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Abstract
Exploration in reinforcement learning is, in gen-
eral, a challenging problem. A common technique
to make learning easier is providing demonstra-
tions from a human supervisor, but such demon-
strations can be expensive and time-consuming to
acquire. In this work, we study a more tractable
class of reinforcement learning problems defined
simply by examples of successful outcome states,
which can be much easier to provide while still
making the exploration problem more tractable.
In this problem setting, the reward function can
be obtained automatically by training a classifier
to categorize states as successful or not. How-
ever, as we will show, this requires the classifier
to make uncertainty-aware predictions that are
very difficult using standard techniques for train-
ing deep networks. To address this, we propose
a novel mechanism for obtaining calibrated un-
certainty based on an amortized technique for
computing the normalized maximum likelihood
(NML) distribution, leveraging tools from meta-
learning to make this distribution tractable. We
show that the resulting algorithm has a number of
intriguing connections to both count-based explo-
ration methods and prior algorithms for learning
reward functions, while also providing more effec-
tive guidance towards the goal. We demonstrate
that our algorithm solves a number of challenging
navigation and robotic manipulation tasks which
prove difficult or impossible for prior methods.

1. Introduction
While reinforcement learning (RL) has been shown to suc-
cessfully solve problems with careful reward design (Ra-
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Figure 1. MURAL: Our method trains an uncertainty-aware classi-
fier based on user-provided examples of successful outcomes. Ap-
propriate uncertainty in the classifier, obtained via a meta-learning
based estimator for the normalized maximum likelihood (NML)
distribution, automatically incentivizes exploration and provides
reward shaping for RL.

jeswaran et al., 2018), RL in its most general form, with no
assumptions on the dynamics or reward function, requires
solving a challenging uninformed search problem in which
rewards are sparsely observed. Techniques that explicitly
provide “reward-shaping” (Ng et al., 1999), or modify the
reward function to guide learning, can help take some of
the burden off of exploration, but shaped rewards are often
difficult to provide without significant domain knowledge.
Moreover, in many domains of practical significance, actu-
ally specifying rewards in terms of high dimensional obser-
vations can be extremely difficult, making it infeasible to
directly apply RL to problems with challenging exploration.

Can the RL problem be made more tractable if the agent is
provided with examples of successful outcomes instead of
an uninformative reward function? Such examples are often
easier to provide than, for example, entire demonstrations
or a hand-designed reward function. However, they can
still provide considerable guidance on how to successfully
accomplish a task, potentially alleviating exploration chal-
lenges if the agent can successfully recognize similarities
between visited states and the provided examples. In this
paper, we study such a problem setting, where instead of
a hand-designed reward function, the RL algorithm is pro-
vided with a set of successful outcome examples: states in
which the desired task has been accomplished successfully.
Prior work (Fu et al., 2018b; Zhu et al., 2020) aims to solve
tasks in this setting by estimating the distribution over these
states and maximizing the probability of reaching states
that are likely under this distribution. While this can work
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well in some domains, it has largely been limited to settings
without significant exploration challenges. In our work, we
focus on the potential for this mode of task specification
to enable RL algorithms to solve more challenging tasks
without the need for manual reward shaping. Intuitively,
the availability of extra information in the form of explicit
success examples can provide the algorithm more directed
information for exploration, rather than having to simply
rely on uninformed task agnostic exploration methods. This
allows us to formulate a class of more tractable problems,
which we refer to as outcome-driven RL.

However, in order to attain improved exploration, an
outcome-driven RL agent must be able to estimate some
notion of similarity between the visited states and successful
outcomes, so as to utilize this similarity as a kind of auto-
matic reward shaping. Our method addresses this challenge
by training a classifier to distinguish successful states, pro-
vided by the user, from those generated by the current policy,
analogously to generative adversarial networks (Goodfellow
et al., 2014) and previously proposed methods for inverse
reinforcement learning (Fu et al., 2018a). In general, such
a classifier may not provide effective reward shaping for
learning the policy, since it does not explicitly quantify
uncertainty about success probabilities and can be overly
pessimistic in providing reward signal for learning. We
discuss how Bayesian classifiers incorporating a particular
form of uncertainty quantification based on the normalized
maximum likelihood (NML) distribution can incentivize
exploration in outcome-driven RL problems. To understand
its benefits, we connect our approach to count-based explo-
ration methods, while also showing that it improves signifi-
cantly over such methods when the classifier exhibits good
generalization properties, due to its ability to utilize success
examples. Finally, we propose a practical algorithm to train
NML-based success classifiers in a computationally efficient
way using meta-learning, and show experimentally that our
method can more effectively solve a range of challenging
navigation and robotic manipulation tasks.

Concretely, this work illustrates the challenges of using
standard success classifiers (Fu et al., 2018b) for outcome-
driven RL, and proposes a novel technique for training un-
certainty aware classifiers with normalized maximum like-
lihood, which is able to both incentivize the exploration of
novel states and provide reward shaping that guides explo-
ration towards successful outcomes. We present a tractable
algorithm for learning these uncertainty aware classifiers
in practice by leveraging concepts from meta-learning. We
analyze our proposed technique for reward inference experi-
mentally across a number of navigation and robotic manipu-
lation domains and show benefits over prior classifier-based
RL methods as well as goal-reaching methods.

2. Related Work
While a number of methods have been proposed to im-
prove exploration, it remains a challenging open problem
in RL (Misra et al., 2019). Standard exploration methods
either add bonuses to the reward function that encourage a
policy to visit novel states in a task-agnostic manner (Wier-
ing & Schmidhuber, 1998; Auer et al., 2002; Schaul et al.,
2011; Houthooft et al., 2016; Pathak et al., 2017; Tang et al.,
2017; Stadie et al., 2015; Bellemare et al., 2016; Burda et al.,
2018a; O’Donoghue, 2018), or approximate Thompson sam-
pling from a posterior over value functions (Strens, 2000;
Osband et al., 2013; 2016). Whereas these techniques are
uninformed about the actual task, we consider a constrained,
yet still widely applicable, set of problems where the desired
outcome can be specified by success examples, allowing for
more efficient task-directed exploration.

Designing well-shaped reward functions can also make ex-
ploration easier, but often requires significant domain knowl-
edge (Andrychowicz et al., 2020), access to privileged
information (Levine et al., 2016) or a human in the loop pro-
viding rewards (Knox & Stone, 2009; Singh et al., 2019b).
Prior work has considered specifying rewards by providing
example demonstrations and inferring rewards with inverse
RL (Abbeel & Ng, 2004; Ziebart et al., 2008; Ho & Er-
mon, 2016; Fu et al., 2018a). This requires expensive expert
demonstrations to be provided to the agent. In contrast, our
work has the minimal requirement of successful outcome
states, which can be provided more cheaply and intuitively.
This subclass of problems is also related to goal-conditioned
RL (Kaelbling, 1993; Schaul et al., 2015; Zhu et al., 2017;
Andrychowicz et al., 2017; Nair et al., 2018; Veeriah et al.,
2018; Rauber et al., 2018; Warde-Farley et al., 2018; Colas
et al., 2019; Ghosh et al., 2019; Pong et al., 2020) but is
more general, since it allows for the notion of success to be
more abstract than reaching a single state.

A core idea behind our method is using a Bayesian classifier
to learn a suitable reward function. Bayesian inference with
expressive models and high dimensional data can often be
intractable, requiring strong assumptions on the form of
the posterior (Hoffman et al., 2013; Blundell et al., 2015;
Maddox et al., 2019). In this work, we build on the con-
cept of normalized maximum likelihood (Rissanen, 1996;
Shtar’kov, 1987), or NML, to learn Bayesian classifiers that
can impose priors over the space of outcomes. Although
NML is typically considered from the perspective of opti-
mal coding (Grünwald, 2007; Fogel & Feder, 2018), we
show how it can be used for success classifiers, and dis-
cuss connections to exploration in RL. We propose a novel
technique for making NML computationally tractable based
on meta-learning, which more directly optimizes for quick
NML computation as compared to prior methods like Zhou
& Levine (2020) which learn an amortized posterior.
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3. Preliminaries
In this section, we discuss background on RL using suc-
cessful outcome examples as well as conditional normalized
maximum likelihood.

3.1. Reinforcement Learning with Outcome Examples

We follow the framework proposed by Fu et al. (2018b)
and assume that we are provided with a Markov deci-
sion process (MDP) without a reward function, given by
M = (S,A, T , �, µ0), as well as successful outcome ex-
amples S+ = {sk+}Kk=1, which is a set of states in which
the desired task has been accomplished. This formalism
is easiest to describe in terms of the control as inference
framework (Levine, 2018). The relevant graphical model
(refer to (Fu et al., 2018b)) consists of states and actions, as
well as binary success variables et 2 {0, 1} that represent
the occurrence of a particular event. The agent’s objective
is to cause this event to occur (e.g., a robot that is cleaning
the floor must cause the “floor is clean” event to occur).
Formally, we assume that the states in S+ are sampled from
the distribution p(st|et = 1) — that is, states where the
desired event has taken place — and try to infer the dis-
tribution p(et = 1|st) to use as a reward function. In this
work, we focus on efficient methods for solving this refor-
mulation of the RL problem by utilizing a novel uncertainty
quantification method to represent p(et|st).

In practice, prior methods that build on this formulation
of the RL problem (Fu et al., 2018b) derive an algorithm
where the reward function in RL is produced by a classifier
that estimates p(et = 1|st). Following the derivation in Fu
et al. (2018a), it is possible to show that the correct source of
negative examples is the state distribution of the policy itself,
⇡(s). This insight results in a simple algorithm: at each
iteration of the algorithm, the policy is updated to maximize
the current reward, given by log p(et = 1|st), then samples
from the policy are added to the set of negative examples
S�, and the classifier is retrained on the original positive
set S+ and the updated negative set S�. As noted in prior
work (Fu et al., 2018b), this process is closely connected
to GANs and inverse reinforcement learning, where the
classifier plays the role of the discriminator and the policy
that of the generator. However, as we will discuss, this
strategy can often face significant exploration challenges.

3.2. Conditional Normalized Maximum Likelihood

Our work utilizes the principle of conditional normalized
maximum likelihood (CNML) (Rissanen & Roos, 2007;
Grünwald, 2007; Fogel & Feder, 2018), which we re-
view briefly. CNML is a method for performing k-way
classification, given a model class ⇥ and a dataset D =
{(x0, y0), (x1, y1), ..., (xn, yn)}, and has been shown to

provide better calibrated predictions and uncertainty esti-
mates with minimax regret guarantees (Bibas et al., 2019).
More specifically, the CNML distribution can be shown
to provably minimize worst-case regret against an oracle
learner that has access to the true labels, but does not know
which point it will be tested on. We refer the reader to
Fogel & Feder (2018); Zhou & Levine (2020) for a more
complete consideration of the theoretical properties of the
CNML distribution.

To predict the class of a query point xq, CNML constructs
k augmented datasets by adding xq with a different label
in each dataset, which we write as D [ (xq, y = i), i 2
(1, 2, ..., k). CNML then defines the class distribution by
solving the maximum likelihood estimation problem at
query time for each of these augmented datasets to con-
vergence, and normalizes the likelihoods as follows:

pCNML(y = i|xq) =
p✓i(y = i|xq)Pk

j=1 p✓j (y = j|xq)
(1)

✓i = argmax
✓2⇥

E(x,y)⇠D[(xq,y=i)[log p✓(y|x)] (2)

If xq is close to other datapoints in D, the model will strug-
gle to assign a high likelihood to labels that differ substan-
tially from those of nearby points. However, if xq is far from
all datapoints in D, then the different augmented maximum
likelihood problems can easily classify xq as any arbitrary
class, providing us with likelihoods closer to uniform. We re-
fer readers to Grünwald (2007) for an in-depth discussion of
CNML and its connections to minimum description length
and regret minimization. Intuitively, the CNML classifier
provides a way to impose a uniform prior for uncertainty
quantification, where we predict the uniform distribution on
unseen inputs since they are maximally uncertain, and defer
more to the maximum likelihood solution on frequently seen
inputs since they are minimally uncertain.

4. Bayesian Success Classifiers for Reward
Inference

As discussed in Section 3.1, a principled way of approach-
ing outcome-driven RL is to train a classifier to determine
whether a particular state is a successful outcome or not.
However, while such a technique would eventually converge
to the correct solution, it frequently suffers from uninforma-
tive or incorrect rewards during the learning process. For
example, Figure 2 depicts a simple 2D maze scenario where
the agent starts at the top left corner and the positive out-
comes are at the bottom right corner of the environment.
Without suitable regularization, the decision boundary may
take on the form of a sharp boundary anywhere between the
positive and negative examples in the early stages of training.
As a result, the classifier might provide little to no reward
signal for the policy, since it can assign arbitrarily small
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Figure 2. Comparison of rewards given by various classifier training schemes on a 2D maze example. Typical maximum likelihood
(MLE) classifiers commonly suffer from either a lack of useful learning signal (if trained to convergence) or misleading local optima (if
regularized using standard methods such as weight decay or early stopping), whereas CNML produces accurate and well-shaped rewards.

Algorithm 1 RL with CNML-Based Success Classifiers
1: User provides success examples S+

2: Initialize policy ⇡, replay buffer S�, and reward classi-
fier parameters ✓R

3: for iteration i = 1, 2, ... do
4: Add on-policy examples to S� by executing ⇡.
5: Sample ntest points from S+ (label 1) and ntest points

from S� (label 0) to construct a dataset D
6: Assign state rewards as r(s) = pCNML(e = 1|s,D)
7: Train ⇡ with RL algorithm
8: end for

probabilities to the states sampled from the policy. Given
that the classifier-based RL process is essentially equiva-
lent to training a GAN (as described in Section 3.1), this
issue is closely related to the challenges of GAN training as
noted by Arjovsky & Bottou (2017), where an ideal maxi-
mum likelihood discriminator provides no gradient signal
for training the generator.

We note that this issue is not pathological: our experiments
in Section 6 show that this phenomenon of poor reward shap-
ing happens in practice. In addition, introducing naı̈vely
chosen forms of regularization such as weight decay, as is
common in prior works, may actually provide incorrect re-
ward shaping to the algorithm, making it more challenging
to actually accomplish the task (as illustrated in Figure 2).
This often limits classifier-based RL techniques to tasks
with trivial exploration challenges. In this section, we will
discuss how a simple change to the procedure for training
a classifier, going from standard maximum likelihood esti-
mation to an approach based on the principle of normalized
maximum likelihood, allows for an appropriate considera-
tion of uncertainty quantification that can solve problems
with non-trivial exploration challenges.

4.1. Regularized Success Classifiers via Normalized
Maximum Likelihood

It is important to note that for effective exploration in re-
inforcement learning, the rewards should not just indicate
whether a state is a successful outcome (since this will be
0 everywhere but successful outcomes), but should instead

provide a sense of whether a particular state may be on
the path to a successful outcome and should be explored
further. The standard maximum likelihood classifier de-
scribed in Section 3 is overly pessimistic in doing so, setting
the likelihood of all intermediate states to 0 in the worst
case, potentially mislabeling promising states to explore. To
avoid this, we want to use a classification technique that
minimizes this worst-case regret, maintaining some level
of uncertainty about whether under-visited states are on the
path to successful outcomes. As discussed in Section 3.2,
the technique of conditional normalized maximum likeli-
hood provides us a straightforward way to obtain such a
classifier. CNML is particularly well suited to this problem
since, as discussed in Zhang (2011), it essentially imposes
a uniform prior over the space of outcomes. It thus avoids
pathological collapse of rewards by maintaining a measure
of uncertainty over whether a state is potentially promis-
ing to explore further, rather than immediately bringing its
likelihood to 0 as maximum likelihood solutions would.

To use CNML for reward inference, the procedure is similar
to the one described in Section 3. We construct a dataset
using the provided successful outcomes as positives and on-
policy samples as negatives. However, the label probabilities
for RL are instead produced by the CNML procedure to
obtain rewards r(s) = pCNML(e = 1|s) as follows:

r(s) =
p✓1(e = 1|s)

p✓1(e = 1|s) + p✓0(e = 0|s) (3)

✓0 = argmax
✓2⇥

E(sj ,ej)⇠D[(s,e=0)[log p✓(ej |sj)] (4)

✓1 = argmax
✓2⇥

E(sj ,ej)⇠D[(s,e=1)[log p✓(ej |sj)] (5)

This reward is then used to perform policy updates, new
data is collected with the updated policy, and the process is
repeated. A full description can be found in Algorithm 1.

To illustrate how this change affects reward assignment dur-
ing learning, we visualize a potential assignment of rewards
with a CNML-based classifier on the problem described
earlier in Fig 2. When the success classifier is trained with
CNML instead of standard maximum likelihood, interme-
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diate unseen states would receive non-zero rewards rather
than simply having vanishing likelihoods like the maximum
likelihood solution, thereby incentivizing exploration. In
fact, the CNML likelihood has a strong connection to count-
based exploration, as we show next. Additionally, we also
see that CNML is able to provide more directed shaping
towards the successful outcomes when generalization exists
across states, as explained below.

4.2. Relationship to Count-Based Exploration

In this section we relate the success likelihoods obtained
via CNML to commonly used exploration methods based
on counts. Formally, we prove that the success classifier
trained with CNML is equivalent to a version of count-based
exploration in the absence of any generalization across states
(i.e., a fully tabular setting).

Theorem 1. Suppose we are estimating success probabil-
ities p(e = 1|s) in the tabular setting, where we have an
independent parameter for each state. Let N(s) denote the
number of times state s has been visited by the policy, and
let G(s) be the number of occurrences of state s in the set
of positive examples. Then the CNML success probability
pCNML(e = 1|s) is equal to G(s)+1

N(s)+G(s)+2 . For states that
are not represented in the positive examples, i.e. G(s) = 0,
we then recover inverse counts 1

N(s)+2 .

Refer to Appendix A.1 for a full proof. While CNML has
a strong connection with counts as described above, it is
important to note two advantages. First, the rewards are
estimated without an explicit generative model, simply by
using a standard discriminative model trained via CNML.
Second, in the presence of generalization via function ap-
proximation, the exploration behavior from CNML can be
significantly more task directed, as described next.

In most problems, when the classifier is parameterized by a
function approximator with non-trivial generalization, the
structure of the state space actually provides more infor-
mation to guide the agent towards the successful examples
than simply using counts. In most environments (Brockman
et al., 2016; Yu et al., 2019) states are not completely un-
correlated, but instead lie in a representation space where
generalization correlates with the dynamics structure in the
environment. For instance, states from which successful
outcomes can be reached more easily (i.e., states that are
“close” to successful outcomes) are likely to have similar
representations. Since the uncertainty-aware classifier de-
scribed in Section 4.1 is built on top of such features and is
trained with knowledge of the desired successful outcomes,
it is able to incentivize more task-aware directed exploration
than simply using counts. This phenomenon is illustrated
intuitively in Fig 2, and demonstrated empirically in our
experimental analysis in Section 6.

5. MURAL: Training Uncertainty-Aware
Success Classifiers for Outcome Driven RL
via Meta-Learning and CNML

In Section 4, we discussed how success classifiers trained
via CNML can incentivize exploration and provide reward
shaping to guide RL. However, the reward inference tech-
nique via CNML described in Section 4.1 is in most cases
computationally intractable, as it requires optimizing sep-
arate maximum likelihood estimation problems to conver-
gence on every data point we want to query. In this section,
we describe a novel approximation that allows us to apply
this method in practice.

5.1. Meta-Learning for CNML

We adopt ideas from meta-learning to amortize the cost of
obtaining the CNML distribution. As noted in Section 4.1,
computing the CNML distribution involves repeatedly solv-
ing maximum likelihood problems. While computationally
daunting, these problems share a significant amount of com-
mon structure, which we can exploit to estimate the CNML
distribution more efficiently. Meta-learning uses a distri-
bution of training problems to explicitly meta-train models
that can quickly adapt to new problems and, as we show
next, can be directly used to accelerate CNML.

To apply meta-learning to computing the CNML distribu-
tion, we can formulate each of the maximum likelihood
problems described in Equation 2 as a separate task for
meta-learning, and apply a standard meta-learning tech-
nique to obtain a model capable of few-shot adaptation
to the maximum likelihood problems required for CNML.
While any meta-learning algorithm is applicable, we found
model agnostic meta-learning (MAML) (Finn et al., 2017)
to be effective. MAML aims to meta-train a model that
can quickly adapt to new tasks via a few steps of gradient
descent by explicitly performing a bi-level optimization. We
refer readers to Finn et al. (2017) for a detailed overview.

The meta-training procedure to enable quick querying of
CNML likelihoods can be described as follows. Given
a dataset D = {(x0,y0), (x1,y1), ..., (xn,yn)}, we con-
struct 2n different tasks ⌧i, each corresponding to perform-
ing maximum likelihood estimation on the original dataset
D combined with an additional point (xi,y0), where y

0 is
a proposed label of either 0 or 1 and xi is a point from the
dataset D. Given these constructed tasks S(⌧), we perform
meta-training as described by Finn et al. (2017):

max
✓

Exi⇠D,y0.2{0,1}[L(D [ (xi,y
0), ✓0i)], (6)

s.t ✓
0
i = ✓ � ↵r✓L(D [ (xi,y

0), ✓). (7)

This training procedure produces a set of parameters ✓ that
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Figure 3. Diagram of using meta-NML to train a classifier. Meta-NML learns an initialization that can quickly adapt to new datapoints
with arbitrary labels. At evaluation time, it approximates the NML probabilities (right) fairly well with a single gradient step.

can then be quickly adapted to provide the CNML distri-
bution with a step of gradient descent. The model can be
queried for the CNML distribution by starting from the
meta-learned ✓ and taking one step of gradient descent for
the dataset augmented with the query point, each with a dif-
ferent potential label. These likelihoods are then normalized
to provide the CNML distribution as follows:

pmeta-NML(y|x;D) =
p✓y (y|x)P

y2Y p✓y (y|x)
(8)

✓y = ✓ � ↵r✓E(xi,yi)⇠D[(x,y)[L(xi, yi, ✓)]. (9)

This process is illustrated in Fig 3, which shows how the
meta-NML procedure can be used to obtain approximate
CNML likelihoods with just a single gradient step.

This scheme for amortizing the computational challenges
of NML (which we call meta-NML) allows us to obtain
normalized likelihood estimates without having to retrain
maximum likelihood to convergence at every single query
point. A complete description, runtime analysis and pseu-
docode of this algorithm are provided in Appendix A.2 and
A.3. Crucially, we find that meta-NML is able to approxi-
mate the CNML outputs well with just one or a few gradient
steps, making it several orders of magnitude faster than
standard CNML.

5.2. Applying Meta-NML to Success Classification

We apply the meta-NML algorithm described previously to
learning uncertainty-aware success classifiers for providing
rewards for RL in our proposed algorithm, which we call
MURAL. Similarly to Fu et al. (2018b), we can train our
classifier by first constructing a dataset D for binary classifi-
cation, using success examples as positives, and on-policy
samples as negatives, balancing the number of sampled pos-
itives and negatives in the dataset. Given this dataset, the
classifier parameters ✓R can be trained via meta-NML as
described in Equation 7. The classifier can then be used to
directly and quickly assign rewards to a state s according
to its probabilities r(s) = pmeta-NML(e = 1|s), and perform

standard reinforcement learning, as noted in Algorithm 2.
Further details are in Appendix A.2.

6. Experimental Evaluation
In our experimental evaluation we aim to answer the fol-
lowing questions: (1) Can MURAL make effective use
of successful outcome examples to solve challenging ex-
ploration tasks? (2) Does MURAL scale to dynamically
complex tasks? (3) What are the impacts of different design
decisions on the effectiveness of MURAL?

Further details, videos, and code can be found at
https://sites.google.com/view/mural-rl

6.1. Experimental Setup

We first evaluate our method on maze navigation problems,
which require avoiding several local optima. Then, we con-
sider three robotic manipulation tasks that were previously
covered in Singh et al. (2019a) with a Sawyer robot arm:
door opening, tabletop object pushing, and 3D object pick-
ing. We also evaluate on a previously considered locomotion
task (Pong et al., 2020) with a quadruped ant navigating
to a target, as well as a dexterous manipulation problem
with a robot repositioning an object with a multi-fingered
hand. In the hand manipulation experiments, the classifier is
provided with access to only the object position, while in the
other tasks the classifier is provided the entire Markovian
state. As we show in our results, exploration in these envi-
ronments is challenging, and using naı̈vely chosen reward
shaping often does not solve the problem at hand.

We compare with a number of prior algorithms. To provide
a comparison with a previous method that uses standard suc-
cess classifiers, we include the VICE algorithm (Fu et al.,
2018b). Note that this algorithm is quite related to MURAL,
but it uses a standard maximum likelihood classifier rather
than a classifier trained with CNML and meta-learning. We
also include a comparison with DDL, a technique for learn-
ing dynamical distances (Hartikainen et al., 2019). We addi-

https://sites.google.com/view/mural-rl
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(a) Zigzag Maze (b) Spiral Maze (c) Sawyer Push (d) Sawyer Pick (e) Sawyer Door (f) Locomotion (g) Dex. Hand

Figure 4. We evaluate on two mazes, three robotic arm manipulation tasks, one locomotion task and one dexterous manipulation task: (a)
the agent must navigate around an S-shaped corridor, (b) the agent must navigate a spiral corridor, (c) the robot must push a puck to
location, (d) the robot must raise a randomly placed tennis ball to location, (e) the robot must open the door a specified angle. (f) the
quadruped ant must navigate the maze to a particular location (g) the dexterous robotic hand must reposition an object on the table.

Algorithm 2 MURAL: Meta-learning Uncertainty-aware
Rewards for Automated Outcome-driven RL

1: User provides success examples S+

2: Initialize policy ⇡, replay buffer S�, and reward classi-
fier parameters ✓R

3: for iteration i = 1, 2, ... do
4: Add on-policy samples to S� by executing ⇡.
5: if iteration i mod k == 0 then
6: Sample ntrain states from S� to create 2ntrain meta-

training tasks
7: Sample ntest total test points equally from S+ (la-

bel 1) and S� (label 0)
8: Meta-train ✓R via meta-NML using Equation 7
9: end if

10: Assign state rewards via Equation 5
11: Train ⇡ with RL algorithm
12: end for

tionally include comparisons to algorithms for task-agnostic
exploration to show that MURAL performs more directed
exploration and reward shaping. To provide a direct compar-
ison, we use the same VICE method for training classifiers,
but combine it with novelty-based exploration based on ran-
dom network distillation (Burda et al., 2018b) for the robotic
manipulation tasks, and oracle inverse count bonuses for
maze navigation. We also compare to prior task-agnostic
exploration techniques which use intrinsic curiosity (Pathak
et al., 2017) and density estimates (Vezzani et al., 2019).
Finally, to demonstrate the importance of shaped rewards,
we compare to running Soft Actor-Critic (Haarnoja et al.,
2018) with two naı̈ve reward functions: a sparse reward, and
a heuristic reward which uses L2 distance. More details are
included in Appendix A.4 and A.6.

6.2. Comparisons with Prior Algorithms

We compare with prior algorithms on the domains described
above. As we can see in Fig 5, MURAL is able to very
quickly learn how to solve these challenging exploration
tasks, often reaching better asymptotic performance than
most prior methods, and doing so more efficiently than

VICE (Fu et al., 2018b) or DDL (Hartikainen et al., 2019).
This suggests that MURAL is able to provide directed re-
ward shaping and exploration that is substantially better than
standard classifier-based methods. We provide a more de-
tailed analysis of the shaping behavior of the learned reward
in Section 6.4.

To isolate whether the benefits purely come from explo-
ration or also from task-aware reward shaping, we compare
with methods that only perform task-agnostic exploration.
From these comparisons, it is clear that MURAL signifi-
cantly outperforms methods that only use novelty-seeking
exploration. We also compare to a heuristically-designed
reward function based on Euclidean distance. MURAL
generally outperforms simple manual shaping in terms of
sample complexity and asymptotic performance, indicating
that the learned shaping is non-trivial and adapted to the task.
Of course, with sufficient domain knowledge, it is likely
that this would improve. In addition, we find that MURAL
scales up to tasks with challenging exploration in higher
dimensional state and action spaces such as quadruped loco-
motion and dexterous manipulation, as seen in Fig 5.

6.3. Ablations

We first evaluate the importance of meta-learning for esti-
mating the CNML distribution. In Figure 6, we see that
naı̈vely estimating the CNML distribution by taking a sin-
gle gradient step and following the same process as in our
method, but without any meta-training, results in much
worse performance. Second, we analyze whether the explo-
ration behavior incentivized by MURAL is actually directed
and task-aware or if it simply approximates count-based ex-
ploration. To that end, we modify the training procedure so
that the dataset D consists of only the on-policy negatives,
and add the inferred reward from the meta-NML classifier to
the reward obtained by a standard maximum likelihood clas-
sifier (similarly to the VICE+RND baseline). We see that
this performs poorly, showing that the MURAL classifier is
doing more than just performing count-based exploration,
and benefits from better reward shaping due to the success
examples. Further ablations are available in Appendix A.5.
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Figure 5. MURAL outperforms prior goal-reaching and exploration methods on all our evaluation environments, including ones with
high-dimensional state and action spaces. MURAL also performs comparably to or better than a heuristically shaped hand-designed
reward that uses Euclidean distance (black line), demonstrating that designing a well-shaped reward is not trivial in these domains.
Shading indicates a standard deviation across 5 seeds. For details on the success metrics used, see Appendix A.4.

6.4. Analysis of MURAL

Figure 6. Ablative analysis of
MURAL. The amortization
from meta-learning and ac-
cess to positive examples are
both important components
for performance.

MURAL and reward
shaping. To better un-
derstand how MURAL
provides reward shaping,
we visualize the rewards
for various slices along
the z axis on the Sawyer
Pick-and-Place task, an
environment which presents
a significant exploration
challenge. In Fig 7 we see
that the MURAL rewards
clearly correlate with the
distance to the mean object
position in successful
outcomes, shown as a white star, thus guiding the robot to
raise the ball to the desired location even if it has never
reached this before. In contrast, the maximum likelihood
classifier has a sharp, poorly-shaped decision boundary.

Figure 7. Visualization of reward shaping for 3D Pick-and-Place
at various z values (heights). MURAL learns rewards that provide
a smooth slope toward the successful outcomes, while the MLE
classifier learns a sharp and poorly shaped decision boundary.

MURAL and exploration. Next, to illustrate the connec-
tion between MURAL and exploration, we compare the
states visited by MURAL and by VICE (Fu et al., 2018b)
in Figure 8. We see that MURAL naturally incentivizes the

agent to visit novel states, allowing it to navigate around
local minima. In contrast, VICE learns a misleading reward
function that prioritizes closeness to the success outcomes
in xy space, causing the agent to get stuck.

Interestingly, despite incentivizing exploration, MURAL
does not simply visit all possible states; at convergence, it
has only covered around 70% of the state space. In fact, in
Figure 8, MURAL prioritizes states that bring it closer to
the success outcomes and ignores ones that don’t, making
use of the positive examples provided to it. This suggests
that MURAL benefits from both novelty-seeking behavior
and effective reward shaping.

Figure 8. Plots of visitations and state coverage over time for MU-
RAL vs. VICE. MURAL explores a significantly larger portion of
the state space and is able to avoid local optima.

7. Discussion
In this work, we consider a subclass of RL problems where
examples of successful outcomes specify the task. We an-
alyze how solutions via standard success classifiers suf-
fer from shortcomings, and training classifiers via CNML
allows for better exploration to solve challenging prob-
lems. To make learning tractable, we propose a novel meta-
learning approach to amortize the CNML process. While
this work has shown the effectiveness of Bayesian classi-
fiers for reward inference for tasks in simulation, it would
be interesting to scale this solution to real world problems.
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