, we use 7pp to denote the protocol for the secure
dot product of two vectors. In a replicated sharing scheme,
dot products can be computed more efficiently than the
direct extension from mpy, and matrix multiplication can
use this optimized version of dot products; we refer to
Keller (2020) for details.

* Secure comparison protocol 7t (Catrina & De Hoogh,
2010): at the start of this protocol, the parties have secret
sharings [x] and [y] of two integers = and y; at the end,
they have a secret sharing of 1 if z < y, and a secret
sharing of 0 otherwise.

* Secure argmin protocol margmin: this protocol accepts
secret sharings of a vector of integers and returns a secret
sharing of the index at which the vector has the minimum
value. margmin 18 straightforwardly constructed using the
above mentioned secure comparison protocol.

* Secure equality test protocol mgq (Catrina & Saxena,
2010): at the start of this protocol, the parties have secret
sharings [x] and [y] of two integers = and y; at the end,
they have a secret sharing of 1 if x = y, and a secret
sharing of 0 otherwise.

 Secure division protocol 7pjy (Catrina & Saxena, 2010):
at the start of this protocol, the parties have secret sharings
[z]4 and [y], of two integers = and y; at the end, they
have a secret sharing [z], of z = z/y.
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3. Related Work

Private Feature Selection: Given that feature selection is
an important step in the data preparation pipeline, it has
received remarkably little attention in the PPML literature
to date. Feature selection techniques have been proposed
that favor features that do not contain sensitive information
(Jafer et al., 2015). Work like that is orthogonal to ours, as
it assumes the existence of a data curator with full access to
all the data.

Regarding approaches to private feature selection among
multiple data owners, early attempts (Banerjee &
Chakravarty, 2011; Sheikhalishahi & Martinelli, 2017) in
the semi-honest setting use a “distributed secure sum proto-
col” reminiscent of the way in which sums are computed in
MPC based on secret sharing (see Sec. 2.2). The limitations
of this work in terms of security include the fact that the
parties find out which features are selected, and statistical
information about the data is leaked to all parties during
the computation of the feature scores, as only summations,
and not other operations, are done in a secure manner. (Rao
et al., 2019) proposed a more principled 2PC protocol with
Paillier homomorphic encryption (PHE) for private feature
selection with x? as filter criteria in the semi-honest set-
ting, without an experimental evaluation of the proposed
approach. To the best of our knowledge, private feature se-
lection with malicious adversaries has not yet been proposed
or evaluated.

In contrast to our work, which is based on a filter ap-
proach for privacy-preserving feature selection, (Dankar
et al., 2019) recently proposed an embedded approach to the
same end. Unlike filter methods, embedded methods require
training of ML models during feature selection, which is
computationally demanding over encrypted data. To cir-
cumvent this, (Dankar et al., 2019) assume a federated
learning set-up where each party performs feature selec-
tion on its own, unencrypted data, and the resulting feature
selection vectors are then aggregated with a PHE protocol.
(Dankar et al., 2019)’s technique works thanks to restricting
assumptions, namely that the data is horizontally distributed
(otherwise their technique cannot be applied) and that the
number of instances in the data should exceed the number
of features (otherwise their technique may not give accurate
results). We do not have to make any such assumptions, as
our technique works on encrypted data end-to-end.

Secure Gini Score Computation: Besides as a technique
to score features for feature selection, as we do in this paper,
Gini impurity is traditionally used in ML in the CART algo-
rithm for training decision trees (Breiman et al., 1984), and it
has been adopted in MPC protocols for privacy-preserving
training of decision tree models (De Hoogh et al., 2014;
Choudhary et al., 2020; Abspoel et al., 2021). Gini score
computation for continuous valued features, as we do in this

paper, is especially challenging from an MPC point of view,
as it requires sorting of feature values to determine candi-
date split points in the feature range. Abspoel et al. (2021)
put ample effort in performing this sorting process as effi-
ciently as possible in a secure manner. We take a drastically
different approach by assuming that the mean of the feature
values serves as a good approximation for an optimal split
threshold. This has the double advantage that (1) there is
no need for oblivious sorting of feature values, and (2) for
each feature only one Gini score for one threshold 6 has to
be computed as opposed to computing the Gini score for
multiple candidate thresholds and then selecting the best
one through secure comparisons. Therefore, this leads to
significant efficiency gains, while preserving good accuracy,
as we demonstrate in Sec. 5.

Protocol 1 Protocol gy Ter—Fs for Secure Filter based Fea-
ture Selection
Input: A secret shared m x p data matrix [D]q, a secret shared
p-length score vector [G]q, the number k < p of features to be
selected, and a constant ¢ that is bigger than the highest possible
score in [G],4
Output: a secret shared m x k matrix [D'],
: fori=1tokdo
[11i]]q < maremin ([GTq)
for j < 1topdo

[flagk]q < meq ([1]illq, 5)

(T[] « [flagrlq

[Gli]]q < [Glilla+ mom ([flagrle, t = [Gli]la)
end for
8: end for
9: [D']q < momm ([Dq; [T74)
10: return [D'],

R A ol ey

4. Methodology

We present a protocol for oblivious feature selection based
on precomputed scores for the features, followed by a proto-
col for computing the feature scores themselves in a private
manner. In Sec. 5 we evaluate the protocols in 3PC and 4PC
honest-majority settings.

4.1. Secure Filter based Feature Selection

At the start of the Protocol g TeErR_Fs for secure feature
selection, the parties have secret shares of a data matrix D
of size m X p, in which the rows correspond to instances
and the columns to features. The parties also have secret
shares of a vector G of length p containing a score for each
of the features. At the end of the protocol, the parties have a
reduced matrix D’ of size m X k in which only the columns
from D corresponding to the lowest scores in G are retained
(note that this protocol can be trivially modified to select the
k features with the highest scores). The main ideas behind
the protocol (which is described in Protocol 1) are to:

1. Determine the indices of the features that need to be
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selected (these are stored in a secret-shared way in I).
2. Create a matrix 7" in which the columns are one-hot-
encoded representations of these indices.
3. Multiply D with this feature selection matrix 7.

Before walking through the pseudocode of Protocol 1, we
present a plaintext example to illustrate the notation.

Example 1. Consider the data matrix D at the left of Equa-
tion (3), containing values for m = 5 instances (rows) and
p = 4 features (columns). Assume that the feature score
vector is G = [65, 26, 83, 14] and that we want to select the
k = 2 features with the lowest scores in G.

1 2 3 4 4 2
5 6 7 8 8 (1) 8 6
9o 10 11 12 || 0 b =] 12 10 3)
13 14 15 16 o0 16 14
17 18 19 20 20 18
_\qf_d
D D/

The lowest scores in G are 14 and 26, hence the 4th and the
2nd column of D should be selected. The columns of T in
Equation (3) are a one-hot-encoding of 4 and 2 respectively,
and multiplying D with T will yield the desired reduced
data matrix D’. This multiplication takes place on Line 9 in
Protocol 1. The bulk of Protocol 1 is about how to construct
T based on G. As explained below, this process involves an
auxiliary vector, which, at the end of the protocol, contains
the following values for our example: I = [4, 2].

In the protocol, vector [I], of length k stores the indices
of the k selected features out of the p features of [D], and
matrix [T, is a p X k transformation matrix that eventually
holds one-hot-encodings of the indices in /. Through exe-
cuting Lines 1-8 of Protocol 1, the parties construct a feature
selection matrix 7" based on the values in G. In Line 2 the
index of the i*" smallest value in [G], is identified. To this
end, the parties run a secure argmin protocol margmin. The
inner for-loop serves two purposes, namely constructing the
it" column of matrix T, and overwriting the score in G of
the feature that was selected in Line 2 by the upper bound,
so that it will not be selected anymore in further iterations
of the outer for-loop (such an upper bound ¢ is passed as
input to Protocol 1 and is usually very easy to determine in
practice, as most common feature scoring techniques range
between 0 and 1):

» To construct the i*" column of T, the parties loop through
row j = 1...p, and on Line 5, update T'[;][¢] with either
a0 ora I, depending on the outcome of the secure equality
test on Line 4. The outcome of this test will be 1 exactly
once, namely when j equals I[¢], hence Line 5 results in
a one-hot-encoding of [[i] stored in the ith column of 7.

» The flag flagy computed on Line 4 is used again on
Line 6 to overwrite G[I[i]] with ¢ in an oblivious manner,
where ¢ is a value that is larger than the highest possible
score that occurs in [G],. This theoretical upper bound ¢
ensures that feature I[i] will not be selected again in later

iterations of the outer for-loop.

As is common in MPC protocols, we use multiplica-
tion instead of control flow logic for conditional assign-
ments. To this end, a conditional based branch operation as
“if ¢ then a < b” is rephrased as @ +— a+c¢- (b—a). In this
way, the number and the kind of operations executed by the
parties does not depend on the actual values of the inputs,
so it does not leak information that could be exploited by
side-channel attacks. Such a conditional assignment occurs
in Line 6 of Protocol 1, where the value of the condition ¢
itself is computed on Line 4. In the final step, on Line 9, the
parties multiply matrix D with matrix 7" in a secure manner
to obtain a matrix D’ that contains only the feature columns
corresponding to the k best features. Throughout this pro-
cess, the parties are unaware of which features were actually
selected. The secret shared matrix D’ can subsequently be
used as input for a privacy-preserving ML model training
protocol, e.g. (De Cock et al., 2021).

4.2. Secure Feature Score Computation

Protocol 7 TER—Fs assumes the availability of a feature
score vector G and an upper bound ¢ for the values in G.
Below we explain how this can be obtained from the data
in a secure manner. To this end, we present a protocol
mms—cint for computation of the score of a feature based
on Gini impurity. This protocol is applicable to data sets
with continuous features. As we empirically verify in Sec. 5,
protocol mys—_gini 1S computationally much faster than pre-
viously proposed protocols for Gini impurity that rely on
sorting of feature values, such as (Abspoel et al., 2021)’s
protocol based on secure sorting networks. Furthermore, as
shown in previous work (Li & De Cock, 2020) and in Sec. 5,
the “Mean-Split” GINI score can yield similar accuracy
improvements.

Recall that we have a set S of m training examples, where
each training example consists of an input feature vector
(21,...,7p) and a corresponding label y. We propose to
split the set of values of the j*" feature F’; based on its mean
value as a threshold 6. We denote by S<y the set of instances
that have z; < 0, and by S~ ¢ the set of instances that have
x; > 0. Furthermore, for ¢ = 1,...,n, we denote by L.
the set of examples from S that have class label y = c.

Based on the binary split, we define the MS-GINI (“Mean-
Split” GINI) score for feature F} as:

GUEy) = - (|Szol - C(S<o) +1S50] - C(S50))

with the Gini impurities of S<y and S5 defined as:

n n

G(S<p) =1-) (p5)% G(S>9) =1-> (%)% 5

c=1 c=1
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and the probabilities defined as:

S<oN L, Ss6 N Le
|S<o |S>0]

Formulas (4), (5) and (6) are consistent with the definition of
Gini score given in Sec. 2, and presented here in more detail
to enhance the readability of our secure protocol mus—_gini
for the computation of the Gini score G(F') of feature F’
(described in Protocol 2).

Protocol 2 Protocol myvs_gini for Secure MS-GINI Score
of a Feature

Input: A secret shared feature column [F], =
(If1]gs[f2] g fm]q)s @ secret shared m x (n — 1) label-
class matrix [L],, where m is the number of instances and n is
the number of classes.

Output: MS-GINI score [G(F)]4 of the feature F

1 [0]q <= (Lf1le + [fo]lg + - + [fmla) - 7

2: Initialize [a]q, [b] 4, [A]q and [B]q with zeros.
3: fori < 1 tomdo

4: [flagslq < mr([0]q, [filq)

50 [0l « [blq + [flags]q

6: forj<«+ 1ton—1do

7. [flagmlq < mom([flags]q, [L1][]]4)
8: [Bljlle < [Blilla + [flagm]q

9: [Alf]lq « [Al1le + [LL5]]q — [flagm]a
10:  end for

11: end for

12: Ja]q < m — [b]q
13: [Aln]]q « [alq — ([A[1]]q + -
14: [Blnlly « [l — ([B]s + -

Q

-+ [Aln —1]]y)
+ [Bln - 1]],)

15: ([[fﬁgggﬂq — [alq— mom ( mop ([A]q, [Alq), 7oV

16: [G(S=0)]y « [la— 7om ( 7op ([Ble: [Blo), mow
(L)

17: [[G( ﬂq — [[G(SSG)]]q + [[G(S>0)]]q

18: return [G(F)]

Q

At the start of Protocol mys_gini, the parties have secret
shares of a feature column F' (think of this as a column
from data matrix D in Example 1), as well as secret shares
of an one-hot-encoded version of the label vector. The
latter is represented as a label-class matrix [L],, in which
[L[i][5]]4 = [1], means that the label of the i** instance
is equal to the j** class. Otherwise, [L[][5]], = [0],. We
note that, while there are n classes, it is sufficient for L to
contain only n — 1 columns: as there is exactly one value
1 per row, the value of the n'” column is implicit from the
values of the other columns. We indirectly take advantage
of this fact by terminating the loop on Line 6-10 at n — 1,
and performing calculations for the n* class separately and
in a cheaper manner on Line 13-14, as we explain in more
detail below.

On Line 1, the parties compute [6], as a threshold to split
the input feature [F'],, as the mean of the feature values
in the column. To this end, each party first sums up the
secret shares of the feature values, and then multiplies the

sum with a known constant - locally Line 2 is to initialize
all counters related to S<g and S<¢ to zero. After Line 14,
these counters will contain the following values:

a = [S<l

b = |Sse|
A[]] = |S§9ﬂLj|,f0rj:1...n
Blj] = |SseNLj|,forj=1...n

These counters are needed for the probabilities in Equation
(6). For each instance, in Line 4 of Protocol 2, the parties
perform a secure comparison to determine whether the in-
stance belongs to S<¢. The outcome of that test is added to
b on Line 5. Since the total number of instances is m, a can
be straightforwardly computed as m — b after the outer for-
loop, i.e. on Line 12. Lines 7-8 check whether the instance
belongs to S~y N L;, in which case B[j] is incremented
by 1. The equivalent operation of Line 7-8 for A[j] would
be [A[j1], + [ALilly + 7om((1 — [flag.]). [L[]L,).
We have simplified this instruction on Line 9, taking ad-
vantage of the fact that mpm ([ flags]q, [L]¢][4]]4) has been
precomputed as [ flagy,], on Line 7.

On Line 13-14 the parties compute [A[n]], and [B[n]],,
leveraging the fact that sum of all values in [A], is [a],,
and the sum of all values in [B], is [b]4. All operations
on Line 13-14 can be performed locally by the parties, on
their own shares. Moving the computation of [A[n]], and
[B[n]]4 out of the for-loop, reduces the number of secure
multiplications needed from m x ntom x (n — 1). In
the case of a binary classification problem, i.e. n = 2, this
means that the number of secure multiplications required is
cut down by half.

Using the notations for the counters from the pseudocode
of Protocol 2, Equation (4) comes down to:

() o
:%. [(a—%<A.A>+<b77 Be 3)}

in which A ¢ A and B e B are the dot products of A and
B with themselves, respectively. These computations are
performed by the parties on Lines 15-17 using, among other
things, the protocol 7mpp for secure dot product of vectors,
and the protocol 7py for secure division. We note that the
final multiplication with the factor 1/ is omitted altogether
from Protocol 2 as this will have no effect on the relative
ordering of the scores of the individual features.

G(F) =

()]

If data are vertically partitioned and all data owners have
the label vector, they can compute MS-GINI scores offline
without mys_gini, and the computing servers would only
have to do feature selection based on pre-computed MS-
GINI scores with Protocol g Ter—Fs. In reality, often, it
is not reasonable to allow each data owner to have all labels,
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so we do not assume this scenario in our protocols.

4.3. Secure Feature Selection with MS-GINI

Protocol 7gini—Fs (described in Protocol 3) performs secure
filter-based feature selection with MS-GINI, used for the
experiments in this work. It combines the building blocks
presented earlier in the section. By executing the loop on
Line 1-3, the parties compute the MS-GINI score of the
ith feature from the original data matrix [D], using Pro-
tocol mus—_gini, and store it into [G[i]],. On Line 4, the
parties perform filter-based feature selection using Protocol
TRILTER—Fs to obtain a m x k matrix [D’'], with k selected
features from [D],. As the standard GINI score is upper
bounded by 1, and mys_gin ignores the multiplication by
1/m for efficiency reasons, it is safe to use m as the upper
bound that is passed to Protocol 7 -Ter—gs on Line 4.

At the end of Protocol 3, the selected data is secret shared
among the servers. The servers can then run MPC protocols
for other pre-processing steps or model training directly on
this encrypted data, e.g. (De Cock et al., 2021), without any
intermediate information leakage.

Protocol 3 Protocol mgni—fs for Secure Filter-based Fea-
ture Selection with MS-GINI
Input: A secret shared m x p data matrix [D], =
([F1]g-[F2]q>---[Fp]q), a secret shared m x (n — 1) label-class
matrix [L]q, where m is the number of instances, p the number of
features, n the number of classes, and k£ the number of features to
be selected.
Output: a secret shared m x k matrix [D'],

1: fori < 1topdo

20 [Gli]q + mvs—ami([Filg, [L]q, m, 1)

3: end for

4: [D']q < mewrer—rs([Dlg, [Glg, k,m)

5: return [D'],

S. Experiments and Results

Accuracy results. The first 4 columns of Table 1 contain
details for three data sets corresponding to binary classifica-
tion tasks with continuous valued input features: Cognitive
Load Detection' (CogLoad) (Gjoreski et al., 2020), Lee
Silverman Voice Treatment? (LSVT) (Tsanas et al., 2014),
and Speed Dating?® (SPEED) (Fisman et al., 2006), along
with the number of instances m, raw features p, selected
features k, and folds for cross-validation (CV). We used
grid search to select an appropriate value of k£ for each data
set and retained the value of £ with the best accuracy.

The remaining columns of Table 1 contain accuracy results

1
https://www.ubittention.org/2020/data/Cognitive-load%
20challenge%20description.pdf

https://archive.ics.uci.edu/ml/datasets/LSVT+Voice+
Rehabilitation

3
https://www.openml.org/d/40536

by averaging from CV for logistic regression (LR) models
trained on the RAW data sets with all p features, and on
reduced data sets with only the top k features selected with
a variety of scoring techniques, namely MS-GINI (as pro-
posed in this paper), traditional Gini impurity (GI), Pearson
correlation coefficient (PCC), and mutual information (MI).
Feature selection with all these techniques was performed
according to the filter approach, i.e. independently of the fact
that the selected features were subsequently used to train a
LR model. As the results show, feature selection based on
MS-GINI is on par with the other methods, and substantially
improves the accuracy compared to model training on the
RAW data sets.

The good accuracy results of the proposed MS-GINI score
in comparison with the traditional GI score are interesting,
especially given that GI is computationally more costly. In
essence, in both cases feature selection is performed by
discretizing feature values into bins, which is a common
operation in ML. In the traditional case (GI), a sorting based
mechanism decides on the (number) of bins, while in the
case of MS-GINI there are always two bins, split from
each other by the mean feature value. We believe that the
traditional GI method is popular in data science because
(1) it gives theoretical guarantees that the best split point,
for optimal improvement in Gini impurity, is between two
adjacent bins and, (2) the sorting needed to obtain this best
point can be done efficiently when the data is not encrypted,
so there is no incentive to avoid sorting. The situation
considered in this paper is different, as oblivious sorting is
time consuming, prompting the proposal of the alternative
MS-GINI criterion. While the data sets in Table 1 were
decided on at the start of the study, and not cherry-picked
to obtain good accuracy results with MS-GINI, we do not
exclude the existence of other real world data sets on which
GI would substantially outperform MS-GINI.

Runtime results. The middle columns of Table 2 contain
runtime results for protocol wgni—fs for secure filter-based
feature selection with MS-GINI (see Protocol 3). To obtain
these results, we implemented 7gy—fs along with the sup-
porting protocols mys—gini and 7rLTER—Fs in MP-SPDZ
(Keller, 2020). All benchmark tests were completed on 3
or 4 co-located F32s V2 Azure virtual machines. Each VM
contains 32 cores, 64 GiB of memory, and up to a 14 Gbps
network bandwidth between each virtual machine. The run-
time results are for semi-honest (“passive”) and malicious
(“‘active”) adversary models (see Sec. 2.2) in a 3PC or 4PC
honest-majority setting over a ring Z, with ¢ = 264, Simi-
larly as for the accuracies, the reported runtimes in Table 1
are an average across the folds. Each of the parties ran on
separate machines, which means that the results in Table 1
cover communication time in addition to computation time.

While our protocols are agnostic to the number of servers,
MPC is usually done with few servers as it is more effi-
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Table 1. Accuracies of logistic regression models with different feature selection criteria

data set details logistic regression accuracy results
Data set m P k #folds RAW MS-GINI (Ours) GI PCC MI
COG 632 | 120 | 12 6 50.90% 52.50% 52.70% | 48.57% | 51.59%
LSVT 126 | 310 | 103 10 80.09% 86.15% 82.74% | 78.89% | 85.38%
SPEED | 8,378 | 122 | 67 10 95.24% 97.26% 95.56% | 95.89% | 95.83%

Table 2. Runtime results for privacy-preserving feature selection

data set details MS-GINI runtime (Ours) GI runtime (Sorting-based approach)
Data set m D k #folds | passive 3PC | active 3PC | active 4PC | passive 3PC | active 3PC | active 4PC
COG 632 120 12 6 50 sec 163 sec 79 sec 565 sec 2,884 sec 702 sec
LSVT 126 | 310 | 103 10 60 sec 254 sec 89 sec 368 sec 1,269 sec 442 sec
SPEED | 8,378 | 122 | 67 10 949 sec 3,634 sec 1,435 sec 12,241 sec | 97,871 sec | 14,114 sec

Table 3. Runtime details for privacy-preserving feature selection
with our MS-GINI approach, for active 3PC

data set details

runtime

Data set m P k Prot 3 Prot 1 Prot 1,Ln9 Prot 2

CogLoad 632 120 12 163 sec 27 sec 23 sec 1.13 sec
LSVT 126 310 103 254 sec 152 sec 53 sec 0.33 sec
SPEED 8,378 122 67 3,634 sec 1,837 sec 1,812 sec 14.73 sec

cient. The passive 3PC setting is currently the most efficient
setting for MPC with passive security. In state-of-the-art
MPC protocols against active adversaries, 4PC protocols are
faster than 3PC, so we also added that setting to provide a
more complete picture. The relative differences between the
passive 3PC, active 3PC, and active 4PC settings in Table 2
are in line with known findings from the MPC literature, in
particular the fact that completing private feature selection
in the active setting takes substantially longer than in the
passive setting; this increase in runtime is a price one has to
pay for security and correctness in case the parties cannot
be trusted to follow the protocol instructions.

For further insight into the dominating factors in the runtime
cost of our approach, we present more fine-grained runtime
results for the active 3PC setting in Table 3. Protocol 2,
which is executed once per feature, in itself grows in the
number of instances m. While the nested for-loop on Line
1-8 in Protocol 1 depends on & and p only, the matrix multi-
plication on Line 9 in Protocol 1 depends on all of m, p, and
k, and contributes substantially to the runtime. The increase
in runtime for the SPEED vs. the Cogload data set e.g.,
which have almost the same number of original features p,
is due both to the increase in m (which affects Line 9 in
Protocol 1, and Line 3-11 in Protocol 2), and the increase in
k (which affects Line 1-8 of Protocol 1).

Finally, to empirically verify the runtime improvements that
can be obtained with our MS-GINI criterion compared to
traditional GI, we replaced Protocol 2 by an MPC protocol
for computing GI proposed by (Abspoel et al., 2021). This
alternative protocol pre-sorts the list of values for each fea-
ture in an oblivious manner using a secure sorting network,
and subsequently considers each feature value as a candidate

threshold. Hence for a data set with m instances, for each
feature, m — 1 Gini scores are computed securely, out of
which the minimum is retained as the best Gini score for that
feature. As the last three columns of Table 2 demonstrate,
the need to perform sorting and to compute m — 1 instead
of only one Gini score per feature, leads to considerably
longer runtimes.

6. Conclusion and Future Work

Data preprocessing, an important part of the ML model
development pipeline, has been largely overlooked in the
PPML literature to date. In this paper we have proposed
an MPC protocol for privacy-preserving selection of the
top k features of a data set, and we have demonstrated its
feasibility in practice through an experimental evaluation.
Our protocol is based on the filter approach for feature
selection, which means that it is independent of any specific
ML model architecture. Furthermore, it can be used in
combination with any feature scoring technique. In this
paper, we have proposed an efficient MPC protocol based
on Gini impurity to this end.

In addition to MPC protocols for other feature selection tech-
niques, MPC protocols for many more tasks related to the
data preprocessing phase still need to be developed, includ-
ing privacy-preserving hyperparameter search to determine
the best value of k for the number of features to be selected,
as well as protocols for dealing with outliers and missing
values. While these may be perceived as less exciting tasks
of the ML end-to-end pipeline, they are crucial to enable
PPML applications in practical data science.
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