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Abstract

In this supplementary material, we provide the proofs of the theoretical results in the main paper.

A. Proof of Theorem 1

[Sketch of proof techniques.] We first prove that the expected excess clustering risk E[L( f{fv, z)] — L* can be bounded

by 2Esupy,, e 7 |L(fw,z) — Lin( fw, Z)‘ Based on U-process (Clémencon et al., 2008), the standard symmetrization

technique (Bartlett & Mendelson, 2002) and Jensen’s inequality (Mohri et al., 2018), this term can be bounded by 2R(F).
Furthermore, R(F) can be bounded by K max; R(F}), that is

[n/2]
2
R(F) < KmaxEg o sup |—— E oifw.z (xi,xi ,) ,
; fwzper | [n/2] = SN &

where F, is a function space of the output coordinate k of F, and where K maxy R(F}) means the maximum Rademacher
complexity of the restrictions of the function class along each coordinate with timing a factor of O(K). Finally,

K maxy, R(F},) can be bounded by 25X For L(fA{,*VZ) — L*, we can bound it by 2supy,, , ¢ 7 ’L(fwyz) —L, (fwyz)’ in

vn
a similar method. Since ‘L( fw.z) — Ln(fw.z)| is a bounded difference function, so the term L( fA{}, ) — L* can be proved
by McDiarmid inequality (Mohri et al., 2018).

Proof. (1.) We first prove that E[L(f;‘vz)] — [* < AEM

E|L(fivz)] = L' = B [L(fivz) = Lalfivz) + En(fivz) - 1]
=E |L(fiv2) - Lnlfiv.2)] + E [Ln(fivz) - 1]
E

sup ‘L(fw,z) - f/n(fW,Z)’ + Ef Supf L

fw,ze€F W,z €
=2E sup ’L(fw,z) - f/n(fWZ)’
fw,z€F
1 K [n/2]
<2E sup |L(fw,z)— —57 Tw.z, (Xis Xy [ny2))| -
fmser [n/2] 2 ; e

The last inequality is obtained by the Lemma A.1 in (Clémencon et al., 2008), which refers to the U-process technique. Let
S = X1, ..., X, be an independent copy of S = X1, ..., X,,, independent of 71, ... , 7|, /2|, then by a standard symmetrization
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technique and the Jensen’s inequality (Mobhri et al., 2018), the last inequality can be bounded by:

[n/2] K ln/2] K

2Eg 5 f;l;léf ﬁ ; ;fw,zk (ii,iiﬂn/zj) - T}QJ ; I;fw,zk (Xi’Xz‘Hn/%)
n/2] K
=2E5 5., f;t;};fm ; kzz:lai [fw,z (%0 Xis|n2)) — w2 (%i: X4 (n/2))]
1 n/2] K
=4Eg & f;gl;f (/2] ; ’;UifW,Zk (X, Xit[n/2))
= 2R(F)
< 2K max R(Fk)
[n/2]
=4K m]?xEs’,, fw.szliléﬂ W ; o fw,z, (Xiaxi+[n/2j)
/2] e
< 4ngxEs sup T Z (fw,z. (Xi7Xi+Ln/2J))2

fw,z, €Fk \_n/QJ i—1

Use Khintchine-Kahane inequality (Latata & Oleszkiewicz, 1994),

1
Vn/2]

<4KM Use Assumption 1 in the main paper.

Based on the above results, we have E[L( f{,‘v 7)] —L* < %.

(2.) We then prove that L( ff;; ;) — L* < % +E 810% with probability 1 — 4.

Similarly, we can derive that
L(fltv,z) - L= L(fév,z) - zn(ff/kvz) + [A/n(frjvz) - L

< sup ‘L(fw,z) - f/n(fW,Z)‘ + sup ‘ﬁn(fW,Z) — L(fw,z)
fw,z€F fw,z€F

=2 sup ‘L(fw,z) - ﬁn(fWZ)’ .
fw,z€F

Let S = {x1,..., Xy, ..., X, }, which are different from S in x;, and denote L, (fw.z) as the empirical clustering risk of
hypothesis function fyy,z on samples .S, then we have:

sw_|L(fw.z) = Ln(fwz)| = sup \L(fw,z>—£;<fw,z>\’

fw,zE€F fw,zE€F
< sup En(fw,z)*f/%(fw,z)’
fw,z€F
9 n K K
< 1) P Z wa,zk(xt,xj) + wa,zk(fit,xj)
n(n — )fW’Ze}-j:I,j;ét k=1 k=1
<
n

The last inequality is obtained because of Assumption 1 in the main paper. So, by McDiarmid inequality (Mohri et al., 2018)

with increments bounded by %E, the term L( f{,‘v ) — L* can be bounded by % +EBy/8 lc;g 5 with probability 1 —4. O




Sharper Generalization Bounds for Clustering

B. Proof of Theorem 2

B.1. Preliminaries

To improve the readability of this paper, we further simplify the notations. Let g : RX — R be a summation function:

K
Ya € RN g(a) = oy,
and let

ng,Z(X7X/) (fWZ) X X ZfWZk X, X)
k=1

Assume that £ is a function class defined as

K
L:= {gfw,z = ZfW,Zk
k=1

the Eqgs. (2) and (3) in the main paper can thus be written as

fW,ZGJ:}a (D

‘in(gfw,z) = ‘i’n(fwyz) n—l Z ngZ XzaXJ)
i,j=1,i#j

L(gfw,z) = L(fWZ) = Ingw,z (X, X' ).
Furthermore, we define the following local clustering Rademacher complexity:

Definition 1. For any r > 0, the expectation local Rademacher complexity of a function space L for clustering learning is
defined as:

R(L™):=R ({aefwvz a €016y, , €L,L [(aefwvz)ﬂ < r}) :

2 2 2
ac0,1], 4y, , €L, L {(aﬁfw_z) } < r} and L [(aﬁfwyz) ] =E [(aﬁfwyz) ]
From Definition 1, one can easily verify that R(L) is equal to R(F) defined in the main paper, and also there holds that
R(L") = R(F"),

where R(F") is the corresponding local Rademacher complexity of function class . In this section, we will use the above
defined concise notations to finish the proofs.

where L” = {aéfwyz

[Sketch of proof techniques.] We first prove that the generalization error can be bounded through an assumption over the

uniform deviation: if uniform deviation Un(ﬁ_) < %7, Where Vh > max (1, gg) and L is the normalized loss space:

- ‘szyz ech,

forvey,, , € L,

Lgmax{(hflﬁ ) (L +Eh)}

Then, we propose the upper bound of Uy, (£) with R(L"): U, (L) < 2R(L") + Tgl/%f + ?ﬁ};}g 7- The above results show

that we can choose a suitable 7 to satisfy the assumption Un(ﬁ) < %7 to accomplish this proof. Finally, we show that the
suitable 7 can be chosen with the fixed point 7* of R(L"). Therefore we obtain that with probability 1 — o:

2h—|—1A

(gfwz)— h_ (Efwz)"i'clr +71

where ¢; = 8Fh and ¢z = 8h1nd + 6. This proof is 1nsp1red by (Liu et al., 2017). By replacing the function class £ with
another function class, we can finish the proof.
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B.2. Proof of Theorem 2

We first prove the following five lemmas.

Lemma 1. Let L be the normalized loss space

r

£= {max(L(ﬁiwz)w)ng’Z

Lyy , € £} . )
Suppose that, Vh > 1,

- — P r
= s L —L < —.
Un(‘c) vail’lzpeﬁ{ (efw,z) n(gfw,z)} = Eh

Then, Vly,, , € L, we have
L fw,z) = max h an fw.z ) n\tfw, z Eh .

Proof. Note that, V/y,, , € L:

- PO P PO T
L(gfw,z) < Ln(sz,z) + Un([') < Ln(sz,z) + ﬁ 3)
Let us consider the two cases:
1) L(E?-W’Z) <r/l,, €L
2) L(E?W’Z) >, Ly, , €L
In the first case Efw,z = Ly ,» by (3), we have
- Ao r A T
L(Efw,z) = L(gfw,z) S Ln(gfw,z) + ﬂ = Ln(gfw,z) + ﬂ (4)
In the second case, £/, , = Wﬁ fw. 7> then
: Wz :
2 "
( ];W Z) Un(ﬁ)

« N L
L(efw,z) - Ln(éfw,z) < UTL(L) =
&)
E
<

: L(gfw,z) r _ L(gfw,z)
- T Eh h ’

where U, (L) := SUpg, ec {L(EfW7Z) ~ L, Crw2) } By combining the results of Eqs. (4) and (5), the proof is over. [
Lemma?2. £ C L.

Proof. Let us consider L in the two cases:

D L&, ) <7l € L.

2) L, ) > 7. lpy, € L.

In the first case, £ fw.z = Lpw. , and then:

L2 Y=L )<r

fw,z fw,z
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In the second case, L(E?W ,) > 7,50 we have that

- r r
gfw,z = Efw.z7 <1,
lL(f?W,Z)] LG, )
and the following bound holds:
2
LB, )= | =5 | L% )< || LU, ) =7
( W,z) [L(K?w,z) ( W,Z) L(K?W,Z) ( fW,z)

Thus, the lemma is proved.

Lemma 3. v, (r) = R(L") is a sub-root function.

Proof. In order to prove the lemma, the following properties mush apply:
1) v, (r) is positive
2) 1y, (r) is non-decreasing
3) ¥, (r)/+/r is non-increasing

By the definition of R(L"), it is easy to verity that R(L") is positive.

Concerning the second property, we have that, for 0 < r; < ro: L™ C L2 therefore

5]
2
Un(r1) =Eso | sup |57 Y oily o (X, X2 ) 4i)
Crw, 7 €L §J i=1
[ o L3 1
<Eseo sup n O'iéfw,z(x% X[%J+i)
Crw, 7 €L72 3] i=1
= 1/%("'2)-
Finally, concerning the third property, for 0 < r; < ro, let
9 3]
€;iV’Z = argsup Es,o sup Tj Uigfw,z(xi»xﬁj-i-i)
Loy, 7 €LT2 Crw,z €L | L2] 525

Note that, since :—1 < 1, we have that , /2¢"2 € £"2. Consequently:
2 ro fw,z

p 2
1 pro
(\/ mé.fw,z>

L

. n T 2
=L (e, 2] <.

Thus, we have that:
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which allows proving the claim since

’ <
V2 T o/m
O
Lemma 4. With probability at least 1 — §,
P - 2rInd 41nd

Proof. Note that L, Crw. ) = ﬁ > iz Lfw. 2 (Xi,X;) is a non-sum-of-i.i.d. pairwise loss. According to (Clémengon
et al., 2005; 2008), we introduce permutations to convert the non-sum-of-i.i.d pairwise loss to a sum-of-i.i.d form. Assume
T is the symmetric group of degree n and m € I' which permutes the n samples. Then we have,

A P 1
Ln(efw,z) = Z ngwz XJ’XV‘jJrj) (6)

" rer 2

P D
where = means identity in distribution. Denote

,7
N
i

= 1
G(Sv ‘C) = Ssup QJ ng,Z(XjaXL%j+j) - L(Efw‘z) y (7N
Crwz €L | 124 j=1
then, we have
Un(£L)
=Es sup B {L(gfw,z) - f’n(efw,z)}
Z.fw)zeﬁ
1 ) ®)
< EZES sup L ZEfWZ XJ7X\_”J+J) (gfw,z)
" wer L,z €L 2 j=1
=Eg [G(S,ﬂ)] .
Next, we give a bound for Eg [G (S, E)] by use of symmetrization. We introduce a ghost data set
S ={xi,...,x,}
that is independent of S and identically distributed. Assume 071, ..., 0|, /2] are independent Rademacher random variables,
independent of S and S’.
1 L5]
<ES,S’ sup I_Q (éfWZ(X]?XI_ J+])_£fWZ(X],XL J+]))
ZfW,ZeL" 2 j=1
5]
1 ©)
=Ess .o sup LTZU]' (Efwz(xjvx\_ J+J) EfWZ(X_]?xl_ j+7)>
efW.ZEE 24 =1
9 5]
=Esqo | sup 7] 0ilty (X5, X 15)| | = R(L)
Ly z€L | L2 j=1
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In the following, we will bound the G(S, £). Note that, for all £ fw.z € L,

VQ(éfw,Z) = L(E?W,Z) - [L(Efw,z)]Q < L(E?CW,Z) =T,
with probability at least 1 — §, we have

where V?2(¢ fw.z) is the variance of £y, , € L. Thus, according to the Bennett concentration inequality (Bousquet, 2002),

_ 2rlni  4Eg[G(S,L)]lnt Ini
G(S, L) < Es[G(S, L)) +\/ ring | 4EsIGS Ly | Ing
15] 15] 315]
From (9), we know that Eg[G(S, £)] < R(L), so
_ _ 2rln+  4R(L)Ini Inl
G(S7£)<R(£)+\/ 4 e (10)
15] 5] 31%)
Note that, for u,v > 0,
Vu+v < Vu+ Vo, 2v/un < u+o.
So, by (10), the following inequality holds:
G(S,L)
_ 2rln i Int In &
< R(L) + —0 42, O R(L 9
) \/ 3 MO ) (1)
2rlnt  4lni
S 2R(£) n 2 + né‘
5] 35
Similar with the proof (8), it is easy to verity that

(12)
" mer
By combining the results of (11) and (12), the proof is over. ]
Lemma 5. Assume that v* is the fixed point of R(L"), that is, r* is the solution of R(L") = r with respect to r. Then,
Vh > max (1, 2—\/5), with probability 1 — §:

h T T *
L(gfw,z) < max{h_an(efW,z)an(gfw,z)+Clr +
where ¢c; = 8hE and co = 8h ln% +61In %.

C2
n—1]J"
Proof. According to Lemma 2, we know that L C L". Therefore, from Lemma 4, with probability 1 — §, we have

0,(L) <2R(L) 2&1/112]1; +

1
411’13

3|n/2]

- 2r1n% 4ln%
<2R(L") + (/2] +3Ln/2j'

By Lemma 3, we know that R(L") is a sub-root function. Thus, R(L") < +/rr* for all r > r*. Then,

_ 2rln i
(L) < 2Vrre + Ln/QJé +

1
41113

3[n/2)
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The last step of the proof consists in showing that r can be chosen, such that Un(f) < g5 and 7 > r*, so that we can
exploit Lemma 1 and conclude the proof. For this purpose, we set

21115 B 4111%
A=W LRl P = S

Thus, we have to find the solution of

.
A B=_—
VT + o

which is

[ 28 4 A%) /(28 + 42)° ,;*ZB,;}
r= (13)
E2h

Since h > max(1, 2—\/5) h?E? > % Therefore, from (13), we have
2
r> A2E?h? > % =",
r < A’E’h? + 2BEh.
Thus, we have

ih < AEh + 2B

1 1
ng 81113

21
=\ 2Ty | P s

Note that, Va, b > 0, (a + b)? < 2a% + 2b%, so we have that

r 8h 1 16 1
— Ehr* + —— 1 - In =
Br =S 5 3n-3"%
< 8Ehr* + s o !
5
By substituting the above inequality into Lemma 1, we can prove that Yh > max (1, 2@) with probability 1 — 4,
h -
L(gfw,z) < max an(ng,z) L (gfwz) 1
wherecl:8hEand02:8hln%+61n%. O]

Proof of Theorem 2. By Lemma 5, Vi > max (1, 2—\/]3) , with probability 1 — ¢ we obtain that

where 7* is the fixed point of R(L").

Assume that é;w,z = arg mianW.Z cr Ly Lty ) and é}W,Z = infgfw,z ec L€y, ), sothere holds that L(y,, , *éj‘W,z) >
0. And since /s, , < E due to Assumption 1, so there holds that L((¢y,, , — (5 )?) < 2EL({y,, , — 5

fw,z fw,z

). If we apply

Lemmas 1-5 to the class {£,,,, — £}, we will get Vi > max (1, %) with probability 1 — §

* h > * 2 * * C2
L(gfw,z - gfw,z) < max{h—l [Ln(gfw,z 7£fw,z):| 7Ln(£fW‘Z - éfwwz> +ear + n_1 }7
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where ¢; = 16hFE and ¢ = 8hln % +61n %, and where r* is the fixed point of the local Rademacher complexity of function
class {(y,, , — {3, ,}- Note that ﬁn(é}w » — Uty ) < 0,50 we have

L(fiz) — " < err” + 2

n—1

And, note that from the Definition 1, the local Rademacher complexity of the function class {/y,, , — G .} is equal to the
local Rademacher complexity of the excess function class F,..

Therefore, we obtain that under Assumption 1 in the main paper, and let 7* be the fixed point of R(F,

. c), thatis 7* is the
solution of R(F!,.) = r with respect to r. Then, Yh > max (1 V2 ) with probability 1 — 6:

exc ' 4E
[k * * Ch,5
L(fivz) = L* < enpr” + % (14)
where ¢y, g and ¢y, 5 are constants dependent on h, E and h, § respectively. O

C. Proof of Theorem 3

Lemma 6. Let L be a function class satisfying Eq. (1). The excess loss class is defined as: Leye = {{s,, , —{},, ,}. Since
1t 2lloo < E, Ve, , € L, there holds the following inequality:

fw,z ,

| HPEN (2L 1) | [N LT T

R(L],.) <inf
e>0 n n

2R {ef-W,Z €L Ln(2 )< 62}

where L := {KfW‘Z a glfw,z : efW,Zﬂglfw,Z € ‘C} and Ln(ﬁ?w,z) - m Zi#j g?w,z (Xi’xj)'

Proof. Let z; = (x;, Xit|2 | ), one can see that z1, ..., z|z| are 1.i.d. samples. It is easy to write the following local
Rademacher complexity of class L:

Ln/2]
2
R ({Efwyz €L:L(tF,,) < r}) =Eso sup /2] ; il fw. (25)

Cr,z €{trw s ELL(E,, I<r) [n

Use the proof method of Theorem 2 in paper (Lei et al., 2016), it is easy to obtain:

R ({ﬂfw’z €eL:L(E, )< r}) <

: .7 2 2
inf 2R {efw,z €L L3, ,)<e } ! -

) 64E log N (¢/2, L, || - ||2) N \/8rlogN(e/2,£, Il - 2)] . (15)

Note that there is no difference between the metric entropy of the function class L., and mertic entropy of the loss class £
itself: that is, from the definition of covering number, one has

log Noo(€, £, S) = log N (€, Lege, S)- (16)

This implies that we can bound the local Rademacher complexity of the excess loss class L. by:

3R U € B Lnllh, ) < @) 4 SEDENEBL o) fSrloN(e/2. L] ””] ,

inf
e>0 Iw.z n n

where R {é fw.z € L: [A/n(éfcwiz) < 62} is obtained by using Dudley entropy integral inequality (Lemma A.5 in (Lei et al.,
2016)) and Eq. (16).

O
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Proof of Theorem 3. Similar to Section A, R(F,,

exc

) in this proof can be bounded by:

[n/2]
2
K R(F,, =K E a7 E i iy Xi4| 2 )
m]?X ( exc»k) Hl]?,X S,o fW‘Zflelg_;wCYk \_n/2J P UZfW,Zk(Xl x+|_2J)

where F7_ , is a function class of the output coordinate k of F

exr exc*

By Lemma 6, it is easy to verify that:
R(F,

exc

) < Km]?XR(]:T )

exc,k

< Km]?x igg 2R{fW,Zk € j:vk : I:n(fgvzk) <e

)

a7

n n

2} N 64M log N (€/2, Fr, || - ||2) N \/8rlog/\/'(e/2,]:k, - 1l2)

Wherej:vk ={fwz, — fl//V,Zk : fW7Zk7f{/V,Zk € Fi} and i’n(ng,Zk) = m Zi;ﬁj fi%V,Zk (x;,%;).

After obtaining the relationships between the expected clustering local Rademacher complexity and the covering number,
we can use some mild assumptions of the covering number and to obtain the suitable fixed point r*.

(1). Assume that there exist three positive constants ~y, d and p satisfying log N (e, Fi, || - ||2) < dlogP(~/e) for any
0<e<~vyandk =1,..., K. Based on Eq. (17) and the Corollary 1 in (Lei et al., 2016), forany 0 < r < y2 and n > vy~ 2
it is easy to verify that:

dr logP (2~r—1/2 dlog? (2 —1/2 dlog? (2 1/2 dloo? (2~vn1/2
R(f;;.c)sCM,p,memK\/rog(w ), dlogh (2o >>< og?2nt/?) | [rdlog’ @)\ |

n n n n

where ¢y, 4 1S a constant dependent on M, « and p. Then, we can set

dlogP(2yn'/?) N rdlogp(27n1/2)>

R(‘F(:L(,) S CMaPa’YK < n n

The sub-root function can be set as:

dlog” (2yn'/?) N rdlogP (2ynt/2)
n n

Y(r) = cpmp K [

Let r* be its fixed point then we have:

dlogP (2 1/2 *dlogP (2yn1/2
T*:CMMK[ 0g (nvn )+\/T Ogévn )|.

Denote as x, we get an equation:

r* = cprp K (33 + \/xr*) ,

dlogP (2vynt/?)
n

cM,p,%dKQ logp(2’yn1/2)
n

2 P
that 7* < %log(n) By substituting this into Eq. (14), we obtain that: with probability 1 — &,

Solving this equation, it is easy to verify that r* < ¢y, K?z. Thatis r* < , so finally we obtain

¢ 10 P n Ch.§
L(fwz)—L" < CM,pmdvh’EKQ% a1

(2). Assume that there exist two constants v > 0 and p > 0 satisfying log N (e, F, || - ||2) < ve P forany k =1, ..., K.
Based on Eq. (17) and the Corollary 3 in (Lei et al., 2016), it is easy to verify that
R(FL,,) < carpn K [n~1/26179/2 4 ==t 4 /re_pn_q 7

exc
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where ¢y .~ is a constant dependent on M, v and p. We can set:
W(r) == cepmp K [n_l/Qel_p/2 +ePnTt 4 W} .
Let r* be its fixed point then we have:
= cypp K [n_l/Qel_p/Q +ePnTt 4 W} .
Denote n~'/2¢!=P/2 as 2 and e Pn " as y, we get an equation:

= cpp K (m +y+ \/yr*) .

Solving this equation, it is easy to verify that r*(¢) < cpsp,K2[n "2 7P/2 4 ¢=Pn=1]. Since ¢ > 0, we can choose
71 .
e =n  2+P, then we obtain

* = K2n w2
T =CM,p,y n s

By substituting this into Eq. (14), we obtain that: with probability 1 — 4,

L(fiyz) - L* < CM,p,’wh»EKzn_# + Ch,él'
7 n—
(3). Assume that there exist two constants v > 0 and p > 0 satisfying log NV (€, Fi, || - [l2) < e P log? 2 for any

k=1,..., K. Based on Eq. (17) and the Corollary 2 in (Lei et al., 2016), it is easy to verify that

1 4 4
n~Y28 P2 1og = + ¢ Pnlog? = + \/rePn—1log? ] ,
€ € €

where ¢y p ~ is a constant dependent on M, v and p. We can set:

1 4 / 4
Y(r) = carpr K [n‘l/%l_pﬂ log = + e Pn~tlog? = + {/re~Pn—1log? 1 .
€ € €

Let r* be its fixed point then we have:

1 4 4
r* = cppA K [11_1/261_”/2 log -+ e Pn~1log? -+ \/r*ePn~1log? 6] .

—1/2_ 1—p/2 1 —p,,—1 24 fAn-.
Denote n~ /2! =P/2]og caswand e Pn”" log” < as y, we get an equation:

= cpp A K (:z: +y+ \/yr*) .

R(F,

exc

) < cMpy I

Solving this equation, it is easy to verify that 7*(€) < caz,p 0 K2[n /2! 7P/2log L + ¢ Pn~'log” 4]. Since € > 0, we can

2 __1_ .
choose € = (logn)»+2n~ 2+P, then we obtain

* 9 2 2-p
r* = caprp K nT 742 (log n) p+2 log ———.
(logn)#+2

By substituting this into Eq. (14), we obtain that: with probability 1 — 4,

Ch,s
+

P __2 2-p
L(fiv.z) = L* < emprneK?n~ 772 (logn) 77 log — :
(logn)z+z  n—1
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D. Proof of Theorem 4

Lemma 7. 22{21 fw,z, is K-Lipschitz with respect to the Lo, norm in the worst case. For the hard clustering scheme,
Zszl fw.z, is 1-Lipschitz with respect to the L, norm.

Proof. (1.) ForV fw. z, fiy. , € F,

K
!
= fivz
k=1

=\ fwz +-+ fwze = fivg, = = fvzl <K\ fwz = fivzl

(2.) We have mentioned in the main paper that in the hard clustering scheme, a pair of observations can at most correspond
to one cluster, which means that Zj, is valued either O or 1 for a pair of observations where £ = 1, ..., K, and at most one
valued 1. Thus, for the hard clustering scheme,

K
> fwz| =lfwa -+ fwze = fvz = = fvzell < lfwz = fvzl o
k=1
Lemma 7 suggests that Assumption 5 in the main paper is a very mild assumption. O

Lemma 8. (Foster & Rakhlin, 2019) Let F C {f : X — RE}, and let ¢ : RX — R be L-lipschitz with respect to the L,
norm, that is ||¢(V) — ¢(V')||eo < LIV = V'||oe, YV, V' € RE. For any 6 > 0, there exists a constant C' > 0 such that if

[0(f (@) V[ f(@)]loc < B, then

Ro(é0F) < C - LVE max B (F)logd+0 [ — 5%
' max; R, (F;)

where R (¢ 0 F) = Eo [supser |2 520 036 (f(x:))|], Ru(Fi) = supgean R (Fi)-

Proof of Theorem 4. Assume that Z = X x X, based on Assumption 1 in the main paper, we have ‘Zszl fw.z, (2)| V

[fw,z(2)ll < Eforall z € Z. Letz; = (X;, X4 n ), and let S = {21, ..., Z|,/2) € ZL31}. Note that z; in S are i.i.d.
samples, thus Lemma 8 can be applied to our defined empirical clustering Rademacher complexity R, (F), where R,,(F) is
defined by considering the U-process technique. Based on Assumption 5 in the main paper and Lemma 8, we then bound
R,,(F) in the following form: for any n > 0, there exists a constant C' > 0 such that

R, (F)< C’L\/Emaxﬁn(}'k) log%‘H’ % < C’L\/Emaxﬁn(]:k)log%+" Eijl )
k maxy R, (Fi) k maxy, R, (Fr,)

Furthermore, we refine Lemma 8 and bound En(]-'k) b

2]
Ro(Fr) = sup R, (Fx)= sup Eo | sup TZ jfw.z.(2;)
sezlBl sezlB] fwzere | L2

[NE

Lz
>2 sup sup wa z.(z5) |
sezlsl L§J fw,z, €Fk

where the last inequality is obtained by Khintchine inequality with p = 1 in (Haagerup, 1981). Since fw, z, < M, we set
1

LEJ 2
SUPg 1% @ (SuhW,ZkG}—k Zjil fvzv,zk (Zj)) - M,/UIL/QJ' So

~ 2M
k n > —.
v ) R (-Fk) = \/ﬁ
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Thus, we can prove that:

En < En3/?
maxy, én(]:k) - 2M

Based on the above results, we finally obtain that under Assumption 1 and 5 in the main paper, for any n > 0 and
S =x]", € A", there exists a constant C' > 0 such that

E. Proof of Theorem 5

Proof. In Section A, we have proved that:

n/2] K
E[L(f#, ;)] — L* <4Eg, sup —— o (%4, Xit1n = 2R(F).
[L(fiv,2)] So ST ; ;; ifw,z, (X6, Xt [ny2)) (F)

Based on Theorem 4, for any 7 > 0, there exists a constant C' > 0 that makes the term 2R(F) can be bounded by

20 VK max Eﬁn(]‘-k) log%Jrn(\/ﬁ)

[n/2]
: 1
= 4C’L\/Elog%+’7 vn)max | Eg, sup sup —— oifw.z. (XiyXigin
(vn) i o P /2] ; 2k ( i5 Xt | /2J>
. Ln/2) 1z
= 4C’L\/Elog%+’7 vn)maxEs—— | sup  sup fw.z. (Xi, Xit1n ?
(vn) k [n/2] \ sexn fw.z €7 ; 2 +n/2)

Use Khintchine-Kahane inequality (Latata & Oleszkiewicz, 1994),

1
< 4MC’L\/Elog%+"(\/ﬁ) ———Use Assumption 1 in the main paper.

[n/2]

8MCLVE log3 +"(\/n)
7 :

Based on the analysis in Section A and the McDiarmid inequality (Mohri et al., 2018), the term L( f;‘v 4) — L* can be

So based on the above results, E[L(f;‘vz)] - L <

S4n 1
bounded by SMELVEIEE W) 4, /8185 with probability 1 - 4. O

F. Proof of Theorem 6

Proof. Based on Theorem 5, we can bound the expected local clustering Rademacher complexity in the following formula:
ER(Flye) < CLVE maxER, (Fl, 1) log ™ (V).
According to Lemma 6, we have
R(F...) < C’L\/Rlog%""”(\/ﬁ) mkaxirelf {QR {fW,Zk € .}-"vk : in(f{%v,zk) < 62}

| 64Mlog N'(¢/2, Fi. |- ]l2) \/8rlog/\/'(e/2,]-'k, B ||2)]

n

n

whereﬁ = {fW,Z;,; - fI//V,Zk : fW,Z;,;af{/[/,Z,C € }—k} and ifn(f{%uzk) = ﬁz#j f{%[/yzk (Xivxj)~
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The following steps are also to use the covering number assumptions to obtain the suitable fixed point r*.

(1). Assume that there exist three positive constants vy, d and p satisfying log N (e, Fi, || - ||2) < dlogP(~y/¢) for any
0 <e<~vyandk =1,..., K. Based on the analysis in Section C, for any 0 < r < 72, n > 7_2 and n > 0, it is easy to
verify that:

- dr logP (2~r—1/2 dlogP (2~r—1/2
R(Flye) < ey, LVE log? 7 (v/n) min K\/ - (nw ) 2ot (nw )> ’

n n

(dlogp(2’yn1/2) N rd logp(2~yn1/2)>]

Obviously, we have

. dlog®?(2 1/2 dlog? (2~vnl/2
R(]:Za,c) < C’y,d,p,M,CL\/Elogngn(\/ﬁ)( og (n’m )+ ralog Elryn )) )

Then, the sub-root function can be set as:

: dlogP (2~nl/2 dlog? (2~vn1/2
B = 60 a0 LV logh (i) (Og;vn) . 0%277“) |

Let r* be its fixed point then we have:

dl » 2 1/2 *dl D 2 1/2
r* ZC%d,p,M7CL\/Elogg+n(\/ﬁ)< og’(2yn’/7) n \/7“ og’(2yn )) _

n n

Solving this equation, we get:

lo 3+p+2n n1/2
r* < enpac Ko - ()

By substituting this into Eq. (14), we obtain that: for any 1 > 0, with probability 1 — J,

log* Pt (nl/2) ¢y

n n—1

L(fiv.z) = L* < erpraonel’K

(2). Assume that there exist two constants v > 0 and p > 0 satisfying log N (€, Fi, || - ||2) < ve P forany k = 1,..., K.
Based on the analysis in Section C, it is easy to verify that

R(F.,.) < cM,pmcL\/Elog%J“”(\/ﬁ) {n‘l/Qel_p/2 +ePnt + \/re—Pn—l} .

So we can set:

P(r) = cMmmcL\/?log%”(\/ﬁ) [71_1/261_”/2 +ePnt 4 \/re—l’n—l} .

Let r* be its fixed point then we have:
= cMﬂpmcL\/Elog%Jr”(\/ﬁ) [n‘1/261_p/2 +ePn 4 VT*e—Pn—l} .
Solving this equation, it is easy to verify that

r*(e) < cM’pmcLQKlog3+2”(n1/2)[n_1/261_p/2 + e_pn_l].
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. 1 .
Since € > 0, we can choose ¢ = n~ 2+7, then we obtain
_ 2
= earpry,c LK log? 2 (n'/2)n " 552

By substituting this into Eq. (14), we obtain that: for any 1 > 0, with probability 1 — J,

Ch,s

A~ __2
L(fiv.z) = L < eatpry.cnpL? Klog* ™1 (n! 2)n= 7 4

(3). Assume that there exist two constants v > 0 and p > 0 satisfying log NV (€, Fi, || - [l2) < e P log? % for any
k =1,..., K. Based on the analysis in Section C, it is easy to verify that

1 4 4
R(Fl,.) < CM,p,A,,chKlog%"'"(nl/?) [n—1/2€1—p/2 log(=) + € Pn~log®(=) + {/re-Pn~1 log2()] :
€ € €
So we can set:
$4m(,1/2 —1/2 _1-p/2 1 po—17..2/4 o —1 T2 4
P(r) == cpmpr,cLVEKlog2™(n' /%) [n e P log(=)+ e Pn” log®(=) + 1 /rePn—llog”(-)| .
€ € €

Let r* be its fixed point then we have:

€

: 1 4 4
r* = cM,p,y’cL\/Ii(log%*'"(nl/z) lnlﬂelp/z log(=) +ePn~! log2(g) + \/T*epnl log2(€)] .
Solving this equation, it is easy to verify that
* 2 3+2n —-1/2 1-p/2 L 1y 24
r*(€) < ermp o L7 K log” ™ (v/n) |n~ " e log - + ¢ Pn" " log -l

Since € > 0, we can choose ¢ = (log n)ﬁn*ﬁ _then we obtain
1 = Catp.0 LK log* 1 (Vmn 712 (log ) 57 log 2
(logn)»+2
= CM,p,%C,nLZKnip%(IOgn)f’%+3+2n log o
(log n) =y

By substituting this into Eq. (14), we obtain that: for any 1 > 0, with probability 1 — §,

Ch,s

(logn)sz ~ n—1

~ 2 2—
L(f{/kV,Z) —L" < CM,me,h,E,nLZK”_W(10g ”)’Tgﬁﬁn log
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