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Abstract

The method of random projection (RP) is the stan-
dard technique for dimensionality reduction, ap-
proximate near neighbor search, compressed sens-
ing, etc., which provides a simple and effective
scheme for approximating pairwise inner products
and Euclidean distances in massive data. Closely
related to RP, the method of random Fourier fea-
tures (RFF) has also become popular for approx-
imating the (nonlinear) Gaussian kernel. RFF
applies a specific nonlinear transformation on the
projected data from RP. In practice, using the
Gaussian kernel often leads to better performance
than the linear kernel (inner product).

After random projections, quantization is an im-
portant step for efficient data storage, computation
and transmission. Quantization for RP has been
extensively studied in the literature. In this paper,
we focus on developing quantization algorithms
for RFF. The task is in a sense challenging due
to the tuning parameter v in the Gaussian kernel.
For example, the quantizer and the quantized data
might be tied to each specific Gaussian kernel
parameter . Our contribution begins with the
analysis on the probability distributions of RFF,
and an interesting discovery that the marginal dis-
tribution of RFF is free of the parameter . This
significantly simplifies the design of the Lloyd-
Max (LM) quantization scheme for RFF in that
there would be only one LM quantizer (regardless
of 7). Detailed theoretical analysis is provided
on the kernel estimators and approximation error,
and experiments confirm the effectiveness and
efficiency of the proposed method.
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1. Introduction

The method of random projections (RP) is a popular strategy
to deal with big data, for instance, for efficient processing,
computations, storage and transmissions of massive (and
high-dimensional) datasets. The merit of RP is highlighted
by the celebrated Johnson-Lindenstrauss Lemma (Johnson
and Lindenstrauss, 1984), which states that with high proba-
bility the Euclidean distance between data points is approx-
imately preserved in the projected space if the number of
projections is sufficiently large. In the past two decades, RP
has been used extensively in dimension reduction, approxi-
mate near neighbor search, compressed sensing, computa-
tional biology, etc. See examples of relatively early works
on RP (Dasgupta, 2000; Bingham and Mannila, 2001; Buh-
ler, 2001; Achlioptas, 2003; Fern and Brodley, 2003; Datar
et al., 2004; Candes et al., 2006; Donoho, 2006; Li et al.,
2006; Freund et al., 2007; Li, 2007). In this paper, we study
quantization schemes for random Fourier features (RFF),
which are nonlinear transformations of random projections,
to accurately approximate the (nonlinear) Gaussian kernel.

1.1. Linear Kernel and Gaussian Kernel

Letu,v € X C R< denote two d-dimensional data vec-
tors. The linear kernel is the inner product (u,v) = ulv.
For training large-scale linear learning algorithms such as
linear support vector machine (SVM) and linear logistic
regression, highly efficient training algorithms have been
widely used (Joachims, 2006; Shalev-Shwartz et al., 2011;
Fan et al., 2008). Despite their high efficiency, the drawback
of linear learning methods is that they often do not provide a
good accuracy as they neglect the nonlinearity of data. This
motivates researchers to find efficient training algorithms for
nonlinear kernels such as the Gaussian kernel (Hastie et al.,
2001; Scholkopf and Smola, 2002; Bottou et al., 2007),
which is defined through a real-valued kernel function
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Ky(u,0) = (€(u),§(v)) =" 7,

where £(-) : X — H is the implicit feature map and ~ is
a hyper-parameter, with H the corresponding Reproducing
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Kernel Hilbert Space (RKHS). It is known that the Gaussian
kernel is shift-invariant and positive definite. Throughout
the paper, we assume that & lies on the unit sphere, i.e., all
the data points are normalized to have unit /3 norm. This
will save us from book-keeping the sample norms. Note
that, normalizing each data vector to unit /s norm before
training is a fairly standard procedure in practice. In this
case, denoting the correlation coefficient p = cos(u,v) =
uT v, the Gaussian kernel can be formulated as

_22(2=2p)

2

K, (u,v)=e = e (-0, (1)

In the rest of the paper, we will omit the subscript “y” in K.

Storing/materializing a kernel matrix for a dataset of n sam-
ples would need n? entries, which may not be realistic
even just for medium datasets (e.g., n = 10°). To avoid
this problem, the entries of the kernel matrix can be com-
puted on the fly from the original dataset. This however
will increase the computation time, plus storing the original
high-dimensional dataset for on-demand distance compu-
tations can also be costly. Also, the training procedure for
nonlinear kernel algorithms is known to be expensive (Platt,
1998; Bottou et al., 2007). Therefore, it has been an active
area of research to speed up kernel machines, and using
various types of random projections has become popular.

1.2. Random Projections (RP) and Random Fourier
Features (RFF)

Again, consider two data vectors u,v € R?. Further, we
assume they are normalized to have unit /5 norm and we
denote p = (u,v). We generate a random Gaussian vector
w € R with i.i.d. entries in N (0, 1).

E[(wTu, wTv)] = (u,v) = p.
This is the basic idea of using random projections to approx-

imate inner product. See Li et al. (2006) for the theoretical
analysis (e.g., variance calculations) of this approximation.

With an additional step, one can use random projections
to approximate the Gaussian kernel. The random Fourier
Feature (Rudin, 1990; Rahimi and Recht, 2007) is defined as

RFF: F(u) = v2cos(ywlu+ 1), (2)

where 7 ~ uni form(0, 27), the uniform random variable.
Some basic probability calculations reveal that

E[F(u)F(v)] = K (u,v) = e 7 170,

In other words, the inner product between the RFFs of two
data samples provides an unbiased estimate of the Gaussian
kernel. The projections need to be repeated for a sufficient
number of times in order to obtain reliable estimates. That
is, we generate m independent RFFs using i.i.d. wy, ..., wy,

and 71, ..., T, and approximate the kernel K (u,v) by
R 1 m
K(uv) = — ; Fi(w)Fi(v), ©)

where F; denotes the RFF generated by w;, ;. Further-
more, Li (2017b) showed that one can actually reduce the
estimation variances by normalizing the RFFs.

In large-scale learning, using the above estimator simply re-
quires taking the inner product between the RFF vectors of
u and v. Thus, feeding RFFs into a linear model approxi-
mates training a non-linear kernel machine, known as kernel
linearization, which may significantly accelerate training
and alleviate memory burden for storing the kernel matrix,
leading to numerous applications (Raginsky and Lazebnik,
2009; Yang et al., 2012; Affandi et al., 2013; Hernandez-
Lobato et al., 2014; Dai et al., 2014; Yen et al., 2014; Hsieh
et al., 2014; Shah and Ghahramani, 2015; Chwialkowski
et al., 2015; Richard et al., 2015; Sutherland and Schneider,
2015; Li, 2017b; Avron et al., 2017; Sun et al., 2018; Tomp-
kins and Ramos, 2018; Li et al., 2020; Li and Li, 2021).

1.3. Quantized Random Projections (QRP)

One can further compress the projected data by quantization,
into discrete integer (or even binary) values. The so-called
quantized random projection (QRP) has found useful in
many problems, e.g., theory, similarity search, quantized
compressed sensing, classification and regression (Goemans
and Williamson, 1995; Charikar, 2002; Datar et al., 2004;
Zymnis et al., 2010; Jacques et al., 2013; Leng et al., 2014;
Lietal., 2014; Li and Slawski, 2017; Slawski and Li, 2018;
Li and Li, 2019b;a). The motivation is clear. If one can rep-
resent each RP (or RFF) using (e.g.,) 4 bits and still achieve
similar accuracy as using 32 or 64 bits, it is then a substantial
saving in storage. Typically, savings in storage can directly
translate into savings in data transmissions and subsequent
computations. In addition, quantization also provides the
capability of indexing due to the integer nature of quantized
data, which can be used to build hash tables for approximate
near neighbor search (Indyk and Motwani, 1998).

The simplest quantization scheme is the 1-bit (sign) random
projection, including sign Gaussian random projection (Goe-
mans and Williamson, 1995; Charikar, 2002) and sign stable
random projection (Li, 2017a) (for approximating the 2
kernel and others). Basically, one only keeps the signs
of projected data. Even though the 1-bit schemes appear
overly crude, in some cases 1-bit random projections can
achieve better performance than full-precision RPs in simi-
larity search and nearest neighbor classification tasks. Nev-
ertheless, in general, one would need more than just 1-bit
in order to achieve sufficient accuracy. For example, Li and
Slawski (2017); Slawski and Li (2018); Li and Li (2019b)
apply the (multi-bit) Lloyd-Max (LM) quantization (Max,
1960; Lloyd, 1982) on the projected data.
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1.4. Summary of Contributions

Due to the tuning parameter vy in the Gaussian kernel, ini-
tially one might expect that a different LM quantizer would
be needed for a different ~y. In this paper, our contribution
begins with an interesting finding that the marginal distri-
bution of the RFF is actually free of the parameter ~y. This
result means that only one quantizer would be needed for
all v values. Based on the marginal distribution of the RFF,
we incorporate the idea of distortion optimal LM quanti-
zation theory to nonlinear random feature compression by
providing a thorough study on the theoretical properties and
practical performance. Extensive simulations and learning
experiments are provided to validate the theoretical results.

2. The Probability Distributions of RFF

This section provides an analysis on the probability distribu-
tion of RFF (2), which is key to the design of quantization
schemes in Section 3. First, we introduce some notations.

Letu,v € X C R4 be two normalized data points, and
w € R be a random vector with i.i.d. N(0,1) entries.
The projected data w” v and w” v follow a bivariate normal

wlu 1 p )
(’U)T’U> ~ N (0’ <p 1)) lul| = [[v|| = 1,p = u"v.

Two definitions, ¢, (t) and ®(t), are used in the paper:

1 2
Golt) = ——e 22,
2wo
t 9 ) t
O(t) :/ ——e " 24z :/ ¢1(z)dz,
—oo V2T P

where ®(t) is the cumulative distribution function (cdf) of
the standard normal N(0,1) and ¢, (t) is the probability
density function (pdf) of N (0, 0?).

2.1. Marginal Distributions

The marginal distribution of the RFF serves as the founda-
tion of our proposed quantization schemes.

Theorem 2.1. Let X ~ N(0,1), 7 ~ uniform(0,2)
be independent. Denote Z = cos(yX + 7). We have the
probability density function

129 = ——.

for any v > 0. In particular, Z & cos(7) in distribution.

z e [-1,1], 4

Theorem 2.1 says that for any kernel parameter -y, the (un-
scaled) RFF follows the same distribution as the cosine of
the uniform noise itself. Intuitively, this is because cosine is
a 2m-periodic function and normal distribution is symmetric.
As will be introduced in Section 3, Eq. (4) is the underlying
signal distribution in our Lloyd-Max (LM) quantizer con-
struction. This interesting result implies that we only need
to design just one LM quantizer for all ~y values.

Remark 2.1. In Theorem 2.1 we consider X ~ N(0,1)
because we assume data samples are normalized for con-
ciseness. It is easy to see that this result also holds without
data normalization (i.e., X is Gaussian with arbitrary vari-
ance) since we can offset the variance of X by altering .
Therefore, Theorem 2.1 is a universal result implying that
the LM quantizer also works without data normalization.

2.2. Joint Distribution

In the sequel, we analyze the joint distribution of RFFs of
two data samples with correlation p, which will play an
important role in later theoretical analysis.

Theorem 2.2. Denote z, = cos(yX + 1), z, = cos(vY +
7) where X, Y, T are the same as Lemma D.2. Then we have
the joint density function for (2., zy) € [—1,1]?,

o]

k=—oc0

(2, 2y) =

> [gf)g(a; —ay + 2k7) + ¢o(ay + aj, + 2k7r)]

1 —22\/1—22
with a}, = cos ™ (z,), al = cos™!(z,), 0 = \/2(1 — p)v.

In Figure 1, we plot the joint density at several ~ values.
We conclude several properties of the joint distribution.
Firstly, it is obvious that 2, and z, are exchangeable, i.e.,
f(Zs,2y) = f(Zy, Z). Secondly, it is symmetric which
means f(Z,, Z,) = f(—Z,,—Z,). Moreover, the follow-
ing result is important for our analysis on the monotonicity
and variance of quantized kernel estimators in Section 4.
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Figure 1. The joint density of RFF (Theorem 2.2) with example
p=-0.9,09andy=1,3,5.

Proposition 2.3. Let the density function f be defined

as Theorem 2.2. If \/2(1 — p)y < m, then f(zg,2y) >
f(Zm,*Zy)forV(ZI,Zy) € (07 1]2 or (Za:azy) € [ilao)z'

In Proposition 2.3, the quantity 1/2(1 — p)~ will be reduced
if we either increase p or decrease . Figure 1 illustrates that
smaller 1/2(1 — p)~y reinforces the dependency between z,,
and z;. The density around (1,1) and (—1, —1) reaches the
highest when p = 0.9 and v = 1.

3. Quantization Schemes for RFF

Quantization is a basic topic in information theory and signal
processing (Widrow and Kollér, 2008). On the other hand,
many interesting research works appear in the literature even
very recently, for achieving better efficiency in data storage,
data transmission, computation, and energy consumption.

)
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For example, there is a recent paper for using quantization
to improve advertising click-through rate (CTR) models for
a commercial search engine (Xu et al., 2021). Quantization
for random projections has already been heavily studied.

In this paper, we focus on quantization with small (e.g., < 4)
bits. We consider general multi-bit quantizers, with 1-bit
quantization as a special case, for the cosine feature in RFF
bounded in [—1, 1]. Here, “b-bit” means the quantizer has
2% levels. For simplicity, we denote z = cos(ywTu + 7) as
the item to be quantized. We study two algorithms: “round-
random” (which we refer to as the “stochastic quantization
(StocQ)” and “Lloyd-Max (LM) quantization”.

3.1. Stochastic Quantization (StocQ)

The idea of stochastic rounding or stochastic quantization
(StocQ) dated back at least to the 1950s (Forsythe, 1950;
Barnes et al., 1951; Forsythe, 1959). A b-bit StocQ quantizer
splits [—1, 1] into (22 —1) intervals, with consecutive borders
—1 =1ty < ... < te_y = 1. Let [t;, t;11] be the interval
containing z. StocQ pushes z to either ¢; or ¢;;; depending
on the distances. Concretely, with A; = t;41 — t;,

P(Q(2) = t:) = "5, P(Q(2) = tiy1) = 5. (5)

It is not difficult to see that by this sampling procedure,
conditional on the full-precision RFF z, the quantized value
Q(2) by StocQ is unbiased of z. On the other hand, also
due to the Bernoulli sampling approach, StocQ has the extra
variance especially when the number of bits is small.

Recently, Zhang et al. (2019) applied StocQ with uniform
borders in machine learning tasks with RFF. In this paper,
we consider a more general approach where the borders are
not necessarily uniform, for a broader applicability.

3.2. Lloyd-Max (LM) Quantization

In quantization theory, the Lloyd-Max (LM) (Max, 1960;
Lloyd, 1982) quantization scheme has a long history that
also leads to some well-known methodsk, e.g., k-means.
Interestingly, it has not been adopted to RFF in the prior
literature. In contrast to StocQ, the proposed LM-RFF con-
structs a fixed quantizer Qp. We call [u1, ..., ug] € C the
reconstruction levels, with C the “codebook” of @);. Also,
—1 =ty < ... < te» = 1 represent the borders of the
quantizer. Then, LM-RFF quantizer () defines a mapping:
[-1,1] — C, where Qp(z) = p; if t;—1 < z < t;. By
choosing the error function as the squared difference, given
an underlying signal distribution f(z) with support S, the
LM quantizer minimizes the distortion defined as

Do = /S (2 - Q(2))*f()dz,

aiming to keep most amount of information of the origi-
nal signal. For the signal distribution, it is natural to set

the target distribution as the distribution of RFF itself (4).
Consequently, the LM quantizer is subject to the distortion:

(Z)) T 1 22 dz. (6)

Conceptually, optimizing (6) minimizes the average differ-
ence between RFF z and (z). To solve the optimization
problem, we exploit classical Lloyd’s algorithm, which al-
ternatively updates two parameters until convergence. By
(e.g.,) Wu (1992), the algorithm converges to the globally
optimal solution since the squared loss is convex and sym-
metric. The algorithm terminates when the total absolute
change in borders and reconstruction levels in two consecu-
tive iterations is smaller than a given threshold (e.g., 107°).
For practitioners to use our quantizers forthrightly, we pro-
vide the concrete quantizer construction and the derived
LM-RFF quantizers in Appendix A.

LM-RFF: D= [ (2~

25 10°

—&-LM-RFF
—-©-StocQ

Distortion

o
*
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Figure 2. Left: LM-RFF quantizer, b = 2. Black curve is the RFF
marginal density. Right: Distortion of LM-RFF and StocQ.

In Figure 2, we plot the 2-bit LM-RFF quantizer as an
example (left), along with the distortions of LM-RFF and
uniform StocQ with various number of bits (right). We see
that the LM method generates non-uniform quantization
borders and codes. From the distortion plot, we validate that
LM-RFF indeed provides smaller distortion than StocQ.

As a remark, we note that LM quantization is more conve-
nient and faster compared with StocQ. While LM is a fixed
quantization approach, StocQ requires generating an extra
random number for each RFF of each data point.

3.3. Quantized Kernel Estimators

In the following, we define the kernel estimators built upon
quantized RFFs. For a fixed v (Gaussian kernel parameter),
with a general RFF quantizer Q. a simple quantized kernel
estimator using m random features can be constructed as

K ZQ Zuz

2(20.4), (7N
with 2, ;, = cos(wl'u+7;) and z,; = cos(wlv+7;) the i-
th unscaled RFF of u and v, respectively. Moreover, for the
proposed LM quantizers, we consider normalized estimator,

- Zm1Q(zul)Q(zvi)
K, o(u,v L
el = V2T Qzui)? V2T Q20,0)?

®)
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This estimator can also be conveniently used, as we only
need to normalize the quantized RFFs (per data point) before
learning. We will analyze and compare the estimators using
different quantization methods, theoretically and practically.

4. Theoretical Analysis

In this section, we analyze the mean, variance, and mono-
tonicity properties of the quantized kernel estimators. The
proofs are deferred to Appendix D.

4.1. StocQ Estimator

We start this section by considering the stochastic rounding
method for RFF. In Zhang et al. (2019), the exact variance
of the kernel estimator is not provided. In the following,
we establish the precise variance calculation based on The-
orem 2.2, which is in fact a more general result on any
symmetric stochastic quantizer.

Theorem 4.1 (StocQ). Suppose a b-bit StocQ quantizer (5)
applies stochastic rounding corresponding to arbitrary bin
split —1 =ty < ... < tov_y = 1 that is symmetric about 0.
Denote Sz = ti—1+ti andPi = ti—lti; 1= 1, ciay Qb—l. Let
f(zu, 20) be the RFFjoint distribution in Theorem 2.2. De-
note K; j = t1 . ftj zuzo f(2us 20)dzudzy, and pi; =

S F(2us 20)dzudz,. Then we have B[Ksiocq] =
i— J—
Vstoeq -yigp

K(u,v) and Var[f(swCQ] =

2v—12°—1

VStocQ =4 Z Z [SiSjlﬁ:i,j + PipjpiJ

i=1 j=1

- K(u7 0)2,

which is always greater than V ar|K) defined in (3).

The important take-away messages are: 1) the StocQ kernel
estimator is unbiased of the Gaussian kernel; 2) the variance
is always larger than full-precision RFF estimate. Further,
we have the following result for 1-bit StocQ, which is a
straightforward consequence of Theorem 4.1

4— K (u,v)?
m

Corollary 4.1. With 1-bit, Var|Ksioeq] =

4.2. LM Estimators

We next study the moments of the LM estimators. Let @)
denote the LM quantizer from Algorithm 1. Firstly, we
have the formulation of the mean estimate of LM quantized
estimator (7) based on Chebyshev functional approximation.

Theorem 4 2 (LM). Let u,v be two normalized data sam-
ples with uTv = p, and KQ be as (7) using LM quantizer
with distortion D. Let z, = cos(yX+T), z, = cos(vY +7)

where (X,Y) ~ N (0, (; f) ), T ~ uniform(0,2m).

Let 93}15 = E[Z;Q(zm)t]’ Cs,t E[Q(21>5Q(2y)t]

Further define o; = 2 f_ m’ Vi j
E[T;(z,)T;(2y)], where ﬂ( ) is the i- th Chebyshev polyno-
mial of the first kind. Then we have

Z Z ala]wljﬂ

i=1,0dd j=3,0dd

E[Kg] = (1 — 2D)?

Varliq) = %@2,2 ~ G,

E[Kg] = (1 — 2D)*K (u,v) when p = 0,
1 —2D when p = 1.

In particular,
and E[Kq) =

Note that, since Chebyshev polynomials form an orthogonal
basis of the function space on [—1, 1] with finite number
of discontinuities, we can show that o; = 1 — 2D - ¢;
where ¢; is the cosine between (Q(x) and T;(z), and
Zfi&odd a? = 2D(1 — 2D) which is typically very small
and decreases as the quantizer has more bits. Also, we
have [1; ;| < E[T;(2,)?] = 1/2. Consequently, in Theo-
rem 4.2 the last term approximates zero in most cases. This
translates into the following observation.

Observation 4.1. E[K¢(u,v)] = (1 — 2D)2K (u, v).
Next, we provide an asymptotic analysis on the normalized
quantized kernel estimate (8) under LM scheme.

Theorem 4.3 (Normalized estimator). Under same setting
as Theorem 4.2, as m — 0o,

. R V. )
E[K,.q] = Z; +O(E)’ Var|K,.q] = E—’_O(W)’
with V, — Ca2  2C1,1G3,1 L ¢t 1(Cao + C2,2).

CQ,O CS,O 2C§,O

In particular, E[K, q] = K (u,v) = 1 when p = 1.

By the property of LM quantization, (2 9 = % — D. Thus,

Observation 4.2. E[K,, o] ~ (1 —2D)K (u,v), m — .
Observation 4.1 and 4.2 says that, E[K ] and E[K,, q] ap-
proximately equal to some scaled version of true kernel,
which will motivate our discussion in Section 5.4 on the
robust kernel approximation error metrics.

Validation. We plot the empirical bias of LM-RFF against
Observations 4.1 and 4.2 in Figure 3. As we see, the pro-
posed surrogates for bias align with true biases very well
when p is not very close to 1. The biases shrink to 0 as b
increases (e.g., negligibly O(1072) with b = 4). As p — 1,
at some "disjoint point" the absolute biases have sharp drops
and quickly converge to the theoretical values (red dots)
given in Theorem 4.2 and 4.3. As b or v increases, the
“disjoint point” gets closerto p = 1.
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Figure 3. Observations 4.1 and 4.2 (black dash curves) vs. empiri-
cal bias (blue curves) of LM-RFF. Red dots are the biases given by
the theorem at specific p values.
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LM kernel estimators, with v = 0.5, 1, 2. The dashed curves are
the variances of corresponding full-precision estimators, to which
the variance of quantized estimators converges as b increases.
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4.3. Variance Comparisons

Figure 4 provides variance comparisons. As b gets larger,
the variances of quantized estimators converge to those of
full-precision estimators. The variance of LM-RFF is sig-
nificantly smaller than StocQ quantization, especially when
b = 1, 2. This, together with the fact that the expectation of
LM-RFF estimators can be approximately written as cK + ¢
where 0 is some small term (Observation 4.1 & 4.2), to a
good extent explains why StocQ performs poorly in approx-
imate kernel learning with low bits (Section 5).

Variance of debiased kernel estimates. As LM estima-
tors are slightly biased which brings theoretical challenges
on finding a method to “properly” compare their variances,
we investigate the concept of “debiased variance”, which
refers to the estimator variance after bias corrections.

Definition 4.1 (DB-variance). For normalizec] data points u
and v with p = u"'v, and a kernel estimator K (u, v; p) with
E[K] := E(p) > 0 and Var[K] := V(p), the debiased

variance of K (u,v; p) at p is Var®[K] = V(p) g((;’))))’j

Intuitively, Definition 4.1 is reasonable in that it compares
the variation of different estimation procedures given that

they have same mean. It is worth mentioning that, DB-
variance is invariant of linear scaling, i.e., cK and K have
same DB-variance for ¢ > 0. Classical metrics for estima-
tion quality, such as the Mean Squared Error (MSE), might
be largely affected by such simple scaling. Note that, the
DB-variance of all 1-bit estimators (both simple and normal-
ized) from fixed symmetric quantizers are identical. This
can be easily verified by writing every 1-bit quantizer as
Q(z) = sign(z)-Cq for some Cg > 0in (7) and (8). Thus,
we will focus on multi-bit quantizers (i.e., b > 2).

Benefit of normalization. Next we prove the theoretical
merit of normalizing RFFs, in terms of DB-variance.

Theorem 4.4. Suppose u,v are two samples with correla-
tion p. Let the simple and normalized kernel estimator, K Q
and kan’ be defined as (7) and (8), respectively, where
Q is the LM-RFF quantizer. Assume v < 7/ V2. Then,
Var®[K, o] < Var®[Kq) on p € [0,1] as m — .

-
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Figure 5. Debiased variance ratio, Vard ko]

estimator against simple LM estimator, b = 2, 3.

Theorem 4.4 implies that when v < 7/v/2 =~ 2.2, nor-
malization is guaranteed to reduce the DB-variance Vp €
[0,1]. In Figure 5, we plot the DB-variance ratio of

Var®[Kn,q(z.y)] : _ _
Vart o )] at multiple v and b for LM-RFF. We cor:

roborate the advantage of normalized estimates over simple
estimators in terms of DB-variance (ratio always < 1), es-
pecially with large p. The same conclusion appears to also
hold for p < 0, but a technical proof might be difficult.

4.4. Monotonicity of Mean Kernel Estimation

For a kernel estimator K (p) (written as a function of p),
the monotonicity of its mean estimation E[K (p)] against
p 1s important to ensure its “correctness”. It guarantees
that asymptotically (m — o0), the comparison of estimated
kernel distances is always correct, i.e., K (u, v1) > K (u, v2)
if K(u,v1) > K(u,vy) for data points u, vy, vo. Otherwise
(say, E[K] decreasing in p on [s,]), the comparison of
estimated kernel would be wrong for p € [s, t] even with
infinite much data. By Theorem 4.1, StocQ estimator is
unbiased with E[K s;0c0] = e=7"(1=p) gtrictly increasing
in p. Hence, we will focus on the fixed LM quantization.
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The following lemma gives the exact derivative of interest
with continuous functions cast on RFF.

Lemma4.5. Suppose X, Y, T are same as Theorem 4.2, and
denote s, = vX 4T, s,y =YY + 1, such that z, = cos(sy)
and z, = cos(sy) are RFFs. Assume g1,¢92 : [-1,1] = R
are twice differentiable and bounded functions. Then,

dp

Furthermore, when +/2(1 — p)y <, if g1 and go are both

increasing odd functions or non-constant even functions,
9E[g1(22)92(2y)]
op > 0.

= 7’Elg1 (%) sin(s2)g5(2) sin(sy ).

then the mean is increasing in p, i.e.,

zf]

2
x

Elz
o
w

0.25
0 0.5 1

Figure 6. Validation of Lemma 4.5 with different g; and g2, at
multiple . Black curves are the function value, and red lines are
the theoretical derivatives. Left: g1(z) = 2®, g2(z) = €5, in-

creasing functions. Right: g, () = g2(z) = z?, even functions.

Lemma 4.5 is a general result for the monotonicity when
RFFs are processed by continuous functions. In Figure 6,
we plot two examples of E[g; (s;)g2(sy)] against p, with
continuously increasing functions g; (z) = x2 and gz () =
5% and even functions g; (z) = go(z) = 2, respectively.
As we can see, the expectation is increasing in p with true
derivatives matching Lemma 4.5.

The next Theorem extends the above result to discrete func-
tions, which include our LM quantizers as special cases.

Theorem 4.6. Suppose Q1 and Q5 are bounded, discrete,
and non-decreasing odd functions or non-constant even
functions, with finite many discontinuities. Let z, and
zy be defined as Lemma 4.5. If \/2(1 — p)y < m, then
E[Q1(z:)Q2(zy)] is increasing in p.

Remark 4.1. The condition \/2(1 — p)y < w in Theo-
rem 4.6 implies that E[Q(z;)Q(zy)] for LM quantizer in-
creases in p € [max(—1,1 — %), 1]. Thus, larger ~ typ-
ically requires higher p for this condition to hold. For ex-
ample, when v = 1 and ~y = 5, monotonicity is ensured for
p € [—1,1] and p > 0.8, respectively. See Appendix B.2.

5. Experiments

We conduct experiments with compressed RFFs on three
popular learning tasks: kernel SVM (KSVM), kernel logistic
regression (KLR) and kernel ridge regression (KRR). The
summary statistics of datasets is given in Table 1. We will

address the main results and place more detailed description
and implementation in Appendix C.

Setup. For a dataset U € R**4 we generate m = 26 ~
216 RFFs for each sample. Three compression approaches
are tested: 1) LM-RFF; 2) LM-RFF normalized; 3) StocQ
with uniform borders (stochastic rounding). The RFFs are
first quantized, and then fed into the target linear learner.
For each task and m, we search for a best  on fine grid for
full-precision RFF, and use the same ~y for all quantized RFF.

5.1. Kernel SVM (KSVM)

Firstly, we test the quantization methods on kernel SVM
(KSVM) classification problem. We randomly split each
dataset into 60% for training and 40% for testing, and pre-
process the datasets by instance normalization. LIBLIN-
EAR (Chang and Lin, 2011) is used as the solver. The
parameter C' in SVM is fine tuned for every compression
method, b and m respectively. The best test accuracy is
reported. All results are averaged over 10 independent runs.
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Figure 7. The test accuracy of kernel SVM using different com-
pression schemes of RFFs vs. number of random features m.

To directly compare the learning power of different com-
pression schemes, we provide the test accuracy vs. number
of RFFs in Figure 7. We observe: 1) low-bit StocQ performs
poorly and is outperformed by LM-RFF; 2) On all datasets,
LM-RFF with b = 2 already approaches the accuracy of
full-precision RFF with moderate m ~ 4000, indicating
the superior learning capacity of LM-RFF under deep fea-
ture compression. When b gets larger, the performance of
StocQ approaches that of LM-RFF, both approximating the
full-precision RFF, as one would expect.

To characterize the memory efficiency, on each dataset,
we first find the highest test accuracy (among m) of full-
precision RFF, which requires M p bits per sample. Then,
for each method we find the model (among b and m) with
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Table 1. Column 2-6: Summary statistics of all datasets used in our experiments. Column 7-8: Compression ratio of different quantization
schemes against full-precision RFF, when trained to match the test accuracy of the best full-precision RFF.

Model Source Dataset n d # Class LM-RFF StocQ
KSVM .ASU—DB BASEHOCK 1,993 4,862 2 8x (b=2) 5x (b=4)
(Lietal., 2016) PCMAC 1,943 3,289 2 20x (b=3) 8x(b=4)
KLR LIBSVM Webspam 350, 000 254 2 21x(b=1) 11x(b=2)
(Chang and Lin, 2011) [ CoverType | 581,192 54 2 53x(b=1) 7Tx(b=4)
KRR Synthetic Sim 50,000 10 ; dx(b=4) 2x0b=4)
100 i 95 100 20
S <90 PCMAC .= S webspam ’,,—"-- < CoverType /__——-
> 9% > = % 0 580 —
g - - RFF 285 - - ‘RFF g 90 / - - RFF g Rat - - ‘RFF
3 —b=1 8 Jg —b=1 3 ) —b=1 8 . —b=1
< g —b=2 < 80 —b=2 < i —b=2 <70 0 —b=2
2 —b=4 3 —b=4 2 85 —b=4 @ —b=4
= BASEHOCK |——LM-RFF|| 75 ——LM-RFF ~ ——LM-RFF|| ——LM-RFF
—=—StocQ —=—StocQ —=—StocQ —=—StocQ
70 70 80 60
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Memory (bits) Memory (bits) Memory (bits) Memory (bits)

Figure 8. Test accuracy of KSVM using different compression
schemes of RFFs vs. number of bits (memory usage) per sample.

smallest memory footprint to reach +0.2% (to allow for
some noise) of the best full-precision accuracy. Denote the
number of total bits required as My, ; and Mgy, respec-

tively. The compression ratio is then computed as %f "
Mpp

and - Here we assume that full-precision RFFs are
represented by 32 bits, though it might require even more in
practice. For robustness, we report the average compression
ratio w.r.t. top 3 full-precision accuracies. The result is
summarized in Figure 8 where we present LM-RFF as the
representative of LM-type methods. A curve near upper-left
corner is more desirable, which means that the method re-
quires less memory to achieve some certain test accuracy.
As we see, 1-bit or 2-bit LM-RFF generally perform the
best on all datasets. From Table 1, we observe that LM-RFF
consistently offers considerably higher compression ratio
than StocQ on all datasets. Additionally, LM-RFF typi-
cally requires fewer-bit quantizers (smaller b) than StocQ to
match the accuracy of best full-precision RFF.

5.2. Kernel logistic regression (KLR)

For kernel logistic regression (KLR), we adopt a differ-
ent training mechanism on two popular datasets from LIB-
SVM (Chang and Lin, 2011) website. For Webspam, we
use the standard train/test split provided by the online repos-
itory, where each sample is normalized to unit norm. For
CoverType, the dataset is randomly divided into training
and test set with equal size, and for generality we do not
apply any pre-processing and directly use the raw data.

For this task, we train logistic regression using Stochastic
Gradient Descent (SGD) with cross-entropy loss and mini-
batch size 500. For each method and m, we tune the learning
rate over a fine grid, and the optimal /5 regularization term

Figure 9. KLR: Test accuracy vs. number of bits (memory usage)
per sample. Linear kernel: 91.5% and 75.5%, respectively.

A is also searched on the log-scale. We train the models for
at least 50 epochs until the test accuracy stabilizes.

In Figure 9, we plot test accuracy vs. memory utilization
for KLR. Firstly, learning with (quantized) RFFs gives sig-
nificantly better performance compared with linear kernel
(91.5% and 75.5%, respectively). Similar to KSVM, LM-
RFF dominates on both datasets, significantly better than
StocQ with b = 1 and 2. In Table 1, LM-RFF attains
much higher compression ratio than StocQ (with fewer bits).
On CoverType for instance, 1-bit LM-RFF matches full-
precision RFF with ~50x reduced memory.

5.3. Kernel ridge regression (KRR)

We use a synthetic dataset admitting high non-linearity for
kernel ridge regression (KRR). Precisely, each data sample
u; € R1Y is drawn from i.i.d. N(0,1). We generate the
response by y; 22:1 Bpuf + ¢, where 81 = [1,2, ..., 10],
B2 = [1,1,..,1], B3 and € also follow ii.d. N(0O,1).
We simulate 40, 000 independent samples for training and
10, 000 for testing. The training and tuning procedure is
similar to that for KLR, where SGD with mini-batch size
100 is implemented with MSE loss. We train each model
for at least 100 epochs until the test MSE converges.

We summarize KRR results in Figure 10. Again, with same
b and number of RFFs, LM-RFF consistently beats StocQ
(1-bit LM-RFF even outperforms 2-bit StocQ). In the right
panel, we present the memory efficiency comparison. Note
that, due to high-order terms in the true model, the test MSE
of linear kernel is 20.8, while learning with full-precision
RFF significantly reduces it to 3.5. To match the test MSE of
full-precision RFF (with £0.2 tolerance), LM-RFF merely
needs half the memory consumption of StocQ (Table 1).
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Figure 10. Test MSE of KRR. Linear kernel: 20.8.

Note that 1-bit and 2-bit LM-RFF yield 5.9 and 4.1 test
MSE respectively, which are already quite close to 3.5,
while for 1-bit and 2-bit StocQ, the test losses are 14.5
and 5.0 respectively, much worse than those of LM-RFF.

5.4. Scale-invariant Kernel Approximation Error

Recall the notation U = [uy, ..., u,]? as the data matrix.
Let K be the n x n Gaussian kernel matrix, with IC;; =
K (ui,uj). Denote K as the estimated kernel matrix by
an approximation algorithm. Kernel Approximation Error
(KAE) has been shown to play an important role in the
generalization of learning with random features, including
the norms (Cortes et al., 2010; Gittens and Mahoney, 2013;
Sutherland and Schneider, 2015) of K — K and spectral
approximations (Bach, 2013; Alaoui and Mahoney, 2015;
Avron et al., 2017; Zhang et al., 2019). We investigate the
KAE:s to better justify the impressive generalization ability
of LM-RFF from a theoretical aspect.

Existing KAE metrics are not robust to bias. Consider
IE[I@] = BK with some 3 > 0. Obviously, learning with S/C
is equivalent to learning with K for kernel-distance based
models, since with proper scaling of model parameters, the
objective functions/predictions are invariant of multiplying
the input kernel matrix with a scalar. However, traditional
KAEs do not generalize to this case. For example, when
B = 0.1, the 2-norm error ||0.1K — K||; would be very
large. To make the KAE metrics more robust, we define the
scale-invariant KAE metrics as follows.

Definition 5.1 (Scale-Invariant KAE). Let KC be a kernel
matrix and K be its approximation. Define 2-norm metric

1K~ Klls = min 18K = K]|2-

Denote the minimizer as 5*. The spectral approximation is

¥ 83) = inf c(1— <BK=<@ :
(61,05) =, inf {81,622 (1=8)K < 5K < (1+6)K)
Note that, we can also define additional sets of metrics by,
for example, Frobenius norm. Our new KAE metrics are
more general, adapted to the best scaling factor 5* of the es-
timated kernel. Since LM-RFF estimators are slightly biased
(recall Observations 4.1 and 4.2), Definition 5.1 is important
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Figure 11. Scale-invariant KAE (Definition 5.1) of LM-RFF vs.
StocQ, m = 2'°. Left: 2-norm. Right: spectral approximation.
For both metrics, the smaller the better.

for appropriately evaluating the LM-RFF kernel estimation
approach. In Figure 11, we provide scale-invariant KAE
metrics on BASEHOCK and PCMAC dataset. As we can see,
LM-RFF always has smaller KAEs than StocQ with equal
bits. In particular, with extreme 1-bit compression, StocQ
has exceedingly large loss due to its large variance, while
in many cases the KAEs of 1-bit LM-RFF are already quite
small. The KAE comparison well aligns with, and to a
good extent explains, our empirical results that 1) LM-RFF
consistently outperforms StocQ, and 2) low-bit StocQ gen-
eralizes poorly. Thus, it provides a general justification of
the superior effectiveness of LM-RFF in machine learning.

6. Conclusion

The technique of random Fourier features (RFF) is a popu-
lar method to solve the computational bottleneck in large-
scale (Gaussian) kernel learning tasks. In this paper, we
study quantization methods to compress RFFs for substan-
tial memory savings and efficient computations. In partic-
ular, we develop LM-RFF quantization scheme based on
the Lloyd-Max (LM) distortion minimization framework.
According to our analysis on the probability distribution of
RFF, the LM-RFF quantizer design is very simple as only
one quantizer is needed for all - values in the Gaussian
kernel. In addition, we also analyze a method based on
stochastic rounding (StocQ). Both theoretically and empir-
ically, LM-RFF significantly outperforms StocQ on many
tasks, especially when the number of bits is not large. Com-
pared to full-precision (e.g., 32- or 64-bit) RFFs, the exper-
iments demonstrate that often a 2-bit LM-RFF quantizer
achieve comparable performance with full-precision RFF, at
a substantial saving in memory cost, which would be highly
beneficial in practical applications.
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