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Abstract
We incorporate group fairness into the algorithmic
centroid clustering problem, where k centers are
to be located to serve n agents distributed in a
metric space. We refine the notion of proportional
fairness proposed in [Chen et al., ICML 2019]
as core fairness, and k-clustering is in the core
if no coalition containing at least n/k agents can
strictly decrease their total distance by deviating
to a new center together. Our solution concept
is motivated by the situation where agents are
able to coordinate and utilities are transferable. A
string of existence, hardness and approximability
results is provided. Particularly, we propose two
dimensions to relax core requirements: one is
on the degree of distance improvement, and the
other is on the size of deviating coalition. For
both relaxations and their combination, we study
the extent to which relaxed core fairness can be
satisfied in metric spaces including line, tree and
general metric space, and design approximation
algorithms accordingly.

1. Introduction
Motivated by various real-world machine learning algorithm
deployments where the data points are real human beings
who should be treated unbiasedly, fairness is increasingly
concerned. Most traditional algorithms mainly focus on
the efficiency or profit, and thus fail to ensure fairness for
individual point or collection of points. Accordingly, the
past several years have seen considerable efforts in develop-
ing fair learning algorithms (Chierichetti et al., 2017; Chen
et al., 2019; Backurs et al., 2019; Bera et al., 2019).

Following (Chen et al., 2019), we revisit the group fairness
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in unsupervised learning – specifically, centroid clustering.
A canonical clustering problem is described as: given a
metric space X with distance measure d : X × X → R+ ∪
{0}, a multiset N ⊆ X of n data points (in this work,
each data point is an agent), a set M ⊆ X of possible
centers and a positive integer k, the task is to find a subset
Y ⊆ M of k cluster centers and assign each data point to
its closest center in Y . The commonly studied objective is
to make data points to be as close to their assigned centers
as possible. Standard algorithms, such as k-means and k-
medians, solve the clustering problem by satisfying a global
criterion, where individual or group-wise happiness has not
been taken into consideration. It has been noted that the
globally efficient solutions are less preferred, especially
when the application scenario is about public resources
allocation (Conitzer et al., 2017; Fain et al., 2018). We
consider the following facility location problem proposed
in (Chen et al., 2019; Micha and Shah, 2020).

Example 1. Suppose the government plans to build k = 11
identical parks to serve the residents, where every resident’s
cost (e.g. gasoline) is proportional to the distance between
her home and the closest park. There is a dense urban center
with a population of 10, 000 and 10 small suburbs, each of
which has a population of 100. Suppose the suburbs are
close to each other (e.g. 10km) compared with the distance
between them and the urban center (e.g. 500km).

Accordingly, by k-means or k-medians algorithms, the gov-
ernment will build 1 park at the urban center, and 10 parks
for each small suburb. It is not hard to see such a plan is
not fair: a single park is used to serve 10, 000 people in the
urban area, but each small suburb of 100 people has its own
a park. This intuition is formalized by Moulin as the princi-
ple of equal entitlement (Moulin, 2003): A solution is fair
if it respects the entitlements of groups of agents, namely,
every subset of agents that is of sufficiently large size is
entitled to choose a center for themselves. Such group-wise
fairness is also referred as core, which has been extensively
studied in game theory (Deng and Papadimitriou, 1994;
Chalkiadakis et al., 2011), social choice (McKelvey, 1986;
Feldman and Serrano, 2006) and fair division (Abdulka-
diroğlu and Sönmez, 1998; Fain et al., 2018).

Chen et al. (2019) first formally and theoretically studied
group fairness in the clustering problem, and proposed
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the proportionality, which is essentially core with non-
transferable utilities. Informally, a k-clustering is propor-
tional if there is no coalition of agents with size at least
n/k such that by deviating together to a new center each
member of this coalition gets strictly better off. We note that
proportionality overlooks the situation where the agents in a
coalition can facilitate internal monetary transfers between
themselves if they can file a justified claim to build a park
at a new location that is better for the coalition overall.

In this work, we refine proportionality by core with transfer-
able utilities or core for short. Formally, the cost of agent
i ∈ N induced by a cluster center y ∈ M is d(i, y), i.e.,
the distance between i and y; and the cost induced by a
k-clustering Y is d(i, Y ) , miny∈Y d(i, y), i.e., the mini-
mum distance from i to any cluster center in Y .

Definition 2 (Core). For any k-clustering Y , a group of
agents S with |S| ≥ n

k is called a blocking coalition, if there
is a new center y′ ∈M \ Y such that by deviating to y′ to-
gether, the total distance of S can be strictly decreased, i.e.,∑
i∈S d(i, y′) <

∑
i∈S d(i, Y ). A k-clustering is called in

the core or a core clustering if there is no blocking coalition.

It is not hard to verify that core fairness is stronger than
proportionality (Chen et al., 2019) in the sense that a core
clustering must be proportional, but not vice versa. Par-
ticularly, in Example 1, although a proportional clustering
builds 10 parks for the city center and 1 park for all the
suburbs, the one for suburbs can be arbitrarily built at any
suburb’s location. However, a core clustering will select a
more preferred location for this park to serve the 10 suburbs
by minimizing their total distance. Finally, it can be shown
that traditional learning algorithms (such as k-means) can
be arbitrarily bad with respect to core fairness.

1.1. Main Contribution

As core clusterings are not guaranteed to exist for all in-
stances, in this work, we provide two relaxation dimensions
to weaken the corresponding requirements. The first dimen-
sion is in parallel with (Chen et al., 2019; Micha and Shah,
2020), where a valid blocking coalition should have large
distance improvement. In the second dimension, different
from their works, we study the relaxation when the size of a
valid blocking coalition is required to be large enough. We
formalize the two relaxations in the following definition.

Definition 3 (Approximate Core). For α ≥ 1 and β ≥ 1,
we say a k-clustering Y is in the (α, β)-core or an (α, β)-
core clustering if there is no S ⊆ N with |S| ≥ α · nk and
y′ ∈M\Y such that β ·

∑
i∈S d(i, y′) <

∑
i∈S d(i, Y ).

We investigate to what extent these two relaxations can be
satisfied by finding the smallest α and β such that (α, β)-
core is nonempty. The relaxation on the size of blocking
coalitions is regarded as α-dimension and that on the dis-

tance improvement as β-dimension. We consider both gen-
eral metric space and special cases, including real line and
discrete tree. Line and tree are two widely studied metric
spaces, which is partly because they extensively exist in
the real world. For example, line can be used to model the
situations where people want to set proper temperatures for
classrooms or schedule meeting times (Feldman and Wilf,
2013), and trees can be used to model referral or query
networks (Kleinberg and Raghavan, 2005; Babaioff et al.,
2012). As argued in (Micha and Shah, 2020), though objec-
tives like truthfulness (Alon et al., 2010) and social welfare
maximization (Feldman and Wilf, 2013) have received sig-
nificant attention, fairness is largely overlooked.

Table 1. Our results for (1, β)-core.

Line Tree Metric Space

Upper Bound O(
√
n) O(

√
n) 2dn

k
e + 1

(Thm 8) (Thm 9) (Thm 10)

Lower Bound Ω(
√
n) Ω(

√
n) Ω(

√
n)

(Thm 7) (Thm 9) (Thm 7)

(1, β)-Core. We first, in Section 3, study the relaxation in
β-dimension, where α is fixed to be 1, i.e., (1, β)-core. Our
results are summarized in Table 1. Different to the study
of proportionality in (Chen et al., 2019), where a constant
approximation can be guaranteed for any metric space, we
show that for core fairness, the existence of (1, o(

√
n))-

core clustering is not guaranteed, even in a real line. On
the other hand, when the metric space is a real line or a
tree, we present efficient algorithms that always output a
(1, O(

√
n))-core clustering, and thus we get the optimal ap-

proximation algorithm by relaxing the distance requirement
solely. With respect to general metric space, we show that a
greedy algorithm ensures O(nk )-approximation. Beyond the
study for arbitrary number k, when k ≥ n

2 , we show that
for any metric space, there is a polynomial time algorithm
which returns a (1, 2)-core clustering, whereas determining
the existence of (1, 2− ε)-core clustering is NP-complete.

Table 2. Our results for (α, 1)-core.

Line Tree Metric Space

Upper Bound 2 2 k

(Thm 14) (Thm 15) (Thm 16)

Lower Bound 2 2 min{k,max{ k
2
, n
4
}}

(Thm 13) (Thm 15) (Thm 16)

(α, 1)-Core. Next, in Section 4, we study the relaxation
in α-dimension, where β is fixed to be 1, i.e., (α, 1)-core.
Our results are summarized in Table 2. Different to the
relaxation in β-dimension, we prove a (2, 1)-core clustering
is guaranteed to exist in line and tree spaces. We comple-
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ment this result with a line instance where (2− ε, 1)-core
is empty for any ε > 0. Thus our algorithms are opti-
mal. For general metric space, we observe that a trivial
upper-bound for α is k, which can be guaranteed by placing
the k centers such that the total distance of all agents is
minimized. We also complement this observation with a
lower-bound instance where (α, 1)-core is empty for any
α ≤ min{k,max{k2 ,

n
4 }}, and thus our algorithm is tight

up to a constant factor. Finally, we end this section by
proving that determining the existence of (α, 1)-core clus-
tering for any constant α ≥ 1 in general metric space is
NP-complete.

(α, β)-Core In Section 5, we integrate previous results
and study the case when both dimensions can be relaxed.
Intuitively, sacrificing the approximation ratio in one di-
mension should be able to improve that in the other. We
prove this intuition affirmatively by quantifying the tradeoff
between the two relaxation dimensions. Specifically,

• for line or tree space and any α ∈ (1, 2], (α, 1
α−1 )-core

is always non-empty (Thm 18);

• for general metric space and α > 1, (α,max{4, 2
α−1 +

3})-core is always non-empty (Thm 19).

We want to highlight the significance of the above two re-
sults, especially for the general metric space, which is re-
garded as the major theoretical contribution of the current
work. The results in Sections 3 and 4 imply that, in the
general metric space, if α = 1 is not relaxed, the best
possible approximation ratio for β is Θ(

√
n); on the other

hand, if β = 1 is not relaxed, the best possible approxima-
tion ratio for α is max{k2 ,

n
4 }. However, our results in this

section show that if we sacrifice a small constant on the ap-
proximation for one dimension, we can guarantee constant
approximation for the other dimension. For example, by
relaxing α to 2, (2, 5)-core is always non-empty, and by
relaxing β to 4, (3, 4)-core is always non-empty.

Experiments Finally, in Section 6, we conduct experi-
ments to examine the performance of our algorithms. We
note that our algorithms have good theoretical guarantees in
the worst case, but they may not find the fairest clustering
for every instance. Accordingly, we first propose a two-
stage algorithm to refine the clusters and then use synthetic
and real-world data sets to show how much it outperforms
classic ones regarding core fairness. Actually, the second
stage of our algorithm provides us an interface to balance
fairness and social efficiency. As shown by the experiments,
our solution does not sacrifice much efficiency.

1.2. Other Related Works

Fairness Study in Machine Learning. The necessity of in-
corporating fairness into machine learning algorithms has

been well recognized in the recent decade. Various fairness
concepts have been proposed based on different principles
and to adapt to different machine learning tasks. For ex-
ample, in another seminal work, Chierichetti et al. (2017)
also studied fairness issue under clustering context but de-
fined fairness as preserving equal representation for each
protected class in every cluster based on disparate impact in
US law. To satisfy their fairness requirement, Chierichetti
et al. (2017) designed a two-step algorithm which first de-
composes data points into fairlets and then runs classical
clustering algorithms on those fairlets. On one hand, the
algorithm is improved by a number of subsequent works
in the sense of approximation ratios (Harb and Lam, 2020;
Bercea et al., 2019) and running time (Huang et al., 2019;
Schmidt et al., 2018; Backurs et al., 2019). On the other
hand, Bera et al. (2019); Rösner and Schmidt (2018) and
Braverman et al. (2019) extended the setting in (Chierichetti
et al., 2017) to allow overlap in protected groups, consider
multiple protected features or address fairness towards re-
mote data points. Under the context of classification, fair-
ness is captured by envy-freeness in (Zafar et al., 2017;
Ustun et al., 2019; Balcan et al., 2019). We refer readers to
the survey by Mehrabi et al. (2019) for a detailed discussion
on fairness study in various machine learning contexts.

Fair Resource Allocation. Group fairness is recently con-
sidered in the resource allocation field when resources are
allocated among groups of agents. Based on how groups
are formed, the models can be classified into two categories.
The first one is when agents are partitioned into fixed groups
and the fairness is only concerned with the pre-existing
groups (Segal-Halevi and Suksompong, 2019; Benabbou
et al., 2019; Kyropoulou et al., 2020). The second one is to
consider the fairness of arbitrarily formed groups of agents
(Aziz and Rey, 2020; Berliant et al., 1992; Conitzer et al.,
2019; Hossain et al., 2020). Our problem falls under the
umbrella of the second category. However, the items in
our work are public and fairness is defined for collective
utilities. Fair clustering problem is also related to public re-
source allocation, where resources can be shared by agents.
For public resources, one popular research agenda is to im-
pose (combinatorial) constraints on the allocations (Conitzer
et al., 2017; Cheng et al., 2019; Fain et al., 2018; Li and
Li, 2020). However, in our setting, all centers will be built
without constraints.

2. Preliminaries
Recall that N ⊆ X is a multiset of n agents in a metric
space (X , d), where for any {x1, x2, x3} ⊆ X , d(x1, x2) +
d(x2, x3) ≥ d(x1, x3). Note that we allow repetitions in N
which means multiple agents can be located at the same posi-
tion. We refer to agents and their locations interchangeably,
when no confusion arises. M ⊆ X is the set of feasible
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locations for cluster centers. Our task is to find Y ∈Mk to
place the k centers such that the clustering is in the (approxi-
mate) core. We first present an example where an exact core
clustering does not exist, and illustrate the two relaxation
dimensions so that an approximate core clustering exists.

Example 4. Consider a complete graph K4 = (V,E) with
4 vertices and the distance between any two vertices is 1.
Let X = M = V . Suppose that at each vertex lies an
agent (i.e., N = V ), and we want to locate k = 2 centers
to cluster these n = 4 agents. First, we note that the (exact)
core is empty for this instance, because for any 2-clustering
Y ∈ M2, the remaining n/k = 2 agents (say u, v) in
V \Y can form a blocking coalition and deviate to a new
center v ∈ V \Y such that d(u, v) + d(v, v) = 1 < 2 =
d(u, Y ) + d(v, Y ). Second, for all β ≥ 2, every solution
Y ∈M2 is a (1, β)-core clustering, because for any group
S ⊆ V with |S| ≥ 2 and any possible deviating center
v ∈ V , we have β

∑
i∈S d(i, v) ≥ 2 ≥

∑
i∈S d(i, Y ).

Finally, for all α > 1, every solution Y ∈M2 is an (α, 1)-
core clustering, because for any group S ⊆ V with |S| ≥
α · nk > 2 and any possible deviating center v ∈ V , we have∑
i∈S d(i, v) ≥ 2 ≥

∑
i∈S d(i, Y ).

Motivated by the above example, our task is to compute
the smallest β or α such that (1, β)-core or (α, 1)-core is
non-empty. Besides the general metric space, we are also
interested in two special spaces, namely, real line R and
graph spaces such as tree.

Line. X =M = R and the distance d is Euclidean, i.e.,
the agents and centers can be at anywhere in the real line.

Graph Space. Let G = (V,E) be an undirected tree
graph. The edges in E may have specified length. In the
graph space induced by G, X =M = V , and the distance
d between two vertices is the length of the shortest path. A
tree space is induced by a tree graph. Note that line is a
continuous space where every point is feasible for cluster
centers, while the graph space is discrete and centers can
only be placed on its vertex set.

The following Lemma 5 enables us to only focus on the
blocking coalitions with minimum possible size.

Lemma 5. Given α, β ≥ 1 and a solution Y ∈ [M]k,
if there is a group S of size |S| > dαnk e such that
β
∑
i∈S d(i, y′) <

∑
i∈S d(i, Y ) for some y′ ∈ M, then

there is a group S′ ⊆ S of size |S′| = dαnk e such that
β
∑
i∈S′ d(i, y′) <

∑
i∈S′ d(i, Y ).

Proof. If S and y′ ∈ M satisfy |S| > dαnk e and∑
i∈S d(i,Y )∑
i∈S d(i,y

′) > β, then there must exist an agent w ∈ S

subject to
d(w, Y )

d(w, y′)
≤
∑
i∈S d(i, Y )∑
i∈S d(i, y′)

.

Let S′ = S\{w}. Then we have

β <

∑
i∈S d(i, Y )∑
i∈S d(i, y′)

≤
∑
i∈S′ d(i, Y )∑
i∈S′ d(i, y′)

.

Repeating this process of removing one agent until |S′| =
dαnk e, we establish the proof.

When k = 1 or n− 1, the solution that minimizes the total
distance to all agents is in the core. When k ≥ n

2 and the
space is a connected graph G(V,E) with V = X = N =
M, by contrast with the result in (Micha and Shah, 2020)
where a proportional k-clustering always exists and can be
computed efficiently, in our setting a core clustering is not
guaranteed. We state a stronger result as follows.

Proposition 6. When k = 1 or k ≥ n−1, the core is always
non-empty. When n

2 ≤ k ≤ n− 2, for any 0 < ε ≤ 1, the
existence of a (1, 2− ε)-core clustering is not guaranteed.

Proof. For the first argument, let

Y ∗ = arg min
Y ∈Mk

∑
i∈N

d(i, Y ), for k = 1 or n− 1.

If k = 1, by definition it is obvious that Y ∗ is in the core
as the ground agent set N is the unique possible deviating
coalition. For k = n − 1, a deviating coalition should
contain 2 agents. Suppose for contradiction that i and j
can decrease their cost by deviating to y′ /∈ Y ∗. Then
we can construct a new clustering Y ′: (1) y′ ∈ Y ′ and
thus d(i, Y ∗) + d(j, Y ∗) > d(i, Y ′) + d(j, Y ′); (2) each
of the other n − 2 centers is at the optimal position for
one of the remaining n − 2 agents in N \ {i, j} and thus
d(l, Y ′) ≤ d(l, Y ∗) for l ∈ N \ {i, j}. Therefore,∑

i∈N
d(i, Y ∗) >

∑
i∈N

d(i, Y ′),

which is a contradiction with the definition of Y ∗.

For the second argument, we consider the graph space in-
duced by a complete graph G = (V,E) with n vertices,
where at each vertex lies an agent, and V = X = N =M.
The distance between any two vertices is 1. When n

2 ≤ k ≤
n − 2, the minimum size of a possible blocking coalition
is dnk e = 2. For every k-clustering Y , there must exist two
agents without center at their locations. Then they form a
blocking coalition (w.r.t. (1, 2− ε)-core) with a deviating
center on one of them: their total distance to the deviating
center is 1, while their total distance to Y is 2. Hence, a
(1, 2− ε)-core clustering does not exist.

3. (1, β)-Core
In this section, we study the relaxation on distance improve-
ment, and show to what extent a (1, β)-core is non-empty.
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3.1. Line

First, a (1, o(
√
n))-core clustering is not guaranteed to exist.

Theorem 7. There is a line instance such that the
(1, o(

√
n))-core is empty.

Proof. Consider an instance building in the real line and
a set of integer points V = {1, 2, . . . , k + 1} in this line,
each of which accommodates k agents. A k-clustering is
required to serve all n = k(k + 1) agents by k centers.

Suppose for contradiction that Y is a (1, o(
√
n))-core clus-

tering. Since there are k + 1 agents’ locations and k centers
to be located, there must be a point j ∈ V so that no center is
located in the interval (j− 1

2 , j+
1
2 ), i.e., (j− 1

2 , j+
1
2 )∩Y =

∅. Assume w.l.o.g. that j 6= k + 1 by symmetry. Consider a
group S consisting of k agents located at j and one agent
located at j + 1. Its size is |S| = k + 1 = n

k , which en-
titles itself to choose a center. Because every agent at j
has a distance at least 1

2 from its location to solution Y ,
the total distance of this group is

∑
i∈S d(i, Y ) ≥ 1

2 · k.
However, if they deviate to a new center y′ = j, their
total distance changes into

∑
i∈S d(i, y′) = 1. Then we

have
∑

i∈S d(i,Y )∑
i∈S d(i,y

′) ≥
k
2 > o(

√
n), which is a contradiction.

Hence, the (1, o(
√
n))-core is empty.

Algorithm 1 ALGl(λ) for Line.

Input: Agents x = {x1, . . . , xn}, number k ∈ N+

Output: k-clustering Y = {y1, . . . , yk}
1: Rename the agents such that x1 ≤ · · · ≤ xn.
2: for i = 1, 2, . . . , k − 1 do
3: Locate a center at yi = xλi.
4: end for
5: Let r = min{λk, n}, and locate a center at yk = xr.

Next, we present our algorithm ALGl, as shown in Al-
gorithm 1, which matches the lower-bound in Theorem 7.
Roughly, ALGl has a tuneable parameter λ, and guarantees
that the number of agents between any two contiguous cen-
ters to be no more than λ − 1. By selecting the optimal λ
depending on k, we can obtain the tight approximation.

Theorem 8. For any line instance, a (1, O(
√
n))-core clus-

tering can be found in linear time. Specifically, ALGl(dnk e)
gives a (1, dnk e − 1)-core clustering if k = Ω(

√
n), and

ALGl(d n
k+1e) gives a (1, k)-core clustering if k = o(

√
n).

Proof. Let x = {x1, . . . , xn} be the locations of agents.
When k = Ω(

√
n) and k = o(

√
n), we define λ = dnk e and

λ = d n
k+1e respectively, and implement ALGl(λ). The out-

put is a k-clustering Y = {y1, . . . , yk}. Now we prove this
solution is a (1, dnk e−1)-core clustering when k = Ω(

√
n),

and a (1, k)-core clustering when k = o(
√
n). Therefore, it

is always a (1, O(
√
n))-core clustering.

Suppose for contradiction that there is a blocking coalition
S ⊆ N of agents with |S| ≥ n

k and a deviating center

y′ ∈ R\Y satisfying r :=
∑

i∈S d(i,Y )∑
i∈S d(i,y

′) > d
n
k e − 1 (resp.

r > k) when k = Ω(
√
n) (resp. k = o(

√
n)). Set two

virtual points y0 = −∞ and yk+1 = +∞. Assume w.l.o.g.
y′ ∈ (yj , yj+1) for some j = 0, . . . , k and d(yj , y

′) ≤
d(yj+1, y

′). Let (N1, N2, N3) be a partition of S with
N1 = {i ∈ S|xi ≤ yj}, N2 = {i ∈ S|yj < xi < yj+1},
and N3 = {i ∈ S|xi ≥ yj+1}. Note that the algorithm
guarantees |N2| ≤ λ− 1. Then we have∑
i∈S

d(i, Y ) ≤
∑
i∈N1

d(i, yj) +
∑
i∈N2

(d(i, y′) + d(y′, yj))

+
∑
i∈N3

d(i, yj+1), (1)

∑
i∈S

d(i, y′) =
∑
i∈N1

(d(i, yj) + d(yj , y
′)) +

∑
i∈N2

d(i, y′)

+
∑
i∈N3

(d(i, yj+1) + d(yj+1, y
′)). (2)

Combining Equations (1) and (2), it follows that

r ≤
∑
i∈N2

d(y′, yj)∑
i∈N1

d(yj , y′) +
∑
i∈N3

d(yj+1, y′)
≤ |N2|
|N1 ∪N3|

,

where the second inequality is due to the assumption
d(yj , y

′) ≤ d(yj+1, y
′).

When k = Ω(
√
n) and λ = dnk e, we have |N2| ≤ dnk e − 1,

and |N1 ∪ N3| = |S| − |N2| ≥ 1. It indicates that r ≤
dnk e − 1 which is a contradiction. So Y is a (1, dnk e − 1)-
core clustering.

When k = o(
√
n) and λ = d n

k+1e, we have |N2| ≤
d n
k+1e−1, and |N1∪N3| = |S|−|N2| ≥ dnk e−d

n
k+1e+1.

By a simple calculation we have r ≤ k as a contradiction.
So Y is a (1, k)-core clustering.

3.2. Tree

Both the lower- and upper-bound results for line space can
be extended to trees. For the proportionality fairness, Micha
and Shah (2020) proposed an algorithm “Proportionally
Fair Clustering for Trees (PFCT)” as follows, which always
returns a proportional solution for trees. A rooted tree (G, r)
is obtained by rooting the tree at an arbitrary node r. Let
level(x) denote the height of node x relative to the root r
(with level(r) = 1), and ST(x) denote the subtree rooted at
node x (i.e. the set of nodes v with level(v) ≤ level(x) and
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the unique path from v to r passes by x). Let |ST (x)| be
the number of agents contained in the subtree ST (x). PFCT
traverses all the nodes from the highest level ones (i.e. the
leaves), locates a center on the node whose subtree contains
at least dnk e agents, and then deletes this subtree. At the end,
agents are assigned to the closest center in the output. We
adapt PFCT into the following ALGt(λ) with a tuneable
parameter λ, which controls the threshold value for locating
a center. When λ = dnk e, ALGt(λ) is equivalent to PFCT.

Algorithm 2 ALGt(λ) for Tree.

Input: A tree G = (V,E), n agents and integer k
Output: k-clustering set Y

1: Let r the root of tree G and d be the height.
2: Y ← ∅
3: Gd ← G
4: for l = d to 1 do
5: Gl−1 ← Gl

6: for every x ∈ V with level (x) = ` and |ST(x)| ≥
λ do

7: if |Y | < k then
8: Y ← Y ∪ {x} and G`−1 ← G`−1 \ ST(x)
9: end if

10: end for
11: end for

Note that it always has |Y | ≤ k, and if |Y | < k, we can
build k − |Y | more centers arbitrarily. When λ = dnk e or
d n
k+1e, we observe that, after removing all centers in Y

from the tree, the number of agents in every component is at
most λ−1. It can be observed thatALGt(λ) is an extension
of ALGl(λ) in the tree, and we have the following theorem.

Theorem 9. For any instance in the tree, we can find a
(1, O(

√
n))-core clustering efficiently. In particular, when

k = Ω(
√
n), ALGt(dnk e) returns a (1, dnk e − 1)-core clus-

tering, and when k = o(
√
n), ALGt(d n

k+1e) returns a
(1, k)-core clustering. Moreover, a (1, o(

√
n))-core cluster-

ing is not guaranteed to exist.

3.3. General Metric Space

For the general metric space, we show that a simple greedy
algorithm, ALGg, as described in Algorithm 3, has the
desired theoretical guarantee. For each x ∈ X , we use
B(x, δ) = {i ∈ N | d(i, x) ≤ δ} to denote the set of agents
in the ball with center x and radius δ. ALGg continuously
grows the radius of each ball centered on each possible
center, with the same speed. When a ball is large enough
to contain at least dnk e points, we open a cluster center at
that ball center. Actually, the underlying idea of expanding
balls of points has been utilized for k-median problems
(Jain and Vazirani, 1999), and Chen et al. (2019) and Micha
and Shah (2020) have proved that ALGg also has good

theoretical performance regarding proportional fairness. We
note that ALGg may output less than k centers, and if so,
the remaining centers can be selected arbitrarily. In Section
6, we will show how to refine ALGg beyond the worst case.

Algorithm 3 ALGg for General Metric Space.

Input: Metric space (X , d), agents N ⊆ X , possible loca-
tionsM⊆ X , and k ∈ N+

Output: k-clustering Y
1: δ ← 0 ; Y ← ∅ ; N ← N .
2: while N 6= ∅ do
3: Smoothly increase δ
4: while ∃x ∈ Y s.t. |B(x, δ) ∩N | ≥ 1 do
5: N ← N\B(x, δ)
6: end while
7: while ∃x ∈M\Y s.t. |B(x, δ) ∩N | ≥ dnk e do
8: Y ← Y ∪ {x} and N ← N\B(x, δ)
9: end while

10: end while

Theorem 10. For any instance in metric space (X , d), algo-
rithmALGg always outputs a (1, 2dnk e+1)-core clustering.

Proof. Let Y be the k-clustering returned by ALGg. By
Lemma 5, it suffices to prove that, for any set of agents
S ⊆ N with |S| = dnk e,

∑
i∈S d(i, Y ) ≤ (2dnk e +

1)
∑
i∈S d(i, y′) holds for any point y′ ∈M \ Y . Let y∗ ∈

Y be the center closest to y′, i.e., y∗ ∈ arg miny∈Y d(y, y′).
Since for any i ∈ S, d(i, Y ) ≤ d(i, y∗), we have∑
i∈S

d(i, Y ) ≤
∑
i∈S

d(i, y∗) ≤
∑
i∈S

d(i, y′) +
∑
i∈S

d(y∗, y′).

(3)
We discuss two cases.

Case 1: maxi∈S d(i, y′) ≥ 1
2d(y∗, y′). If so, then we have∑

i∈S
d(i, y′) ≥ max

i∈S
d(i, y′) ≥ 1

2
d(y∗, y′).

Combining with (3), it follows that

∑
i∈S d(i, Y )∑
i∈S d(i, y′)

≤ 1 +

∑
i∈S d(y∗, y′)∑
i∈S d(i, y′)

≤ 1 +

∑
i∈S d(y∗, y′)

d(y∗, y′)/2
= 1 + 2dn

k
e.

Case 2: maxi∈S d(i, y′) < 1
2d(y∗, y′). Let δ∗ =

maxi∈S d(i, y′), and accordingly, S ⊆ B(y′, δ∗). If there
exists a center y′′ ∈ Y such that B(y′′, δ∗)∩B(y′, δ∗) 6= ∅,
then we have d(y′′, y′) ≤ 2δ∗ < d(y∗, y′), which how-
ever, contradicts to the definition of y∗. So when the al-
gorithm operating radius δ as δ∗, all balls with center in
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Y have an empty intersection with ball B(y′, δ∗), that is,
B(y′, δ∗) ∩ B(y, δ∗) = ∅,∀y ∈ Y . Since |S| = dnk e and
S ⊆ B(y′, δ∗), point y′ must be selected as a center by the
algorithm, contradicting to y′ /∈ Y . Therefore, this case
would never occur.

When the number k of cluster centers is large, we are able to
get better approximations. Recall Proposition 6 that when
k ≥ n− 1, the core is always non-empty. We complement
this result by the following theorem.

Theorem 11. For any metric space with n
2 ≤ k ≤ n − 2,

there is an algorithm that computes a (1, 2)-core clustering
in O(n2 log n) time.

The (1, 2)-core clustering provided above is best possible,
because by Proposition 6, a (1, 2− ε)-core clustering may
not exist. Finally, we end this section by proving that decid-
ing the existence of a (1, 2− ε)-core clustering is hard.

Theorem 12. For any 0 < ε ≤ 1, the problem of deter-
mining the existence of a (1, 2 − ε)-core clustering is NP-
complete, even if k ≥ n

2 and it is in a graph space induced
by G = (V,E) with |V | = n.

4. (α, 1)-Core
Next, we study to what extent core fairness can be achieved
when only the requirement of blocking coalition’s size is
relaxed, i.e., finding the smallest α such that (α, 1)-core is
non-empty.

4.1. Line

Theorem 13. In line space, for any ε > 0, there exists an
instance such that the (2− ε, 1)-core is empty.

Proof. Consider an instance in the real line with n =
C(2C − 1) agents and k = 2C − 1 centers to be opened
for some integer C ≥ 3

ε . Let K be a sufficiently
large number, say K = Cn. The agents are partitioned
into C parts (N1, · · · , NC) such that for any j ∈ [C],
Nj = {i1, i2, · · · , i2C−1} contains 2C − 1 agents where
{i1, · · · , iC−1} are located at jK, agent iC is located at
jK + 1 and {iC+1, · · · , i2C−1} are located at jK + 2.

As we only open 2C−1 centers, for any (2−ε, 1)-core clus-
tering, there exists Nj such that all agents in Nj are served
by a single center. Since the agents in {i1, · · · , iC−1} and
{iC+1, · · · , i2C−1} are symmetric with respect to iC , as-
sume w.l.o.g. the center is placed at x ≥ jK + 1. Note that
2C − 3 ≥ (2− ε)dnk e. We show that S = {i1, . . . , i2C−3}
forms a blocking coalition w.r.t. (2− ε, 1)-core by deviating
to a new center i1:∑

i∈S
d(i, i1) = 1 + 2(C − 3) < 2C − 4

=
∑
i∈S

d(i, iC) ≤
∑
i∈S

d(i, x).

Hence, there does not exist a (2− ε, 1)-core clustering.

Fortunately, by selecting a proper parameter λ, Algorithm
ALGl guarantees the tight approximation ratio.

Theorem 14. For any line instance, ALGl(dnk e) returns a
(2, 1)-core clustering.

4.2. Tree

We continue to consider the tree spaces.

Theorem 15. For any tree instance, we can find a (2, 1)-
core clustering efficiently. For any ε > 0, a (2− ε, 1)-core
clustering is not guaranteed to exist in a tree.

4.3. General Metric Space

By the definition of (α, 1)-core clustering, a (k, 1)-core
clustering always exists, because any potential blocking
coalition must contain all agents and any solution containing
the optimal single center is a (k, 1)-core clustering. Next,
we show that this trivial upper-bound is asymptotically tight.

Theorem 16. The (k, 1)-core is always non-empty. Fur-
ther, the existence of an (α, 1)-core clustering, for any
α ≤ min{k,max{k2 ,

n
4 }}, is not guaranteed.

Finally, we give a hardness result for the existence of an
(α, 1)-core clustering.

Theorem 17. For any given constant α ≥ 1, the problem
of determining the existence of an (α, 1)-core clustering is
NP-complete.

5. (α, β)-Core
Finally, we study the approximate fairness by relaxing both
dimensions simultaneously. Recalling the results in Sections
3.1 and 4.1, if α = 1, the best possible approximation of
β is Θ(

√
n); however, if α is relaxed to 2, we are able

to get the optimum in the β-dimension, i.e., β = 1. The
following theorem shows the exact tradeoff between the
approximations in both dimensions for line and tree spaces.

Theorem 18. For any α > 1, every line or tree instance
has a non-empty (α, β)-core with β = max

{
1, 1

α−1

}
.

Next, we extend the above theorem to general metric space.
Again our results in Sections 3.3 and 4.3 show that if α-
dimension is not relaxed, the best approximation in β-
dimension is Θ(

√
n); and if β-dimension is not relaxed,

the best approximation in α-dimension is max{k2 ,
n
4 }. As

we will see in the following theorem, however, if we sacri-
fice a small constant for one dimension, we can guarantee
constant approximation for the other as well.
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Theorem 19. For any α > 1, any instance in a metric space
has a non-empty (α, β)-core with β = max

{
4, 2

α−1 + 3
}

.

Proof. Let Y be the k-clustering returned by ALGg. By
Lemma 5, it suffices to prove that, for any set of agents
S ⊆ N with |S| = dαnk e,∑

i∈S
d(i, Y ) ≤ max

{
4,

2

α− 1
+ 3

}
·
∑
i∈S

d(i, y′)

holds for any point y′ ∈M \ Y . Suppose for contradiction
that there is a blocking coalition S ⊆ N with |S| = dαnk e
and a deviating center y′ ∈M\Y .

Let y∗ ∈ Y be the cluster center closest to y′, i.e., y∗ ∈
arg miny∈Y d(y, y′). Note that for any i ∈ S, d(i, Y ) ≤
d(i, y∗). Because S is a blocking coalition, we have

r :=

∑
i∈S d(i, Y )∑
i∈S d(i, y′)

> β = max

{
4,

2

α− 1
+ 3

}
.

Consider an open ball X centered at y′ with radius R :=
d(y′,y∗)

2 , X = {i ∈ S | d(i, y′) < R}. Note that |X| ≤
dnk e − 1, otherwise by ALGg, y′ should be selected as a
center. Define

r1 :=

∑
i∈X d(i, Y )∑
i∈S d(i, y′)

and r2 :=

∑
i∈S\X d(i, Y )∑
i∈S d(i, y′)

.

Then r = r1 + r2. For r1, if r1 ≥ 1, we have,

r1 ≤
∑
i∈X d(i, y′) +

∑
i∈X d(y′, y∗)∑

i∈X d(i, y′) +
∑
i∈S\X d(i, y′)

≤
∑
i∈X d(y′, y∗)∑
i∈S\X d(i, y′)

≤ |X| · 2R
|S\X| ·R

≤
2
(
dnk e − 1

)
dαnk e − d

n
k e+ 1

≤ 2

α− 1
.

Combining with the other case r1 < 1, we have r1 ≤
max

{
1, 2

α−1

}
. Then, we derive an upper-bound for r2.

r2 ≤

∑
i∈S\X

(d(i, y′) + d(y′, y∗))∑
i∈S\X

d(i, y′)
≤ 1 +

|S \X| · 2R
|S \X| ·R

= 3,

where the last inequality is due to d(y′, y∗) = 2R and
d(i, y′) ≥ R for any i ∈ S \X . Combing the upper-bounds
of r1, r2, we have β < r = r1 + r2 ≤ max{4, 2

α+1 + 3} =
β, which is a contradiction.

6. Experiments
6.1. A Refined Algorithm ALG+

g (obj)

Before examining the performance of our algorithm, we note
that though ALGg has good guarantee in the worst-case, it

may not produce the fairest clustering in every instance. For
example, in Figure 1a, we randomly partition each of 1,000
nodes into 3 Gaussian-distributed sets with probability 0.2,
0.3 and 0.5 (from left to right). We want to build k = 10
centers to serve the nodes; however, ALGg only returns 4
clusters whose centers are shown by the red stars. Obviously,
the extra 6 centers can significantly improve its performance,
regarding both fairness and efficiency.

Algorithm 4 ALG+
g (obj) for General Metric Space.

Input: Metric space (X , d), agents N ⊆ X , possible loca-
tionsM⊆ X , and k ∈ N+

Output: k-clustering C.
1: Initialize C = ∅.
2: Run ALGg on (M,N , k) and get Y = {y1, . . . , yk′}.
3: Let Ni be the corresponding cluster centered at yi.
4: Rename so that (|N1| mod n

k ) ≥ . . . ≥ (|Nk′ |
mod n

k ).

5: Let r = k −
∑k′

i=1b
|Ni|
n/k c.

6: for i = 1, · · · , k′ do
7: Let ki = d |Ni|

n/k e if i ≤ r; otherwise, ki = b |Ni|
n/k c.

8: {yi1, . . . , yiki} = arg min obj(M,Ni, ki).
9: C ← C ∪ {yi1, . . . , yiki}.

10: end for

To improve the performance, we refine ALGg in Algorithm
4, denoted by ALG+

g (obj). Roughly, we first use ALGg
to obtain a preliminary clustering Y and resultant partition
N = ∪iNi, which guarantees the fairness in the worst
case, and then we proportionally assign all centers to these
clusters according to their populations, i.e.,

∑
i ki = k

and ki ∝ |Ni|. Within each preliminary cluster i, the real
centers are selected to optimize a social objective function
obj(M,Ni, ki) in Line 8. For example, when obj is the k-
means objective (i.e., minimizing the squared Euclidean dis-
tance), we refer our algorithm to ALG+

g (k-means). Thus,
obj actually provides us an interface to balance fairness and
social efficiency. In the experiment shown in Figure 1a, we
feed ALG+

g (k-means) with k-means++ algorithm (Arthur
and Vassilvitskii, 2007)1, which builds centers proportion-
ally to the populations of the three Gaussian sets (i.e., 2,3,5
centers for each). However, if we directly use k-means++
algorithm on N , it builds 4,3,3 centers for each Gaussian
cluster, as shown in Figure 1b, where the right set contains
half of all points but only gets 3 centers.

6.2. Experiments
We implement experiments on two qualitatively different
datasets used for clustering. (1) Gaussian dataset (synthetic):
the experiment in Section 6.1 (Figure 1a and 1b) is repeated

1k-means++ algorithm is Lloyd’s algorithm for k-means mini-
mization objective with a particular initialization.
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(a) ALG+
g (k-means) (b) k-means++ (c) α and social cost in Gaussian dataset

(d) β in Gaussian dataset (e) α and social cost in Mopsi locations (f) β in Mopsi locations

Figure 1. (a) and (b) depict the clustering centers when two algorithms cluster Gaussian dataset for k = 10. For a range of k = 8, . . . , 17
(horizontal axis), (c) and (d) (resp. (e) and (f)) compare the fairness and efficiency in Gaussian dataset (resp. Mopsi locations).

for k from 8 to 17. (2) Mopsi locations in clustering bench-
mark datasets (Fränti and Sieranoja, 2018) (real-world): a
set of 2-D locations for n = 6014 users in Joensuu. Note
that the second dataset concerning human beings is exactly
the situation when the data points need to be treated fairly.
Both datasets are in Euclidean plane.

We consider the k-means objective as social cost, and com-
pare our algorithm ALG+

g (k-means) with k-means++. For
each dataset, we consider a range of values of k. Figure
1c, 1e show the values of α (which is the minimum value
such that the output clustering is a (α, 1)-core), and the ratio
between the social costs of the two algorithms. Figure 1d, 1f
show the values of β. In terms of fairness,ALG+

g (k-means)
has a significantly lower α and β than k-means++ in most
cases (though in few cases it is slightly larger). In terms of
efficiency, the social cost of ALG+

g (k-means) is bounded
by a small constant compared with k-means++, and ours
is even as good as k-means++ on Gaussian dataset. To
conclude, our algorithm ensures better core fairness for the
agents than classic clustering algorithms, and meanwhile,
empirically has a good efficiency as well.

7. Conclusion
In this work, we revisited the algorithmic fair centroid clus-
tering problem, and proposed a novel definition for group

fairness – core. We demonstrated the extent to which an
approximate core clustering is guaranteed to exist. There
are many future directions that are worth exploring. For
example, it will be interesting to improve the approximation
bounds for other spaces such as d-dimensional Euclidean
space for d ≥ 2, and simple graphs with unit weight. In
Supplementary Material, we prove that even when all agents
consist of all vertices of a unit-weight tree, an exact core
can still be empty. A systematic analysis of upper- and
lower-bounds is left for future study.
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