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Abstract

In this supplementary material, we provide the proofs of the theoretical results in the main paper.

A. Proof of Theorem 1
[Sketch of proof techniques.] We first prove that the expected excess clustering risk E[L(f̂∗W,Z)]− L∗ can be bounded

by 2E supfW,Z∈F

∣∣∣L(fW,Z)− L̂n(fW,Z)
∣∣∣. Based on U -process (Clémençon et al., 2008), the standard symmetrization

technique (Bartlett & Mendelson, 2002) and Jensen’s inequality (Mohri et al., 2018), this term can be bounded by 2R(F).
Furthermore, R(F) can be bounded by K maxk R(Fk), that is

R(F) ≤ K max
k

ES,σ

 sup
fW,Zk∈Fk

∣∣∣∣∣∣ 2

bn/2c

bn/2c∑
i=1

σifW,Zk

(
xi,xi+bn2 c

)∣∣∣∣∣∣
 ,

where Fk is a function space of the output coordinate k of F , and where K maxk R(Fk) means the maximum Rademacher
complexity of the restrictions of the function class along each coordinate with timing a factor of O(K). Finally,
K maxk R(Fk) can be bounded by 4KM√

n
. For L(f̂∗W,Z)− L∗, we can bound it by 2supfW,Z∈F

∣∣∣L(fW,Z)− L̂n(fW,Z)
∣∣∣ in

a similar method. Since
∣∣∣L(fW,Z)− L̂n(fW,Z)

∣∣∣ is a bounded difference function, so the term L(f̂∗W,Z)− L∗ can be proved
by McDiarmid inequality (Mohri et al., 2018).

Proof. (1.) We first prove that E[L(f̂∗W,Z)]− L∗ ≤ 4KM√
bn/2c

.

E
[
L(f̂∗W,Z)

]
− L∗ = E

[
L(f̂∗W,Z)− L̂n(f̂∗W,Z) + L̂n(f̂∗W,Z)− L∗

]
= E

[
L(f̂∗W,Z)− L̂n(f̂∗W,Z)

]
+ E

[
L̂n(f̂∗W,Z)− L∗

]
≤ E sup

fW,Z∈F

∣∣∣L(fW,Z)− L̂n(fW,Z)
∣∣∣+ E sup

fW,Z∈F

∣∣∣L̂n(fW,Z)− L(fW,Z)
∣∣∣

= 2E sup
fW,Z∈F

∣∣∣L(fW,Z)− L̂n(fW,Z)
∣∣∣

≤ 2E sup
fW,Z∈F

∣∣∣∣∣∣L(fW,Z)− 1

bn/2c

K∑
k=1

bn/2c∑
i=1

fW,Zk(xi,xi+bn/2c)

∣∣∣∣∣∣ .

The last inequality is obtained by the Lemma A.1 in (Clémençon et al., 2008), which refers to the U -process technique. Let
S̄ = x̄1, ..., x̄n be an independent copy of S = x1, ...,xn, independent of σ1, . . . , σbn/2c, then by a standard symmetrization
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technique and the Jensen’s inequality (Mohri et al., 2018), the last inequality can be bounded by:

2ES,S̄ sup
fW,Z∈F

∣∣∣∣∣∣ 1

bn/2c

bn/2c∑
i=1

K∑
k=1

fW,Zk
(
x̄i, x̄i+bn/2c

)
− 1

bn/2c

bn/2c∑
i=1

K∑
k=1

fW,Zk
(
xi,xi+bn/2c

)∣∣∣∣∣∣
= 2ES,S̄,σ sup

fW,Z∈F

1

bn/2c

∣∣∣∣∣∣
bn/2c∑
i=1

K∑
k=1

σi
[
fW,Zk

(
x̄i, x̄i+bn/2c

)
− fW,Zk

(
xi,xi+bn/2c

)]∣∣∣∣∣∣
= 4ES,σ sup

fW,Z∈F

1

bn/2c

∣∣∣∣∣∣
bn/2c∑
i=1

K∑
k=1

σifW,Zk
(
xi,xi+bn/2c

)∣∣∣∣∣∣
= 2R(F)

≤ 2K max
k

R(Fk)

= 4K max
k

ES,σ sup
fW,Zk∈Fk

1

bn/2c

∣∣∣∣∣∣
bn/2c∑
i=1

σifW,Zk
(
xi,xi+bn/2c

)∣∣∣∣∣∣
≤ 4K max

k
ES sup

fW,Zk∈Fk

1

bn/2c

bn/2c∑
i=1

(fW,Zk(xi,xi+bn/2c))
2

1/2

Use Khintchine-Kahane inequality (Latała & Oleszkiewicz, 1994),

≤ 4KM
1√
bn/2c

Use Assumption 1 in the main paper.

Based on the above results, we have E[L(f̂∗W,Z)]− L∗ ≤ 8KM√
n

.

(2.) We then prove that L(f̂∗W,Z)− L∗ ≤ 8KM√
n

+ E

√
8 log 1

δ

n with probability 1− δ.

Similarly, we can derive that

L(f̂∗W,Z)− L∗ = L(f̂∗W,Z)− L̂n(f̂∗W,Z) + L̂n(f̂∗W,Z)− L∗

≤ sup
fW,Z∈F

∣∣∣L(fW,Z)− L̂n(fW,Z)
∣∣∣+ sup

fW,Z∈F

∣∣∣L̂n(fW,Z)− L(fW,Z)
∣∣∣

= 2 sup
fW,Z∈F

∣∣∣L(fW,Z)− L̂n(fW,Z)
∣∣∣ .

Let S̄ = {x1, ..., x̄t, ...,xn}, which are different from S in xt, and denote L̂′n(fW,Z) as the empirical clustering risk of
hypothesis function fW,Z on samples S̄, then we have:∣∣∣∣∣ sup

fW,Z∈F

∣∣∣L(fW,Z)− L̂n(fW,Z)
∣∣∣− sup

fW,Z∈F

∣∣∣L(fW,Z)− L̂′n(fW,Z)
∣∣∣∣∣∣∣∣

≤ sup
fW,Z∈F

∣∣∣L̂n(fW,Z)− L̂′n(fW,Z)
∣∣∣

≤ 2

n(n− 1)
sup

fW,Z∈F

n∑
j=1,j 6=t

(∣∣∣∣∣
K∑
k=1

fW,Zk(xt,xj)

∣∣∣∣∣+

∣∣∣∣∣
K∑
k=1

fW,Zk(x̄t,xj)

∣∣∣∣∣
)

≤ 4

n
E.

The last inequality is obtained because of Assumption 1 in the main paper. So, by McDiarmid inequality (Mohri et al., 2018)

with increments bounded by 4
nE, the term L(f̂∗W,Z)−L∗ can be bounded by 8KM√

n
+E

√
8 log 1

δ

n with probability 1− δ.
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B. Proof of Theorem 2
B.1. Preliminaries

To improve the readability of this paper, we further simplify the notations. Let g : RK → R be a summation function:

∀α ∈ RK , g(α) =

K∑
i=1

αi,

and let

`fW,Z (X,X ′) = g(fW,Z)(X,X ′) =

K∑
k=1

fW,Zk(X,X ′).

Assume that L is a function class defined as

L :=

{
`fW,Z =

K∑
k=1

fW,Zk

∣∣∣fW,Z ∈ F} , (1)

the Eqs. (2) and (3) in the main paper can thus be written as

L̂n(`fW,Z ) := L̂n(fW,Z) =
1

n(n− 1)

n∑
i,j=1,i6=j

`fW,Z (xi,xj),

L(`fW,Z ) := L(fW,Z) = E`fW,Z (X,X ′).

Furthermore, we define the following local clustering Rademacher complexity:
Definition 1. For any r > 0, the expectation local Rademacher complexity of a function space L for clustering learning is
defined as:

R(Lr) := R
({
α`fW,Z

∣∣∣α ∈ [0, 1], `fW,Z ∈ L, L
[(
α`fW,Z

)2] ≤ r}) ,
where Lr =

{
α`fW,Z

∣∣∣α ∈ [0, 1], `fW,Z ∈ L, L
[(
α`fW,Z

)2] ≤ r} and L
[(
α`fW,Z

)2]
:= E

[(
α`fW,Z

)2]
.

From Definition 1, one can easily verify that R(L) is equal to R(F) defined in the main paper, and also there holds that

R(Lr) = R(Fr),

where R(Fr) is the corresponding local Rademacher complexity of function class F . In this section, we will use the above
defined concise notations to finish the proofs.

[Sketch of proof techniques.] We first prove that the generalization error can be bounded through an assumption over the
uniform deviation: if uniform deviation Ûn(L̄) ≤ r

Eh , where ∀h > max
(

1,
√

2
2E

)
and L̄ is the normalized loss space:

L̄ =

 r

max
(
L
(
`2fW,Z

)
, r
)∣∣∣`fW,Z ∈ L

 ,

for ∀`fW,Z ∈ L,

L ≤ max

{(
h

h− 1
L̂n

)
,
(
L̂n +

r

Eh

)}
.

Then, we propose the upper bound of Ûn(L̄) with R(Lr): Ûn(L̄) ≤ 2R(Lr) +
√

2r ln δ
bn/2c + 4 ln δ

3bn/2c . The above results show

that we can choose a suitable r to satisfy the assumption Ûn(L̄) ≤ r
Eh to accomplish this proof. Finally, we show that the

suitable r can be chosen with the fixed point r∗ of R(Lr). Therefore we obtain that with probability 1− δ:

L(`fW,Z ) ≤ 2h+ 1

h− 1
L̂n(`fW,Z ) + c1r

∗ +
c2

n− 1
,

where c1 = 8Eh and c2 = 8h ln δ + 6. This proof is inspired by (Liu et al., 2017). By replacing the function class L with
another function class, we can finish the proof.
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B.2. Proof of Theorem 2

We first prove the following five lemmas.

Lemma 1. Let L̄ be the normalized loss space

L̄ =

{
r

max(L(`2fW,Z ), r)
`fW,Z

∣∣∣`fW,Z ∈ L
}
. (2)

Suppose that, ∀h > 1,

Ûn(L̄) := sup
¯̀
fW,Z

∈L̄

{
L(¯̀

fW,Z )− L̂n(¯̀
fW,Z )

}
≤ r

Eh
.

Then, ∀`fW,Z ∈ L, we have

L(`fW,Z ) ≤ max

{(
h

h− 1
L̂n(`fW,Z )

)
,
(
L̂n(`fW,Z ) +

r

Eh

)}
.

Proof. Note that, ∀¯̀
fW,Z ∈ L̄:

L(¯̀
fW,Z ) ≤ L̂n(¯̀

fW,Z ) + Ûn(L̄) ≤ L̂n(¯̀
fW,Z ) +

r

Eh
. (3)

Let us consider the two cases:

1) L(`2fW,Z ) ≤ r, `fW,Z ∈ L.

2) L(`2fW,Z ) > r, `fW,Z ∈ L.

In the first case ¯̀
fW,Z = `fW,Z , by (3), we have

L(`fW,Z ) = L(¯̀
fW,Z ) ≤ L̂n(¯̀

fW,Z ) +
r

Eh
= L̂n(`fW,Z ) +

r

Eh
. (4)

In the second case, ¯̀
fW,Z = r

L(`2fW,Z
)
`fW,Z , then

L(`fW,Z )− L̂n(`fW,Z ) ≤ Ûn(L) =
L(`2fW,Z )

r
Ûn(L̄)

≤
E · L(`fW,Z )

r

r

Eh
=
L(`fW,Z )

h
,

(5)

where Ûn(L) := sup`fW,Z∈L

{
L(`fW,Z )− L̂n(`fW,Z )

}
. By combining the results of Eqs. (4) and (5), the proof is over.

Lemma 2. L̄ ⊆ Lr.

Proof. Let us consider Lr in the two cases:

1) L(`2fW,Z ) ≤ r, `fW,Z ∈ L.

2) L(`2fW,Z ) > r, `fW,Z ∈ L.

In the first case, ¯̀
fW,Z = `fW,Z and then:

L(`2fW,Z ) = L(¯̀2
fW,Z ) ≤ r.
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In the second case, L(`2fW,Z ) > r, so we have that

¯̀
fW,Z =

[
r

L(`2fW,Z )

]
`fW,Z ,

r

L(`2fW,Z )
≤ 1,

and the following bound holds:

L(¯̀2
fW,Z ) =

[
r

L(`2fW,Z )

]2

L(`2fW,Z ) ≤

[
r

L(`2fW,Z )

]
L(`2fW,Z ) = r.

Thus, the lemma is proved.

Lemma 3. ψn(r) = R(Lr) is a sub-root function.

Proof. In order to prove the lemma, the following properties mush apply:

1) ψn(r) is positive

2) ψn(r) is non-decreasing

3) ψn(r)/
√
r is non-increasing

By the definition of R(Lr), it is easy to verity that R(Lr) is positive.

Concerning the second property, we have that, for 0 ≤ r1 ≤ r2: Lr1 ⊆ Lr2 , therefore

ψn(r1) = ES,σ

 sup
`fW,Z∈L

r1

∣∣∣∣∣∣ 2

bn2 c

bn2 c∑
i=1

σi`fW,Z (xi,xbn2 c+i)

∣∣∣∣∣∣


≤ ES,σ

 sup
`fW,Z∈L

r2

∣∣∣∣∣∣ 2

bn2 c

bn2 c∑
i=1

σi`fW,Z (xi,xbn2 c+i)

∣∣∣∣∣∣


= ψn(r2).

Finally, concerning the third property, for 0 ≤ r1 ≤ r2, let

`r2fW,Z = arg sup
`fW,Z∈L

r2

ES,σ

 sup
`fW,Z∈L

r2

∣∣∣∣∣∣ 2

bn2 c

bn2 c∑
i=1

σi`fW,Z (xi,xbn2 c+i)

∣∣∣∣∣∣
 .

Note that, since r1
r2
≤ 1, we have that

√
r1
r2
`r2fW,Z ∈ L

r2 . Consequently:

L

[(√
r1

r2
`r2fW,Z

)2
]

=
r1

r2
L
[
(`r2fW,Z )2

]
≤ r1.

Thus, we have that:

ψn(r1) = ES,σ

 sup
`fW,Z∈L

r1

∣∣∣∣∣∣ 2

bn2 c

bn2 c∑
i=1

σi`fW,Z (xi,xbn2 c+i)

∣∣∣∣∣∣


≥ ES,σ

∣∣∣∣∣∣ 2

bn2 c

bn2 c∑
i=1

σi

√
r1

r2
`r2fW,Z (xi,xbn2 c+i)

∣∣∣∣∣∣


=

√
r1

r2
ES,σ

 sup
`fW,Z∈L

r2

∣∣∣∣∣∣ 2

bn2 c

bn2 c∑
i=1

σi`fW,Z (xi,xbn2 c+i)

∣∣∣∣∣∣


=

√
r1

r2
ψn(r2),
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which allows proving the claim since

ψn(r2)
√
r2
≤ ψn(r1)
√
r1

.

Lemma 4. With probability at least 1− δ,

Ûn(L̄) ≤ 2R(L̄) +

√
2r ln δ

bn/2c
+

4 ln δ

3bn/2c
.

Proof. Note that L̂n(`fW,Z ) = 1
n(n−1)

∑
i 6=j `fW,Z (xi,xj) is a non-sum-of-i.i.d. pairwise loss. According to (Clémençon

et al., 2005; 2008), we introduce permutations to convert the non-sum-of-i.i.d pairwise loss to a sum-of-i.i.d form. Assume
Γ is the symmetric group of degree n and π ∈ Γ which permutes the n samples. Then we have,

L̂n(`fW,Z )
P
=

1

n!

∑
π∈Γ

1

bn2 c

bn2 c∑
j=1

`fW,Z (xj ,xbn2 c+j), (6)

where P
= means identity in distribution. Denote

G(S, L̄) = sup
`fW,Z∈L̄

∣∣∣∣∣∣ 1

bn2 c

bn2 c∑
j=1

`fW,Z (xj ,xbn2 c+j)− L(`fW,Z )

∣∣∣∣∣∣ , (7)

then, we have

Un(L̄)

= ES sup
`fW,Z∈L̄

[
L(`fW,Z )− L̂n(`fW,Z )

]

≤ 1

n!

∑
π∈Γ

ES

 sup
`fW,Z∈L̄

∣∣∣∣∣∣ 1

bn2 c

bn2 c∑
j=1

`fW,Z (xj ,xbn2 c+j)− L(`fW,Z )

∣∣∣∣∣∣


= ES
[
G(S, L̄)

]
.

(8)

Next, we give a bound for ES
[
G(S, L̄)

]
by use of symmetrization. We introduce a ghost data set

S′ = {x′1, . . . ,x′n}

that is independent of S and identically distributed. Assume σ1, . . . , σbn/2c are independent Rademacher random variables,
independent of S and S′.

ES
[
G(S, L̄)

]
≤ ES,S′

 sup
`fW,Z∈L̄

∣∣∣∣∣∣ 1

bn2 c

bn2 c∑
j=1

(
`fW,Z (xj ,xbn2 c+j)− `fW,Z (x′j ,x

′
bn2 c+j)

)∣∣∣∣∣∣


= ES,S′,σ

 sup
`fW,Z∈L̄

∣∣∣∣∣∣ 1

bn2 c

bn2 c∑
j=1

σj

(
`fW,Z (xj ,xbn2 c+j)− `fW,Z (x′j ,x

′
bn2 c+j)

)∣∣∣∣∣∣


= ES,σ

 sup
`fW,Z∈L̄

∣∣∣∣∣∣ 2

bn2 c

bn2 c∑
j=1

σj`fW,Z (xj ,xbn2 c+j)

∣∣∣∣∣∣
 = R(L̄).

(9)
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In the following, we will bound the G(S, L̄). Note that, for all `fW,Z ∈ L̄,

V 2(`fW,Z ) = L(`2fW,Z )− [L(`fW,Z )]2 ≤ L(`2fW,Z ) = r,

where V 2(`fW,Z ) is the variance of `fW,Z ∈ L̄. Thus, according to the Bennett concentration inequality (Bousquet, 2002),
with probability at least 1− δ, we have

G(S, L̄) ≤ ES [G(S, L̄)] +

√
2r ln 1

δ

bn2 c
+

4ES [G(S, L̄)] ln 1
δ

bn2 c
+

ln 1
δ

3bn2 c
.

From (9), we know that ES [G(S, L̄)] ≤ R(L̄), so

G(S, L̄) ≤ R(L̄) +

√
2r ln 1

δ

bn2 c
+

4R(L̄) ln 1
δ

bn2 c
+

ln 1
δ

3bn2 c
. (10)

Note that, for u, v ≥ 0,
√
u+ v ≤

√
u+
√
v, 2
√
uv ≤ u+ v.

So, by (10), the following inequality holds:

G(S, L̄)

≤ R(L̄) +

√
2r ln 1

δ

bn2 c
+ 2

√
ln 1

δ

bn2 c
R(L̄) +

ln 1
δ

3bn2 c

≤ 2R(L̄) +

√
2r ln 1

δ

bn2 c
+

4 ln 1
δ

3bn2 c
.

(11)

Similar with the proof (8), it is easy to verity that

Ûn(L̄) ≤ 1

n!

∑
π∈Γ

G(S, L̄). (12)

By combining the results of (11) and (12), the proof is over.

Lemma 5. Assume that r∗ is the fixed point of R(Lr), that is, r∗ is the solution of R(Lr) = r with respect to r. Then,

∀h > max
(

1,
√

2
2E

)
, with probability 1− δ:

L(`fW,Z ) ≤ max

{
h

h− 1
L̂n(`fW,Z ), L̂n(`fW,Z ) + c1r

∗ +
c2

n− 1

}
,

where c1 = 8hE and c2 = 8h ln 1
δ + 6 ln 1

δ .

Proof. According to Lemma 2, we know that L̄ ⊆ Lr. Therefore, from Lemma 4, with probability 1− δ, we have

Ûn(L̄) ≤2R(L̄) +

√
2r ln 1

δ

bn/2c
+

4 ln 1
δ

3bn/2c

≤2R(Lr) +

√
2r ln 1

δ

bn/2c
+

4 ln 1
δ

3bn/2c
.

By Lemma 3, we know that R(Lr) is a sub-root function. Thus, R(Lr) ≤
√
rr∗ for all r ≥ r∗. Then,

Ûn(L̄) ≤ 2
√
rr∗ +

√
2r ln 1

δ

bn/2c
+

4 ln 1
δ

3bn/2c
.
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The last step of the proof consists in showing that r can be chosen, such that Ûn(L̄) ≤ r
Eh and r ≥ r∗, so that we can

exploit Lemma 1 and conclude the proof. For this purpose, we set

A = 2
√
r∗ +

√
2 ln 1

δ

bn/2c
, B =

4 ln 1
δ

3bn/2c
.

Thus, we have to find the solution of

A
√
r +B =

r

Eh
,

which is

r =

[(
2B
hE +A2

)
+

√(
2B
hE +A2

)2 − 4B2

E2h2

]
2

E2h2

(13)

Since h ≥ max(1,
√

2
2E ), h2E2 ≥ 1

2 . Therefore, from (13), we have

r ≥ A2E2h2 ≥ A2

2
= r∗,

r ≤ A2E2h2 + 2BEh.

Thus, we have
r

Eh
≤ A2Eh+ 2B

=

2
√
r∗ +

√
2 ln 1

δ

bn/2c

2

Eh+
8 ln 1

δ

3bn/2c
.

Note that, ∀a, b > 0, (a+ b)2 ≤ 2a2 + 2b2, so we have that

r

Eh
≤ 8Ehr∗ +

8h

n− 1
ln

1

δ
+

16

3n− 3
ln

1

δ

≤ 8Ehr∗ +
8h+ 6

n− 1
ln

1

δ
.

By substituting the above inequality into Lemma 1, we can prove that ∀h > max
(

1,
√

2
2E

)
, with probability 1− δ,

L(`fW,Z ) ≤ max

{
h

h− 1
L̂n(`fW,Z ), L̂n(`fW,Z ) + c1r

∗ +
c2

n− 1

}
,

where c1 = 8hE and c2 = 8h ln 1
δ + 6 ln 1

δ .

Proof of Theorem 2. By Lemma 5, ∀h > max
(

1,
√

2
2E

)
, with probability 1− δ we obtain that

L(`fW,Z ) ≤ 2h− 1

h− 1
L̂n(`fW,Z ) + c1r

∗ +
c2

n− 1
,

where r∗ is the fixed point of R(Lr).

Assume that ˆ̀∗
fW,Z

= arg min`fW,Z∈L
L̂n(`fW,Z ) and `∗fW,Z = inf`fW,Z∈L L(`fW,Z ), so there holds thatL(`fW,Z−`∗fW,Z ) ≥

0. And since `fW,Z ≤ E due to Assumption 1, so there holds that L((`fW,Z − `∗fW,Z )2) ≤ 2EL(`fW,Z − `∗fW,Z ). If we apply

Lemmas 1-5 to the class {`fW,Z − `∗fW,Z}, we will get ∀h > max
(

1,
√

2
4E

)
, with probability 1− δ

L(`fW,Z − `∗fW,Z ) ≤ max

{
h

h− 1

[
L̂n(`fW,Z − `∗fW,Z )

]
, L̂n(`fW,Z − `∗fW,Z ) + c1r

∗ +
c2

n− 1

}
,
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where c1 = 16hE and c2 = 8h ln 1
δ +6 ln 1

δ , and where r∗ is the fixed point of the local Rademacher complexity of function
class {`fW,Z − `∗fW,Z}. Note that L̂n(ˆ̀∗

fW,Z
− `∗fW,Z ) ≤ 0, so we have

L(f̂∗W,Z)− L∗ ≤ c1r∗ +
c2

n− 1
.

And, note that from the Definition 1, the local Rademacher complexity of the function class {`fW,Z − `∗fW,Z} is equal to the
local Rademacher complexity of the excess function class Fexc.

Therefore, we obtain that under Assumption 1 in the main paper, and let r∗ be the fixed point of R(Frexc), that is r∗ is the
solution of R(Frexc) = r with respect to r. Then, ∀h > max

(
1,
√

2
4E

)
, with probability 1− δ:

L(f̂∗W,Z)− L∗ ≤ ch,Er∗ +
ch,δ
n− 1

, (14)

where ch,E and ch,δ are constants dependent on h,E and h, δ respectively.

C. Proof of Theorem 3
Lemma 6. Let L be a function class satisfying Eq. (1). The excess loss class is defined as: Lexc := {`fW,Z − `∗fW,Z}. Since
‖`fW,Z‖∞ ≤ E, ∀`fW,Z ∈ L, there holds the following inequality:

R(Lrexc) ≤ inf
ε>0

[
2R
{
`fW,Z ∈ L̃ : L̂n(`2fW,Z ) ≤ ε2

}
+

64E logN (ε/2,L, ‖ · ‖2)

n
+

√
8r logN (ε/2,L, ‖ · ‖2)

n

]
,

where L̃ :=
{
`fW,Z − `′fW,Z : `fW,Z , `

′
fW,Z

∈ L
}

and L̂n(`2fW,Z ) = 1
n(n−1)

∑
i6=j `

2
fW,Z

(xi,xj).

Proof. Let zi = (xi,xi+bn2 c), one can see that z1, ..., zbn2 c are i.i.d. samples. It is easy to write the following local
Rademacher complexity of class L:

R
({
`fW,Z ∈ L : L(`2fW,Z ) ≤ r

})
= ES,σ

 sup
`fW,Z∈

{
`fW,Z∈L:L(`2fW,Z

)≤r
}
∣∣∣∣∣∣ 2

bn/2c

bn/2c∑
j=1

σj`fW,Z (zj)

∣∣∣∣∣∣
 .

Use the proof method of Theorem 2 in paper (Lei et al., 2016), it is easy to obtain:

R
({
`fW,Z ∈ L : L(`2fW,Z ) ≤ r

})
≤

inf
ε>0

[
2R
{
`fW,Z ∈ L̃ : L̂n(`2fW,Z ) ≤ ε2

}
+

64E logN (ε/2,L, ‖ · ‖2)

n
+

√
8r logN (ε/2,L, ‖ · ‖2)

n

]
. (15)

Note that there is no difference between the metric entropy of the function class Lexc and mertic entropy of the loss class L
itself: that is, from the definition of covering number, one has

logN∞(ε,L, S) = logN∞(ε,Lexc, S). (16)

This implies that we can bound the local Rademacher complexity of the excess loss class Lexc by:

inf
ε>0

[
2R
{
`fW,Z ∈ L̃ : L̂n(`2fW,Z ) ≤ ε2

}
+

64E logN (ε/2,L, ‖ · ‖2)

n
+

√
8r logN (ε/2,L, ‖ · ‖2)

n

]
,

where R
{
`fW,Z ∈ L̃ : L̂n(`2fW,Z ) ≤ ε2

}
is obtained by using Dudley entropy integral inequality (Lemma A.5 in (Lei et al.,

2016)) and Eq. (16).
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Proof of Theorem 3. Similar to Section A, R(Frexc) in this proof can be bounded by:

K max
k

R(Frexc,k) = K max
k

ES,σ

 sup
fW,Zk∈F

r
exc,k

∣∣∣∣∣∣ 2

bn/2c

bn/2c∑
i=1

σifW,Zk(xi,xi+bn2 c)

∣∣∣∣∣∣
 ,

where Frexc,k is a function class of the output coordinate k of Frexc.

By Lemma 6, it is easy to verify that:

R(Frexc) ≤ K max
k

R(Frexc,k)

≤ K max
k

inf
ε>0

[
2R
{
fW,Zk ∈ F̃k : L̂n(f2

W,Zk
) ≤ ε2

}
+

64M logN (ε/2,Fk, ‖ · ‖2)

n
+

√
8r logN (ε/2,Fk, ‖ · ‖2)

n

]
,

(17)
where F̃k := {fW,Zk − f ′W,Zk : fW,Zk , f

′
W,Zk

∈ Fk} and L̂n(f2
W,Zk

) = 1
n(n−1)

∑
i 6=j f

2
W,Zk

(xi,xj).

After obtaining the relationships between the expected clustering local Rademacher complexity and the covering number,
we can use some mild assumptions of the covering number and to obtain the suitable fixed point r∗.

(1). Assume that there exist three positive constants γ, d and p satisfying logN (ε,Fk, ‖ · ‖2) ≤ d logp(γ/ε) for any
0 < ε ≤ γ and k = 1, ...,K. Based on Eq. (17) and the Corollary 1 in (Lei et al., 2016), for any 0 < r < γ2 and n ≥ γ−2

it is easy to verify that:

R(Frexc) ≤ cM,p,γK min

[(√
dr logp(2γr−1/2)

n
+
d logp(2γr−1/2)

n

)
,

(
d logp(2γn1/2)

n
+

√
rd logp(2γn1/2)

n

)]
,

where cM,p,γ is a constant dependent on M , γ and p. Then, we can set

R(Frexc) ≤ cM,p,γK

(
d logp(2γn1/2)

n
+

√
rd logp(2γn1/2)

n

)
.

The sub-root function can be set as:

ψ(r) := cM,p,γK

[
d logp(2γn1/2)

n
+

√
rd logp(2γn1/2)

n

]
.

Let r∗ be its fixed point then we have:

r∗ = cM,p,γK

[
d logp(2γn1/2)

n
+

√
r∗d logp(2γn1/2)

n

]
.

Denote d logp(2γn1/2)
n as x, we get an equation:

r∗ = cM,p,γK
(
x+
√
xr∗
)
,

Solving this equation, it is easy to verify that r∗ ≤ cM,p,γK
2x. That is r∗ ≤ cM,p,γ,dK

2 logp(2γn1/2)
n , so finally we obtain

that r∗ ≤ cM,p,γ,dK
2 logp(n)
n . By substituting this into Eq. (14), we obtain that: with probability 1− δ,

L(f̂∗W,Z)− L∗ ≤ cM,p,γ,d,h,EK
2 logp(n)

n
+

ch,δ
n− 1

.

(2). Assume that there exist two constants γ > 0 and p > 0 satisfying logN (ε,Fk, ‖ · ‖2) ≤ γε−p for any k = 1, ...,K.
Based on Eq. (17) and the Corollary 3 in (Lei et al., 2016), it is easy to verify that

R(Frexc) ≤ cM,p,γK
[
n−1/2ε1−p/2 + ε−pn−1 +

√
rε−pn−1

]
,
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where cM,p,γ is a constant dependent on M , γ and p. We can set:

ψ(r) := cM,p,γK
[
n−1/2ε1−p/2 + ε−pn−1 +

√
rε−pn−1

]
.

Let r∗ be its fixed point then we have:

r∗ = cM,p,γK
[
n−1/2ε1−p/2 + ε−pn−1 +

√
r∗ε−pn−1

]
.

Denote n−1/2ε1−p/2 as x and ε−pn−1 as y, we get an equation:

r∗ = cM,p,γK
(
x+ y +

√
yr∗
)
.

Solving this equation, it is easy to verify that r∗(ε) ≤ cM,p,γK
2[n−1/2ε1−p/2 + ε−pn−1]. Since ε > 0, we can choose

ε = n−
1

2+P , then we obtain

r∗ = cM,p,γK
2n−

2
p+2 .

By substituting this into Eq. (14), we obtain that: with probability 1− δ,

L(f̂∗W,Z)− L∗ ≤ cM,p,γ,h,EK
2n−

2
p+2 +

ch,δ
n− 1

.

(3). Assume that there exist two constants γ > 0 and p > 0 satisfying logN (ε,Fk, ‖ · ‖2) ≤ γε−p log2 2
ε for any

k = 1, ...,K. Based on Eq. (17) and the Corollary 2 in (Lei et al., 2016), it is easy to verify that

R(Frexc) ≤ cM,p,γK

[
n−1/2ε1−p/2 log

1

ε
+ ε−pn−1 log2 4

ε
+

√
rε−pn−1 log2 4

ε

]
,

where cM,p,γ is a constant dependent on M , γ and p. We can set:

ψ(r) := cM,p,γK

[
n−1/2ε1−p/2 log

1

ε
+ ε−pn−1 log2 4

ε
+

√
rε−pn−1 log2 4

ε

]
.

Let r∗ be its fixed point then we have:

r∗ = cM,p,γK

[
n−1/2ε1−p/2 log

1

ε
+ ε−pn−1 log2 4

ε
+

√
r∗ε−pn−1 log2 4

ε

]
.

Denote n−1/2ε1−p/2 log 1
ε as x and ε−pn−1 log2 4

ε as y, we get an equation:

r∗ = cM,p,γK
(
x+ y +

√
yr∗
)
.

Solving this equation, it is easy to verify that r∗(ε) ≤ cM,p,γK
2[n−1/2ε1−p/2 log 1

ε + ε−pn−1 log2 4
ε ]. Since ε > 0, we can

choose ε = (log n)
2
p+2n−

1
2+P , then we obtain

r∗ = cM,p,γK
2n−

2
p+2 (log n)

2−p
p+2 log

n

(log n)
2
p+2

.

By substituting this into Eq. (14), we obtain that: with probability 1− δ,

L(f̂∗W,Z)− L∗ ≤ cM,p,γ,h,EK
2n−

2
p+2 (log n)

2−p
p+2 log

n

(log n)
2
p+2

+
ch,δ
n− 1

.
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D. Proof of Theorem 4
Lemma 7.

∑K
k=1 fW,Zk is K-Lipschitz with respect to the L∞ norm in the worst case. For the hard clustering scheme,∑K

k=1 fW,Zk is 1-Lipschitz with respect to the L∞ norm.

Proof. (1.) For ∀fW,Z , f ′W,Z ∈ F ,∥∥∥∥∥
K∑
k=1

fW,Zk −
K∑
k=1

f ′W,Zk

∥∥∥∥∥
∞

=
∥∥fW,Z1

+ · · ·+ fW,ZK − f ′W,Z1
− · · · − f ′W,ZK

∥∥
∞ ≤ K

∥∥fW,Z − f ′W,Z∥∥∞ .

(2.) We have mentioned in the main paper that in the hard clustering scheme, a pair of observations can at most correspond
to one cluster, which means that Zk is valued either 0 or 1 for a pair of observations where k = 1, ...,K, and at most one
valued 1. Thus, for the hard clustering scheme,∥∥∥∥∥

K∑
k=1

fW,Zk −
K∑
k=1

f ′W,Zk

∥∥∥∥∥
∞

=
∥∥fW,Z1

+ · · ·+ fW,ZK − f ′W,Z1
− · · · − f ′W,ZK

∥∥
∞ ≤

∥∥fW,Z − f ′W,Z∥∥∞ .

Lemma 7 suggests that Assumption 5 in the main paper is a very mild assumption.

Lemma 8. (Foster & Rakhlin, 2019) Let F ⊆ {f : X → RK}, and let φ : RK → R be L-lipschitz with respect to the L∞
norm, that is ‖φ(V )− φ(V ′)‖∞ ≤ L‖V − V ′‖∞, ∀V, V ′ ∈ RK . For any δ > 0, there exists a constant C > 0 such that if
|φ(f(x))| ∨ ‖f(x)‖∞ ≤ β, then

Rn(φ ◦ F) ≤ C · L
√
K max

i
R̃n(Fi) log

3
2 +δ

(
βn

maxi R̃n(Fi)

)
,

where Rn(φ ◦ F) = Eσ
[
supf∈F

∣∣ 1
n

∑n
i=1 σiφ(f(xi))

∣∣], R̃n(Fi) = supS∈Xn Rn(Fi).

Proof of Theorem 4. Assume that Z = X × X , based on Assumption 1 in the main paper, we have
∣∣∣∑K

k=1 fW,Zk(z)
∣∣∣ ∨

‖fW,Z(z)‖∞ ≤ E for all z ∈ Z . Let zi = (xi,xi+bn2 c), and let S = {z1, ..., zbn/2c ∈ Zb
n
2 c}. Note that zi in S are i.i.d.

samples, thus Lemma 8 can be applied to our defined empirical clustering Rademacher complexity Rn(F), where Rn(F) is
defined by considering the U -process technique. Based on Assumption 5 in the main paper and Lemma 8, we then bound
Rn(F) in the following form: for any η > 0, there exists a constant C > 0 such that

Rn(F) ≤ CL
√
K max

k
R̃n(Fk) log

3
2 +η

(
Ebn/2c

maxk R̃n (Fk)

)
≤ CL

√
K max

k
R̃n(Fk) log

3
2 +η

(
En

maxk R̃n(Fk)

)
.

Furthermore, we refine Lemma 8 and bound R̃n(Fk) by:

R̃n(Fk) = sup
S∈Zb

n
2
c
Rn(Fk) = sup

S∈Zb
n
2
c
Eσ

 sup
fW,Zk∈Fk

∣∣∣∣∣∣ 2

bn2 c

bn2 c∑
j=1

σjfW,Zk(zj)

∣∣∣∣∣∣


≥ 2 sup
S∈Zb

n
2
c

1

bn2 c

 sup
fW,Zk∈Fk

bn2 c∑
j=1

f2
W,Zk

(zj)

 1
2

,

where the last inequality is obtained by Khintchine inequality with p = 1 in (Haagerup, 1981). Since fW,Zk ≤M , we set

sup
S∈Zb

n
2
c

1
bn2 c

(
supfW,Zk∈Fk

∑bn2 c
j=1 f

2
W,Zk

(zj)
) 1

2

= M 1√
bn/2c

. So

∀k, R̃n(Fk) ≥ 2M√
n
.
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Thus, we can prove that:

En

maxk R̃n(Fk)
≤ En3/2

2M
,

Based on the above results, we finally obtain that under Assumption 1 and 5 in the main paper, for any η > 0 and
S = xni=1 ∈ Xn, there exists a constant C > 0 such that

Rn(F) ≤ CL
√
K max

k
R̃n(Fk) log

3
2 +η(
√
n).

E. Proof of Theorem 5
Proof. In Section A, we have proved that:

E[L(f̂∗W,Z)]− L∗ ≤ 4ES,σ sup
fW,Z∈F

1

bn/2c

∣∣∣∣∣∣
bn/2c∑
i=1

K∑
k=1

σifW,Zk
(
xi,xi+bn/2c

)∣∣∣∣∣∣ = 2R(F).

Based on Theorem 4, for any η > 0, there exists a constant C > 0 that makes the term 2R(F) can be bounded by

2CL
√
K max

k
ER̃n(Fk) log

3
2 +η(
√
n)

= 4CL
√
K log

3
2 +η(
√
n) max

k

ES,σ sup
S∈Xn

sup
fW,Zk∈Fk

1

bn/2c

∣∣∣∣∣∣
bn/2c∑
i=1

σifW,Zk
(
xi,xi+bn/2c

)∣∣∣∣∣∣


= 4CL
√
K log

3
2 +η(
√
n) max

k
ES

1

bn/2c

 sup
S∈Xn

sup
fW,Zk∈Fk

bn/2c∑
i=1

fW,Zk
(
xi,xi+bn/2c

)21/2

Use Khintchine-Kahane inequality (Latała & Oleszkiewicz, 1994),

≤ 4MCL
√
K log

3
2 +η(
√
n)

1√
bn/2c

Use Assumption 1 in the main paper.

So based on the above results, E[L(f̂∗W,Z)]− L∗ ≤ 8MCL
√
K log

3
2
+η(
√
n)√

n
.

Based on the analysis in Section A and the McDiarmid inequality (Mohri et al., 2018), the term L(f̂∗W,Z) − L∗ can be

bounded by 8MCL
√
K log

3
2
+η(
√
n)√

n
+ E

√
8 log 1

δ

n with probability 1− δ.

F. Proof of Theorem 6
Proof. Based on Theorem 5, we can bound the expected local clustering Rademacher complexity in the following formula:

ERn(Frexc) ≤ CL
√
K max

k
ER̃n(Frexc,k) log

3
2 +η(
√
n).

According to Lemma 6, we have

R(Frexc) ≤ CL
√
K log

3
2 +η(
√
n) max

k
inf
ε

[
2R
{
fW,Zk ∈ F̃k : L̂n(f2

W,Zk
) ≤ ε2

}
+

64M logN (ε/2,Fk, ‖ · ‖2)

n
+

√
8r logN (ε/2,Fk, ‖ · ‖2)

n

]
,

where F̃k :=
{
fW,Zk − f ′W,Zk : fW,Zk , f

′
W,Zk

∈ Fk
}

and L̂n(f2
W,Zk

) = 1
n(n−1)

∑
i 6=j f

2
W,Zk

(xi,xj).
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The following steps are also to use the covering number assumptions to obtain the suitable fixed point r∗.

(1). Assume that there exist three positive constants γ, d and p satisfying logN (ε,Fk, ‖ · ‖2) ≤ d logp(γ/ε) for any
0 < ε ≤ γ and k = 1, ...,K. Based on the analysis in Section C, for any 0 < r < γ2, n ≥ γ−2 and η > 0, it is easy to
verify that:

R(Frexc) ≤ cγ,d,p,M,CL
√
K log

3
2 +η(
√
n) min

[(√
dr logp(2γr−1/2)

n
+
d logp(2γr−1/2)

n

)
,(

d logp(2γn1/2)

n
+

√
rd logp(2γn1/2)

n

)]
.

Obviously, we have

R(Frexc) ≤ cγ,d,p,M,CL
√
K log

3
2 +η(
√
n)

(
d logp(2γn1/2)

n
+

√
rd logp(2γn1/2)

n

)
.

Then, the sub-root function can be set as:

ψ(r) := cγ,d,p,M,CL
√
K log

3
2 +η(
√
n)

(
d logp(2γn1/2)

n
+

√
rd logp(2γn1/2)

n

)
.

Let r∗ be its fixed point then we have:

r∗ = cγ,d,p,M,CL
√
K log

3
2 +η(
√
n)

(
d logp(2γn1/2)

n
+

√
r∗d logp(2γn1/2)

n

)
.

Solving this equation, we get:

r∗ ≤ cM,p,γ,d,CL
2K

log3+p+2η(n1/2)

n
.

By substituting this into Eq. (14), we obtain that: for any η > 0, with probability 1− δ,

L(f̂∗W,Z)− L∗ ≤ cM,p,γ,d,C,h,EL
2K

log3+p+2η(n1/2)

n
+

ch,δ
n− 1

.

(2). Assume that there exist two constants γ > 0 and p > 0 satisfying logN (ε,Fk, ‖ · ‖2) ≤ γε−p for any k = 1, ...,K.
Based on the analysis in Section C, it is easy to verify that

R(Frexc) ≤ cM,p,γ,CL
√
K log

3
2 +η(
√
n)
[
n−1/2ε1−p/2 + ε−pn−1 +

√
rε−pn−1

]
.

So we can set:

ψ(r) := cM,p,γ,CL
√
K log

3
2 +η(
√
n)
[
n−1/2ε1−p/2 + ε−pn−1 +

√
rε−pn−1

]
.

Let r∗ be its fixed point then we have:

r∗ = cM,p,γ,CL
√
K log

3
2 +η(
√
n)
[
n−1/2ε1−p/2 + ε−pn−1 +

√
r∗ε−pn−1

]
.

Solving this equation, it is easy to verify that

r∗(ε) ≤ cM,p,γ,CL
2K log3+2η(n1/2)[n−1/2ε1−p/2 + ε−pn−1].
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Since ε > 0, we can choose ε = n−
1

2+P , then we obtain

r∗ = cM,p,γ,CL
2K log3+2η(n1/2)n−

2
p+2 .

By substituting this into Eq. (14), we obtain that: for any η > 0, with probability 1− δ,

L(f̂∗W,Z)− L∗ ≤ cM,p,γ,C,h,EL
2K log3+2η(n1/2)n−

2
p+2 +

ch,δ
n− 1

.

(3). Assume that there exist two constants γ > 0 and p > 0 satisfying logN (ε,Fk, ‖ · ‖2) ≤ γε−p log2 2
ε for any

k = 1, ...,K. Based on the analysis in Section C, it is easy to verify that

R(Frexc) ≤ cM,p,γ,CL
√
K log

3
2 +η(n1/2)

[
n−1/2ε1−p/2 log(

1

ε
) + ε−pn−1 log2(

4

ε
) +

√
rε−pn−1 log2(

4

ε
)

]
.

So we can set:

ψ(r) := cM,p,γ,CL
√
K log

3
2 +η(n1/2)

[
n−1/2ε1−p/2 log(

1

ε
) + ε−pn−1 log2(

4

ε
) +

√
rε−pn−1 log2(

4

ε
)

]
.

Let r∗ be its fixed point then we have:

r∗ = cM,p,γ,CL
√
K log

3
2 +η(n1/2)

[
n−1/2ε1−p/2 log(

1

ε
) + ε−pn−1 log2(

4

ε
) +

√
r∗ε−pn−1 log2(

4

ε
)

]
.

Solving this equation, it is easy to verify that

r∗(ε) ≤ cM,p,γ,CL
2K log3+2η(

√
n)

[
n−1/2ε1−p/2 log

1

ε
+ ε−pn−1 log2 4

ε

]
.

Since ε > 0, we can choose ε = (log n)
2
p+2n−

1
2+P , then we obtain

r∗ = cM,p,γ,CL
2K log3+2η(

√
n)n−

2
p+2 (log n)

2−p
p+2 log

n

(log n)
2
p+2

= cM,p,γ,C,ηL
2Kn−

2
p+2 (log n)

2−p
p+2 +3+2η log

n

(log n)
2
p+2

.

By substituting this into Eq. (14), we obtain that: for any η > 0, with probability 1− δ,

L(f̂∗W,Z)− L∗ ≤ cM,p,γ,C,h,E,ηL
2Kn−

2
p+2 (log n)

2−p
p+2 +3+2η log

n

(log n)
2
p+2

+
ch,δ
n− 1

.
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