MURAL: Meta-Learning Uncertainty-Aware Rewards for RL

A. Appendix

A.1. Proof of Theorem 1 connecting NML and inverse
counts

We provide the proof of Theorem 1 here for completeness.

Theorem 2. Suppose we are estimating success probabil-
ities p(e = 1|s) in the tabular setting, where we have a
separate parameter independently for each state. Let N (s)
denote the number of times state s has been visited by the
policy, and let G(s) be the number of occurrences of state
s in the successful outcomes. Then the CNML probability
pevmr(e = 1]s) is equal to % For states that
are never observed to be successful, we then recover inverse
counts m

Proof. In the fully tabular setting, our MLE estimates for
p(O|s) are simply given by finding the best parameter p for
each state. The proof then proceeds by simple calculation.

For a state with n = N(s) negative occurrences and

g = G(s) positive occurrences, the MLE estimate is simply
; g

given by — vl

Now for evaluating CNML, we consider appending another

instance for each class. The new parameter after append-

ing a negative example is then ﬁgﬂ, which then assigns
n+1 . . .

gt O the negative class. Similarly, aflter

appending a positive example, the new parameter is =~ ot

g+1 .
gt O the positive class.

probability

SO we try to assign probability
Normalizing, we have

g+1

AL 10
n+g+2 (10)

penmL (O = 1]s) =

When considering states that have only been visited on-
policy, and are not included in the set of successful out-
comes, then the likelihood reduces to

1
n+2

penme (O = 1]s) = (1D

A.2. Detailed Description of Meta-NML

We provide a detailed description of the meta-NML algo-
rithm described in Section 5, and the details of the practical
algorithm.

Given a dataset D = {(x0,%0), (€1,91), -, (Tn,Yn)}, the
meta-NML procedure proceeds by first constructing k * n
tasks from these data points, for a k shot classification prob-
lem. We will keep k£ = 2 for simplicity in this description,
in accordance with the setup of binary success classifiers in

Task 1

Dataset | U (%0,¥ =0)

Meta-Learning Iquery

‘— meta-learning
--- learning/adaptation

0
VL;
VL, —
VL b3

0" g

Dataset | U (zg,y = 1)

3 5
1 3
% %
Y ~
?

ataset | U (zn,y = 0)
Quick Adaptation

PNML (- Zquery)

Dataset | U (Zn,y =1) (Reward)

4
o

o o
=

)

5

Figure 9. Figure illustrating the meta-training procedure for meta-
NML.

RL. Each task 7; is constructed by augmenting the dataset
with a negative label D U (z;,y = 0) or a positive label
DU (x;,y = 1). Now that each task consists of solving
the maximum likelihood problem for its augmented dataset,
we can directly apply standard meta-learning algorithms to
this setting. Building off the ideas in MAML (Finn et al.,
2017), we can then train a set of model parameters 6 such
that after a single step of gradient descent it can quickly
adapt to the optimal solution for the MLE problem on any
of the augmented datasets. This is more formally written as

st 0/ =0—aVeL(r,0)
(12)

/
max Ervs[L(T,07)],

where L represents a standard classification loss function,
« is the learning rate, and the distribution of tasks p(7)
is constructed as described above. For a new query point
x, these initial parameters can then quickly be adapted to
provide the CNML distribution by taking a gradient step on
each augmented dataset to obtain the approximately optimal
MLE solution, and normalizing these as follows:

o, (ylz)
pmeta—NML(ypj; D) - m
yey Foy

9y =0 - QVQE(ri,yi)N'DU(Iyy) [E(x’u Yi, 9)]

This algorithm in principle can be optimized using any stan-
dard stochastic optimization method such as SGD, as de-
scribed in Finn et al. (2017), backpropagating through the
inner loop gradient update. For the specific problem setting
that we consider, we additionally employ some optimization
tricks in order to enable learning:

MURAL: Meta-Learning Uncertainty-Aware Rewards for RL

A.2.1. IMPORTANCE WEIGHTING ON QUERY POINT

Since only one datapoint is augmented to the training set
at query time for CNML, stochastic gradient descent can
ignore this datapoint with increasing dataset sizes. For
example, if we train on an augmented dataset of size 2048
by cycling through it in batch sizes of 32, then only 1 in
64 batches would include the query point itself and allow
the model to adapt to the proposed label, while the others
would lead to noise in the optimization process, potentially
worsening the model’s prediction on the query point.

In order to make sure the optimization considers the query
point, we include the query point and proposed label (z4, y)
in every minibatch that is sampled, but downweight the loss
computed on that point such that the overall objective re-
mains unbiased. This is simply doing importance weighting,
with the query point downweighted by a factor of [b*Tl]
where b is the desired batch size and [V is the total number
of points in the original dataset.

To see why the optimization objective remains the same,
we can consider the overall loss over the dataset. Let fy be
our classifier, £ be our loss function, D’ = {(z;,y;)}¥; U
(24, y) be our augmented dataset, and B, be the kth batch
seen during training. Using standard SGD training that
cycles through batches in the dataset, the overall loss on the
augmented dataset would be:

N
)= (Z c<f9<xi>,yi>> + L(fol2,), y)
1=0

If we instead included the downweighted query point in
every batch, the overall loss would be:

L) = Z >
k=0 (xi,y:)EBk

(3

k=0

fb 1
= (Z E(fo(%%?ﬁ)) + L(fo(zq),y)

1
(ﬁ(fa(xi), Yi) + @

Z L(f@(wz) yl) +
ayl)eBk

b C(folg).)

[

which is the same objective as before.

This trick has the effect of still optimizing the same max-
imum likelihood problem required by CNML, but signifi-
cantly reducing the variance of the query point predictions
as we take additional gradient steps at query time. As a con-
crete example, consider querying a meta-CNML classifier

L(fo(zq), y))

on the input shown in Figure 10. If we adapt to the aug-
mented dataset without including the query point in every
batch (i.e. without importance weighting), we see that the
query point loss is significantly more unstable, requiring us
to take more gradient steps to converge.

Dataset Batch I

entropy loss

Negative
* o)

%0 a0 o w0 1000
Number of adaptation steps

Figure 10. Comparison of adapting to a query point (pictured on
left with the original dataset) at test time for CNML with and
without importance weighting. The version without importance
weighting is more unstable both in terms of overall batch loss and
the individual query point loss, and thus takes longer to converge.
The spikes in the red lines occur when that particular batch happens
to include the query point, since that point’s proposed label (y = 1)
is different than those of nearby points (y = 0). The version with
importance weighting does not suffer from this problem because it
accounts for the query point in each gradient step, while keeping
the optimization objective the same.

A.2.2. KERNEL WEIGHTED TRAINING LOSS

The augmented dataset consists of points from the original
dataset D and one augmented point (z4,y). Given that we
mostly care about having the proper likelihood on the query
point, with an imperfect optimization process, the meta-
training can yield solutions that are not very accurately
representing true likelihoods on the query point. To counter
this, we introduce a kernel weighting into the loss function
in Equation 12 during meta-training and subsequently meta-
testing. The kernel weighting modifies the training loss
function as:

mgxx ETNS(T) [E(z,y)w'rlc(xa LL'-,—);C((E, Y, 9/)]
st 0" =0—aVyEy) Kz, z)L(x,y,0)

where x, is the query point for task 7 and K is a choice of
kernel. We typically choose exponential kernels centered
around z. Intuitively, this allows the meta-optimization to
mainly consider the datapoints that are copies of the query
point in the dataset, or are similar to the query point, and
ensures that they have the correct likelihoods, instead of
receiving interfering gradient signals from the many other
points in the dataset. To make hyperparameter selection
intuitive, we designate the strength of the exponential ker-
nel by a parameter Ay, which is the Euclidean distance
away from the query point at which the weight becomes 0.1.
Formally, the weight of a point x in the loss function for
query point x, is computed as:

MURAL: Meta-Learning Uncertainty-Aware Rewards for RL

2.3
K (2, 2) = exp{—

|z — 2+ |l2} (13)

dist

A.2.3. META-TRAINING AT FIXED INTERVALS

While in principle meta-NML would retrain with every new
datapoint, in practice we retrain meta-NML once every k
epochs. (In all of our experiments we set £k = 1, but we
could optionally increase & if we do not expect the meta-task
distribution to change much between epochs.) We warm-
start the meta-learner parameters from the previous iteration
of meta-learning, so every instance of meta-training only
requires a few steps. We find that this periodic training is
a reasonable enough approximation, as evidenced by the
strong performance of MURAL in our experimental results
in Section 6.

A.3. Meta-NML Visualizations

A.3.1. META-NML WITH ADDITIONAL GRADIENT
STEPS

Below, we show a more detailed visualization of meta-NML
outputs on data from the Zigzag Maze task, and how these
outputs change with additional gradient steps. For compar-
ison, we also include the idealized NML rewards, which
come from a discrete count-based classifier.

Meta-NML is able to resemble the ideal NML rewards fairly
well with just 1 gradient step, providing both an approxima-
tion of a count-based exploration bonus and better shaping
towards the goal due to generalization. By taking additional
gradient steps, meta-NML can get arbitrarily close to the
true NML outputs, which themselves correspond to inverse
counts of %ﬁ as explained in Theorem 4.1. While this
would give us more accurate NML estimates, in practice we
found that taking one gradient step was sufficient to achieve
good performance on our RL tasks.

Idealized NML rewards

|

Meta-NML (10 steps)

Training set

Meta-NML (1 step)

Meta-NML (5 steps)

Meta-NML (50 steps)

Figure 11. Comparison of idealized (discrete) NML and meta-
NML rewards on data from the Zigzag Maze Task. Meta-NML
approximates NML reasonably well with just one gradient step at
test time, and converges to the true values with additional steps.

Average absolute difference between MLE and meta-CNML
0.351

0.301

>~ 1-step

rewards

0 10 20 30 40 50
Number of finetuning steps

Figure 12. Average absolute difference between MLE and meta-
NML goal probabilities across the entire maze state space from
Figure 11 above. We see that meta-NML learns a model initializa-
tion whose parameters can change significantly in a small number
of gradient steps. Additionally, most of this change comes from
the first gradient step (indicated by the green arrow), which justi-
fies our choice to use only a single gradient step when evaluating
meta-NML probabilities for MURAL.

A.3.2. COMPARISON OF REWARD CLASSIFIERS

In Fig 13, we show the comparison between different types
of reward. classifiers in the 2D maze navigation problem.

MLE Classifier
(L2 eg. + corly stopping)

Idealized NML Rewards
inverse counts)

ined to canvergence) (1step)
Visited sates
Goal examples

Figure 13. A comparison of the rewards given by various classifier
training schemes on the 2D Zigzag maze. From left to right: (1)
An MLE classifier when trained to convergence reduces to an
uninformative sparse reward; (2) An MLE classifier trained with
regularization and early stopping has smoother contours, but does
not accurately identify the goal; (3) The idealized NML rewards
correspond to inverse counts, thus providing a natural exploration
objective in the absence of generalization; (4) The meta-NML
rewards approximate the idealized rewards well in visited regions,
while also benefitting from better shaping towards the goal due to
generalization.

Meta-NML Rewards

Training Dataset

MLE Classifier
ol

A.3.3. RUNTIME COMPARISONS

We provide the runtimes for feedforward inference, naive
CNML, and meta-NML on each of our evaluation domains.
We list both the runtimes for evaluating a single input (Ta-
ble 1), and for completing a full epoch of training during
RL (Table 2).

These benchmarks were performed on an NVIDIA Titan
X Pascal GPU. Per-input runtimes are averaged across 100
samples, and per-epoch runtimes are averaged across 10

MURAL: Meta-Learning Uncertainty-Aware Rewards for RL

epochs.

A.4. Experimental Details

Double-Sided Maze with Sparse Rewards

— BayCRL (ours)

S

&

S

o u

Manhattan distance to sparse goal

°

100 200 300 200 500
Epochs

Figure 14. Performance of MURAL, VICE, and SAC with sparse
rewards on a double-sided maze where some sparse reward states
are not provided as goal examples. MURAL is still able to find
the sparse rewards, thus receiving higher overall reward, whereas
ordinary classifier methods (i.e. VICE) move only towards the
provided examples and thus are never able to find the additional
rewards. Standard SAC with sparse rewards, also included for
comparison, is generally unable to find the goals. The dashed gray
line represents the location of the goal examples initially provided
to both MURAL and VICE.

A.4.1. ENVIRONMENTS

Zigzag Maze and Spiral Maze: These two navigation
tasks require moving through long corridors and avoiding
several local optima in order to reach the goal. For example,
on Spiral Maze, the agent must not get stuck on the other
side of the inner wall, even though that position would be
close in L2 distance to the desired goal. On these tasks, a
sparse reward is not informative enough for learning, while
ordinary classifier methods get stuck in local optima due to
poor shaping near the goal.

Both of these environments have a continuous state space
consisting of the (x,y) coordinates of the agent, ranging
from (—4, —4) to (4, 4) inclusive. The action space is the
desired velocity in the x and y directions, each ranging from
—1 to 1 inclusive.

Sawyer 2D Pusher: This task involves using a Sawyer
arm, constrained to move only in the zy plane, to push a
randomly initialized puck to a fixed location on a table. The
state space consists of the (z, y, z) coordinates of the robot
end effector and the (x,y) coordinates of the puck. The
action space is the desired z and y velocities of the arm.

Sawyer Door Opening: In this task, the Sawyer arm is
attached to a hook, which it must use to open a door to a
desired angle of 45 degrees. The door is randomly initialized
each time to be at a starting angle of between 0 and 15
degrees. The state space consists of the (x, y, z) coordinates
of the end effector and the door angle (in radians); the action
space consists of (z,y, z) velocities.

Sawyer 3D Pick and Place: The Sawyer robot must pick
up a ball, which is randomly placed somewhere on the table

each time, and raise it to a fixed (x, y, z) location high above
the table. This represents the biggest exploration challenge
out of all the manipulation tasks, as the state space is large
and the agent would normally not receive any learning signal
unless it happened to pick up the ball and raise it, which is
unlikely without careful reward shaping.

The state space consists of the (z,y, z) coordinates of the
end effector, the (x,y, z) coordinates of the ball, and the
tightness of the gripper (a continuous value between 0 and
1). The robot can control its (z,y, z) arm velocity as well
as the gripper value.

Ant Locomeotion: In this task, the quadruped ant robot
has to navigate from one end of a maze to the other. This
represents a high dimensional action space of 8 dimensions,
and a high dimensional state space of 15 dimensions as well.
The state space consists of the center of mass of the object
as well as the positions of the various joints of the ant, and
the action space controls the torques on all the joints.

Hand Manipulation: In this task, a 16 DoF robotic hand is
mounted on a robot arm and has to reposition an object on
a table. The task is challenging due to high dimensionality
of the state and action spaces. The state space consists of
the arm position, hand joint positions and object positions.
In this task, we allow the classifier privileged access to the
object position only, but provide the full state space as input
to the policy. All the other baseline techniques are provided
this same information as well (e.g. the classifier for VICE
receives the object position as input).

A.4.2. GROUND TRUTH DISTANCE METRICS

In addition to the success rate plots in Figure 5, we provide
plots of each algorithm’s distance to the goal over time
according to environment-specific distance metrics. The
distance metrics and success thresholds, which were used to
compute the success rates in Figure 5, are listed in the table
on the next page.

A.5. Additional Ablations

A.5.1. LEARNING IN A DISCRETE, RANDOMIZED
ENVIRONMENT

In practice, many continuous RL environments such as the
ones we consider in section 6 have state spaces that are
correlated at least roughly with the dynamics. For instance,
states that are closer together dynamically are also typically
closer in the metric space defined by the states. This corre-
lation does not need to be perfect, but as long as it exists,
MURAL can in principle learn a smoothly shaped reward
towards the goal.

However, even in the case where states are unstructured and
completely lack identity, such as in a discrete gridworld

MURAL: Meta-Learning Uncertainty-Aware Rewards for RL

Feedforward | Meta-NML | Naive CNML
Mazes (zigzag, spiral) 0.0004s 0.0090s 15.19s
Sawyer 2D Pusher 0.0004s 0.0092s 20.64s
Sawyer Door 0.0004s 0.0094s 20.68s
Sawyer 3D Pick 0.0005s 0.0089s 20.68s
Ant Locomotion 0.0004s 0.0083s 17.26s
Dexterous Manipulation | 0.0004s 0.0081s 17.58s

Table 1. Runtimes for evaluating a single input point using feedforward, meta-NML, and naive CNML classifiers. Meta-NML provides
anywhere between a 1600x and 2300x speedup compared to naive CNML, which is crucial to making our NML-based reward classifier

scheme feasible on RL problems.

Feedforward | Meta-NML | Naive CNML
Mazes (zigzag, spiral) 23.50s 39.05s 4hr 13min 34s
Sawyer 2D Pusher 24.91s 43.81 Shr 44min 25s
Sawyer Door 19.77s 38.52s Shr 45min 00s
Sawyer 3D Pick 20.24s 40.73s Shr 45min 00s
Ant Locomotion 37.15s 73.72s 4hr 47min 40s
Dexterous Hand Manipulation | 48.37s 69.97s 4hr 53min 00s

Table 2. Runtimes for completing a single epoch of RL according to Algorithm 2. We collect 1000 samples in the environment with the
current policy for each epoch of training. The naive CNML runtimes are extrapolated based on the per-input runtime in the previous table,
while the feedforward and meta-NML runtimes are averaged over 10 actual epochs of RL. These times indicate that naive CNML would
be computationally infeasible to run in an RL algorithm, whereas meta-NML is able to achieve performance much closer to that of an

ordinary feedforward classifier and make learning possible.

Zigzag Maze

—— BayCRL (ours)

—— VICE (Fu et al., 2018)

—— VICE + count bonus

—— VICE + RND (Burda et al., 2018)

—— DDL (Hartikainen et al., 2020)
Sparse reward

— L2 distance reward

Manhattan distance to goal

0 100 200 300 400 500 600 700
Epochs

Sawyer 2D Pusher Sawyer 3D Pick-and-Place

°
S

o °
S &

Object L2 distance to goal

°
°
&

0 100 200

300
Epochs

500 0 100 200 300 400 500 600
Epochs

Door angle difference from goal

Spiral Maze Sawyer DHand Reposition

&
°
>

°
o

Manhattan distance to goal
5 & 8
Object L2 Distance to goal
o o o
[S

i

°

°

100 200

100
Epochs Epochs

Sawyer Door Opening Ant Locomotion

°
©
S

\A\f-'vk/j

°
>

°
=
s &

)
«

Maze distance to goal

MV\%/\:

600

°
°
°

200 400 600

Epochs

800

800 0 1000

o

200 400
Epochs

Figure 15. Performance of MURAL compared to other algorithms according to ground truth distance metrics. We note that while other
algorithms seem to be making progress according to these distances, they are often actually getting stuck in local minima, as indicated by

the success rates in Figure 5 and the visitation plots in Figure 8.

environment, the CNML classifier would still reduce to
providing an exploration-centric reward bonus, as indicated
by Theorem 1, ensuring reasonable worst-case performance.

To demonstrate this, we evaluate MURAL on a variant of
the Zigzag Maze task where states are first discretized to a
16 x 16 grid, then ’shuffled” so that the zy representation
of a state does not correspond to its true coordinates and the
states are not correlated dynamically. MURAL manages to
solve the task, while a standard classifier method (VICE)
does not. Still, MURAL is more effective in the original

state space where generalization is possible, suggesting that
both the exploration and reward shaping abilities of the
CNML classifier are crucial to its overall performance.

A.5.2. FINDING "HIDDEN” REWARDS NOT INDICATED
BY SUCCESS EXAMPLES

The intended setup for MURAL (and classifier-based RL
algorithms in general) is to provide a set of success exam-
ples to learn from, thus removing the need for a manually
specified reward function. However, here we instead con-

MURAL: Meta-Learning Uncertainty-Aware Rewards for RL

Environment Distance Metric Used Success Threshold
Zigzag Maze Maze distance to goal 0.5

Spiral Maze Maze distance to goal 0.5

Sawyer 2D Pusher Puck L2 distance to goal 0.05

Sawyer Door Opening Angle difference to goal (radians) | 0.035

Sawyer 3D Pick-and-Place | Ball L2 distance to goal 0.06

Ant Locomotion Maze distance to goal 5

Dexterous Manipulation Object L2 distance to goal 0.06

Zigzag Maze (Shuffled States)

—— BayCRL (ours)

= VICE (Fu et al.,
N\ — 2018)
Sparse Reward SAC
(Haarnoja et al.,
2019)

N
=]

=
«

5

Manhattan distance to goal
-
S

=)

100 200 300 400 500
Epochs

Figure 16. Comparison of MURAL, VICE, and SAC with sparse
rewards on a discrete, randomized variant of the Zigzag Maze
task. MURAL is still able to solve the task on a majority of runs
due to its connection to a count-based exploration bonus, whereas
ordinary classifier methods (i.e. VICE) experience significantly
degraded performance in the absence of any generalization across
states.

Figure 17. Visualization of the Double-Sided Maze environment.
Only the goal examples in the bottom left corner are provided to
the algorithm.

= (T (R

Epoch 40 poch130 Epoch160
o

<

Figure 18. Plot of visitations for MURAL vs. VICE on the double-
sided maze task. MURAL is initially guided towards the provided
goals in the bottom left corner as expected, but continues to explore
in both directions, thus allowing it to find the hidden sparse rewards
as well. Once this happens, it focuses on the right side of the maze
instead because those rewards are easier to reach. In contrast,
VICE moves only towards the (incomplete) set of provided goals
on the left, ignoring the right half of the maze entirely and quickly
getting stuck in a local optima.

sider the case where a ground truth reward function exists
which we do not fully know, and can only query through
interaction with the environment. In this case, because the
human expert has limited knowledge, the provided success
examples may not cover all regions of the state space with
high reward.

An additional advantage of MURAL is that it is still capable
of finding these ’unspecified” goals because of its built-
in exploration behavior, whereas other classifier methods
would operate solely based on the goal examples provided.
To see this, we evaluate our algorithm on a two-sided vari-
ant of the Zigzag Maze with multiple goals, visualized in
Figure 17 to the right. The agent starts in the middle and
is provided with 5 goal examples on the far left side of the
maze; unknown to it, the right side contains 5 sparse reward
regions which are actually closer from its initial position.

As shown in Figures 14 and 18, MURAL manages to find
the sparse rewards while other methods do not. MURAL,
although initially guided towards the provided goal exam-
ples on the left, continues to explore in both directions and
eventually finds the ’hidden” rewards on the right. Mean-
while, VICE focuses solely on the provided goals, and gets
stuck in a local optima near the bottom left corner.

A.6. Hyperparameter and Implementation Details

We describe the hyperparameter choices and implementa-
tion details for our experiments here. We first list the general
hyperparameters that were shared across runs, then provide
tables of additional hyperparameters we tuned over for each
domain and algorithm.

Goal Examples: For the classifier-based methods in our
experiments (VICE and MURAL), we provide 150 goal
examples for each environment at the start of training. These
are used as the pool of positive examples when training the
success classifier.

DDL Reward: We use the version of DDL proposed
in (Hartikainen et al., 2019) where we provide the algo-
rithm with the ground truth goal state g, then run SAC with
a reward function of r(s) = —d"(s,g), where d” is the
learned dynamical distance function.

MURAL: Meta-Learning Uncertainty-Aware Rewards for RL

A.6.1. GENERAL HYPERPARAMETERS

SAC

Learning Rate 3x 1074
Discount Factor ~y 0.99
Policy Type Gaussian
Policy Hidden Sizes || (512,512)
Policy Hidden Activa- | ReLU
tion

RL Batch Size 1024
Reward Scaling 1

Replay Buffer Size 500, 000
Q Hidden Sizes (512,512)
Q Hidden Activation || ReLU

Q Weight Decay 0

Q Learning Rate 3x 1074
Target Network 7 5x 1073
MURAL

Adaptation batch size || 64
Meta-training tasks || 128

per epoch

Meta-test set size 2048
VICE

Classifier Learning || 1 x 10~%
Rate

Classifier Batch Size | 128
Classifier Optimizer | Adam

RL Algorithm SAC
RND

Hidden Layer Sizes (256, 256)
Output Units 512

Table 3. General hyperparameters used across all domains.

A.6.2. Z1GZAG MAZE HYPERPARAMETERS

ery n steps)

MURAL

Classifier Hidden Layers || [(512, 512), (2048,
2048)]

)\dist [0-5; 1]

kquery 1

VICE

NVICE [17 2, 10]

Mixup « [0,1

Weight Decay A [0,5 x 1073]

VICE+Count Bonus

MVICE [1, 2, 10]

Mixup o [0,1]

Classifier reward scale [0.25,0.5,1]

Weight Decay A [0,5 x 1073

DDL

Ny (2,4]

Training frequency (ev- || [16, 64]

Table 4. Hyperparameters we tuned for the Zigzag Maze task.

Bolded values are what we use for the final runs in Section 6.

A.6.3. SPIRAL MAZE HYPERPARAMETERS

MURAL

Classifier ~ Hidden || [(512, 512), (2048, 2048)]
Layers

)\dist [0'57 1]
kque’r‘y 1

VICE

NVICE [1, 2, 10]
Mixup « 0,1

Weight Decay A [0,5 x 1073]
VICE+Count

Bonus

NVICE [1, 2, 10]
Mixup « [0,1]
Classifier reward || [0.25,0.5,1]
scale

Weight Decay A [0,5 x 1073
DDL

Nd [27 4]
Training frequency || [16, 64]
(every n steps)

Table 5. Hyperparameters we tuned for the Spiral Maze task.

Bolded values are what we use for the final runs in Section 6.

MURAL: Meta-Learning Uncertainty-Aware Rewards for RL

A.6.4. ANT LOCOMOTION HYPERPARAMETERS

Table 6. Hyperparameters we tuned for the Ant Locomotion task.

Bolded values are what we use for the final runs in Section 6.

A.6.6. SAWYER PICK-AND-PLACE HYPERPARAMETERS

MURAL MURAL

Classifier ~ Hidden || [(512, 512), (2048, 2048)] Classifier Hidden Layers || [(512, 512), (2048,
Layers 2048)]

Adist [0.5,1,1.5,2] Adist [0.2,0.6, 1]

kquery 1 kquery 1

VICE VICE

NVICE [1, 2, 10] MVICE [1, 2, 10]

Mixup « [0,1 Mixup « [0,1]

Weight Decay A [0,5 x 1073] Weight Decay A [0,5 x 1073]
VICE+Count VICE + RND

Bonus MVICE [1, 2, 10]

NVICE [1, 2, 10] Minlp « [0, 1]

Mixup « [0,1] RND reward scale [1,5,10]

Classifier ~ reward | [0.25,0.5,1] DDL

scale Nqg [4,10]

Weight Decay \ 5x 1073 Training frequency (ev- || [16,64]

DDL ery n steps)

Na [2v 4]

Training frequency || [16, 64] Table 8. Hyperparameters we tuned for the Sawyer Pick-and-Place
(every n steps) task. Bolded values are what we use for the final runs in Section 6.

A.6.7. SAWYER DOOR OPENING HYPERPARAMETERS

MURAL
A.6.5. SAWYER PUSH HYPERPARAMETERS Classifier Hidden Layers || [(512, 512), (2048,
2048)]
MURAL Adist [0.05,0.1,0.25]
Classifier Hidden Layers || [(512, 512), (2048, kquery [1,2]
2048)] VICE
)\dist [02» 0-67 1} TMVICE [1, 5, 10]
kquery 1 Minlp (0% [0, 1]
VICE Weight Decay A [0,5 x 1073]
TVICE [1,2,10] VICE + RND
Mixup « [0,1] NVICE [1,5,10]
Weight Decay A [0,5 x 1073] Mixup o [0,1]
VICE + RND RND reward scale [1,5,10]
NVICE [1,2,10] DDL
Mixup « [0,1] Ny [4,10]
RND reward scale [1,5,10] Training frequency (ev- || [16,64]
DDL ery m steps)
Nd [4a 10}
Training frequency (ev- | [16,64] Table 9. Hyperparameters we tuned for the Sawyer Door Opening
ery n steps) task. Bolded values are what we use for the final runs in Section 6.

Table 7. Hyperparameters we tuned for the Sawyer Push task.
Bolded values are what we use for the final runs in Section 6.

MURAL: Meta-Learning Uncertainty-Aware Rewards for RL

A.6.8. DEXTEROUS HAND REPOSITIONING

HYPERPARAMETERS

MURAL

Classifier Hidden Layers || [(512, 512), (2048,
2048)]

Adist 0.2,0.5, 1]

kque'ry 1

VICE

NVICE [17 2, 10]

Mixup o [0,1]

Weight Decay A [0,5 x 1073]

VICE + RND

NVICE [L 2, 10]

Mixup « [0,1]

RND reward scale [1,5,10]

DDL

Ny [4,10]

Training frequency (ev- || [16,64]

ery n steps)

Table 10. Hyperparameters we tuned for the Dexterous Hand Repo-
sitioning task. Bolded values are what we use for the final runs in
Section 6.

