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Abstract

Existing generalization analysis of clustering
mainly focuses on specific instantiations, such
as (kernel) k-means, and a unified framework
for studying clustering performance is still lack-
ing. Besides, the existing excess clustering risk
bounds are mostly of order O(K/+/n) provided
that the underlying distribution has bounded sup-
port, where n is the sample size and K is the clus-
ter numbers, or of order O(K?/n) under strong
assumptions on the underlying distribution, where
these assumptions are hard to be verified in gen-
eral. In this paper, we propose a unified clustering
learning framework and investigate its excess risk
bounds, obtaining state-of-the-art upper bounds
under mild assumptions. Specifically, we derive
sharper bounds of order O(K?/n) under mild
assumptions on the covering number of the hy-
pothesis spaces, where these assumptions are easy
to be verified. Moreover, for the hard clustering
scheme, such as (kernel) k-means, if just assume
the hypothesis functions to be bounded, we im-
prove the upper bounds from the order O(K/+/n)
to O(VK /y/n). Furthermore, state-of-the-art
bounds of faster order O(K /n) are obtained with
the covering number assumptions.

1. Introduction

Clustering is one of the fundamental issues in unsuper-
vised learning and has been used in various applications
(Xu & Wunsch, 2005; Von Luxburg, 2007; Jain, 2010; Sha-
ham et al., 2018; Liu et al., 2018). In a clustering scheme,
datasets are divided into several subgroups, such that data
points in the same subgroup are more similar to each other
than to those in other subgroups. Although clustering has
been studied for decades, by contrast to the thriving of
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clustering algorithm design and application, the statistical
theory of clustering may appear to be not sufficient. The
existing excess risk bounds are mostly derived for differ-
ent specific instantiations of clustering learning problems,
such as k-means (Thorpe et al., 2015; Tang & Monteleoni,
2016; Levrard et al., 2013; Antos, 2005), kernel k-means
(Biau et al., 2008; Antos et al., 2005; Levrard et al., 2015;
Levrard, 2018) or spectral clustering (Terada & Yamamoto,
2019), and a unified framework to study generalization per-
formance for clustering learning is still lacking. Moreover,
the existing excess clustering risk bounds either have a slow
convergence rate or require pretty strong assumptions on
the underlying distribution to get the faster convergence
rate, however, whose assumptions are hard to be verified
in general. Specifically, if the distribution has bounded
support, the excess risk upper bounds are mostly of or-
der O(K/+/n) (Linder, 2000; Biau et al., 2008; Maurer &
Pontil, 2010). If the distribution further satisfies a strong
assumption called margin condition, the faster convergence
rate of order O(K?2/n) appears to be obtained (Chou, 1994;
Antos et al., 2005; Levrard et al., 2015).

Motivated by these problems, we first propose a clustering
learning framework, which is suitable for (kernel) k-means,
soft k-means, spectral clustering, neural network clustering
scheme, etc, and then investigate its excess risk bounds. We
start our analysis by proposed clustering Rademacher com-
plexity and show that the upper bound obtained by it is just
of order O(K/+/n) under the bounded hypothesis functions
assumption. Since the Rademacher complexity (Bartlett
& Mendelson, 2002) considers the worst case, we further
define the more reasonable local clustering Rademacher
complexity (Bartlett et al., 2005) and use it to get a basic
excess risk bound with the fixed point under the same as-
sumptions. After that, by using some assumptions of the
covering number on the hypothesis function classes, we ob-
tain suitable fixed points and get sharper excess risk upper
bounds, whose convergence rates are of order O(K?2/n).
Note that our assumptions of covering number on hypothe-
sis classes are mild and easy to be verified compared with
the margin condition (Pollard et al., 1982; Chou, 1994; An-
tos et al., 2005; Levrard et al., 2015; Terada & Yamamoto,
2019). Furthermore, different from bounding the cluster-
ing Rademacher complexity by the maximum Rademacher
complexity of the restrictions of the function class along
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each coordinate with timing a factor of O(K), we provide a
new bound for clustering Rademacher complexity, reducing
the order of K to v/K. The excess clustering risk bounds
are therefore improved to O(Lv/K /\/n) and O(L?K /n)
dependent on the clustering Rademacher complexity and
the local clustering Rademacher complexity respectively,
where L denotes a Lipschitz parameter. Particularly for the
hard clustering scheme, L = 1, hence, our excess clustering
risk bounds have convergence rates of order O(vK /v/n)
and O(K /n), respectively, which are state-of-the-art.

2. Related Work

In this section, we introduce the related work on excess
risk bound analysis of clustering learning and the local
Rademacher complexity.

2.1. Excess Risk Bounds

The existing excess risk bounds of clustering learning are
mostly derived for (kernel) k-means.

VC-dimension Bounds. VC-dimension technique is com-
monly used for finite-dimensional problem of k-means.
(Linder et al., 1994; Bartlett et al., 1998; Linder, 2000)
show that the excess clustering risk bounds obtained by VC-
dimension technique are of order O(v/K /y/n) provided
that the underlying distribution has bounded support. In
addition, the problem of quantifying how good empirically
designed minimizers are, compared to the truly optimal
ones, has also been extensively studied in (Linder, 2002).

Rademacher Complexity Bounds. An emerging problem
in finite dimension is that the upper bound usually relevant
to the dimension d, while the hypothesis space of kernel
k-means is typically an infinite-dimensional Hilbert space.
(Biau et al., 2008; Maurer & Pontil, 2010; Canas et al.,
2012; Fefferman et al., 2016; Calandriello & Rosasco, 2018;
Fischer, 2010) use the Rademacher complexity technique to
extend the previous results (Linder et al., 1994; Bartlett et al.,
1998; Linder, 2000) and provide dimension-independent
bounds for kernel k-means, whose bounds are mostly of
order O(K/+/n).

U-Process Bounds. (Cao et al., 2016) study the excess
risk of clustering learning from the perspective of similar-
ity learning, not only focusing on k-means. (Clémengcon,
2011) study the hard clustering scheme where a sample is
assigned to each subgroup with probability O or 1. They all
model the clustering learning as pairwise learning problems
and use the tool of U-process to analyze the excess cluster-
ing risk bound. They use symmetry of U-statistics to control
supremum of a U-process in generalization analysis by the
supremum of a Rademacher process, which can be bounded
by standard techniques in the i.i.d context, providing upper
bounds of order O(K//n).

Margin Condition Bounds. Several results (Pollard et al.,
1982; Chou, 1994; Antos et al., 2005) show that the conver-
gence rate can be improved to O(C /n) under different sets
of assumption on the distribution in the finite-dimensional
problem of k-means, where C'xc denotes a parameter with
respect to /. Note that the relationship in their results be-
tween K and the upper bound is not clear. (Levrard et al.,
2013) show that these different sets of assumptions turn out
to be equivalent in the continuous density case to a tech-
nical condition, and also provide an upper bound of order
O(Ck /n). In a context of a separable Hilbert space, (Lev-
rard et al., 2015) extend the above results and propose an
assumption on the underlying distribution, called margin
condition, to satisfy the technical condition. They estab-
lish a fast convergence rate of order O(K?2/n). Under the
framework of margin condition, (Levrard, 2018) refine the
results in (Levrard et al., 2015) and give an excess cluster-
ing risk upper bound of order O(K /n) under another pretty
strong assumption. (Terada & Yamamoto, 2019) provide
the convergence rate of order O(K?/n) for normalized cut
(Von Luxburg, 2007) based on margin condition assumption
(Levrard et al., 2015), which is a related work on spectral
clustering. We will show the margin condition and explain
that it is hard to be verified in general in Section 5.2.

2.2. Local Rademacher Complexity

Local Rademacher complexity is an important tool in sta-
tistical learning theory, and has been used to obtain better
generalization error bounds for many important supervised
learning problems (Bartlett et al., 2005; Koltchinskii et al.,
2006; Liu & Liao, 2015; Liu et al., 2017b;a; Xu et al., 2016;
Yousefi et al., 2018; Li et al., 2018). In the generalization
analysis of clustering learning, (Levrard et al., 2015; Lev-
rard, 2018) also apply it to obtain the sharper excess risk
bounds, however, their results are built on the margin condi-
tion, leaving challenges in the clustering learning since their
assumptions are hard to be verified in general. In this paper,
we use assumptions of covering number instead of margin
condition to derive sharper excess risk bounds together with
the local Rademacher complexity technique. Since the cov-
ering number of many popular function classes are known,
thus our assumptions are milder and easier to check.

3. A Clustering Learning Framework

In this section, after a brief description of notations, we
first introduce the clustering learning framework and then
present some examples to explain it.

3.1. Notations

Assume that y is an underlying probability distribution on
the feature space X, and S = {x;}}_; € XA™ is a set of sam-
ples drawn independent and identically distributed (i.i.d)
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from p, where n is the sample size. The empirical distribu-
tion of S is defined as 11, (S) = 2 37" | I{x; € S}, where
I denotes the indictor function. The samples are vectors
in euclidian space R typically such that m > 1. The [,

norm on R™ is defined by ||x|[|, = (31, |z:[P)L/P when
1 < p < oo and by ||x|lcc = maxi<i<m |z;| in the case
p = oo. The expectation and the variance of a random
variable X are denoted as E(X') and V(X)) respectively. O

hides logarithmic terms.

3.2. Framework

Clustering aims to divide the samples into several clusters
such that samples lying in the same cluster have more sim-
ilarities than those in other clusters. Assume that a clus-
tering task wants to partition the samples into K clusters,
W : X% — R, is a pairwise distance-based function used
to measure the dissimilarity between pair observations, and
Z = [Zy,...,ZK] is a collection of K partition functions
Zy : X? = R, fork = 1, ..., K, which is together with the
function W and used to divide the given dataset .S into K
disjoint clusters. The clustering framework can be cast as
the problem of minimizing the following criterion:

Z Z Wx“xj Z(%X4,%5),

k: 1i,j=1,i#j
(1)

over all possible functions Zj, for £ = 1,..., K and W.
Assume that W and Zj, for k = 1, .., K are symmetry, that
is for all (z,2') € A2, there have D(x,2') = D(2', ) and
Z(z,2') = Zg(a! x) fork =1,..., K.

Lo(W,2) =

To make the notations concise, let fy z, (X, X') =
VV()(7 X/)Zk(X, X/) and fW,Z = (fW,Zlu ceey fW,ZK) be a
vector-valued function of the collection of fi, z,, ..., fw, zx»
then L,, (W, Z) can be written as

K n
n—l Z Z fw.z, (xi,%5), (2

k:1 i,j=1,i#j

Ln(fwz) =

The expectation of the Eq. (2) is defined as:

K
=EY  fwz (X, X). 3)

L(fw.z)

where (X, X”) is a pair of i.i.d random variables drawn from
the distribution p.

Let F be a family of vector-valued functions fy,z:
F={fwzlfwz(X,X') e RE VX, X" € x}

and F, be a function class of the output coordinate k of F.

Usually, n(fw.z) is called empirical clustering risk, and

L(fw,z) called (expected) clustering risk. Since the un-
derlying distribution p is unknown, a clustering algorithm
always minimizes the empirical clustering risk L., to obtain
the final partitions, formalized as:

fWZ = argmmL (fW,Z)a
fw,z€F

over all possible vector-valued function fyy,z in function
class F. The optimal risk of the feature space X" is the
infimum of the clustering risk L( fyv, z):

1nf L(fwz)

fw,z€F

L* =

‘We now define the excess function class used in Section 4,

Fexe = {fW,Z _f;V,Z|fW,Z7fI>/kV,Z E]'—},

where fy, , = argming,, ,er L(fw.z).

By definition, the empirical excess clustering risk is
L( fiv, z) — L*, and the (expected) excess clustering risk

isE[L( f{jv 2)] — L*, which are typical research objectives
in learning theory (Li et al., 2019b;a; Yin et al., 2020; Kang
et al., 2021), and are the main objectives this paper focuses
on.

3.3. Examples

We now briefly explain our proposed clustering framework
in the following examples.

Example 1: k-Means and Kernel k-Means. In k-means,
we can set W(x,2') = ||x — 2'||3, and set Zy(x,2’) =
I{(z,2") € C?}, where k = 1, ..., K and where C1, ..., Ck
are partitions of the feature space X'. In kernel k-means,
we can set W(z,z') = ¢(||¢(z) — ¥(2')||p), where p > 1,
Y X — H is the feature map which maps X into a
reproducing kernel Hilbert space (RKHS) H and ¢ : Ry —
R is a monotone function such that ¢(0) = 0 and ¢(t) > 0
forall ¢t > 0, and set Zy(z,2") = I{(¢(z), ¢ (")) € C#},
where k = 1, ..., K and where C', ..., C'i are partitions of
‘H. In particular, k-means and kernel k-means belong to the
hard clustering scheme. In the hard clustering scheme, a
pair of observations can at most correspond to one cluster,
which means that Zj, is valued either O or 1 for a pair of
observations where £ = 1, ..., K, and at most one valued
1. Thus the corresponding formula of the hard clustering
scheme can be easily written.

Example 2: Soft k-Means. In soft k-means, or in the
broader soft clustering scheme, the cluster ‘center’, such as
the mean, median, or other metric measuring the ‘center’ of
a cluster, is contributed by all the samples, different from the
hard clustering scheme. In this case, the pairwise distance-
based function W can also be chosen as W (z, 2’) = ¢(||z—
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2'||p), where p > 1, and ¢(x) is same as the hard clustering
scheme; For any k = 1,..., K, if Zy(z, 2') is restricted to
the samples, it should satisfy the following constraints:

K
Zk(Xi,Xj) € [07 1]7 ZZk(XwX]) =1 Vi #]7
k=1

n
and Z Zy(x4,%5) < n.
i,j=1,i#]

Example 3: Spectral Clustering Scheme. Assume that
the samples are constructed as the fully connected graph,
W in this case can be chosen as the Gaussian Kernel
function W (z, 2') = exp(—||lz — 2’||3/(20?%)), where o>
is the variance determining the connectivity length scale
(Von Luxburg, 2007); Since eigenvectors can be seen as em-
pirical versions of underlying eigenfunctions (Rosasco et al.,
2010), thus Zj (x;,x;) = (fr(x:) — fru(x;))? if Zy (-, -) is
restricted to samples x;, x;, where fj(-) is the k-th eigen-
function, and fy(x;) and fi(x;) are elements of the corre-
sponding k-th eigenvector. This definition of Zj;, and W is
suitable for NCut and RatioCut spectral clustering problem
(Von Luxburg, 2007). Of course, if the samples are con-
structed as other types of graph, pairwise distance function
W (x,2’) can be written as corresponding formulas.

Example 4: Neural Network Clustering Scheme. Assume
that the feature map encoded by a neural network model
after many non-linear layers is ¢(z) : X — R, where R is
a non-linear high dimensional function space. In this case,
Wz, z') = ¢([[¢(z) — ¢(a')[|p), where p > 1, and ()
is same as the hard clustering scheme. If we use the hard
clustering scheme, Zy(z,2") = I{(¢(z),¢¥(a") € CE},
where k = 1, ..., K and where C1, ..., Ck are partitions of
R.

The above examples suggest that our proposed clustering
framework is generalized well and suitable for a lot of clus-
tering algorithms.

4. Sharper Excess Clustering Risk Bounds

In this section, we first introduce the assumptions used.
Then, we prove that the clustering Rademacher complex-
ity technique can just obtain an excess risk bound of slow
convergence rate. Under the same condition of bounded hy-
pothesis functions, we then derive a basic excess risk bound
by the local clustering Rademacher complexity. This basic
bound can be further together with some mild assumptions
of the covering number and used to derive sharper bounds.

4.1. Assumptions

Assumption 1. Assume that the hypothesis functions
fw.z.(,+) € [0, M] for k = 1,..., K where M > O is a

constant, and that Zle fw.z.(-,-) € [0, E] where E > 0
is a constant.

Assumption 1 is a very mild assumption. In examples 1, 2
and 4, it can be easily fulfilled if the pairwise distance func-
tion IV is bounded or normalized because the partition func-
tions Z1, ..., Z are obviously bounded. In example 3, if the
function W is bounded, the corresponding integral operator
related to IV is a bounded operator and the eigenfunctions
in RKHS are thus continuous and bounded (Rosasco et al.,
2010), which means fy, z, for k = 1, ..., K are bounded.
Obviously, S0 fuw.z, is bounded if fi.z, , ..., fiv. zy are
bounded. Besides, since Z1, ..., Zx are usually indicator
functions, which means & = M, so it is unreasonable to
assume that £ < K M.

Definition 1 (covering number (Zhou, 2002)). For any
€ > 0 and a function class H, the Lo covering num-
ber N(e,H, || - ||lea(un(s))) is the supremum over samples
S = {x1, ..., X, } of the size of a minimal cover C. such that

Vi€ H 3f € Cost (I (Fixi) — fu(xi)? < e

Furthermore, the following covering number is introduced:

(&H, 1 Nleagen)) -

N (&,H,] - ||2) := supsup

n M’!L

Assumption 2 (logarithmic covering number). Assume that
there exist three positive constants v, d and p satisfying
log N (e, Fi, || - ll2) < dlogP(v/e) forany 0 < € < v and
k=1,.. K.

Many popular function classes satisfy Assumption 2 when
the function classes Fy, for £ = 1, ..., K are bounded:

1.) Any function space with finite VC-dimension (Vaart &
Wellner, 1997), including linear functions and univariate
polynomials of degree e (for whichd = e+ 1 andp = 1)
as special cases; In particular, the corresponding function
class of k-means clustering is a VC major class with finite
VC dimension, see section 19.1 in (Devroye et al., 2013) for
details.

2.) Any unit Euclidean ball By C R? with fixed € € (0, 1)
(Rigollet & Hiitter, 2015).

3.) Any RKHS based on a kernel with rank d (Carl &
Triebel, 1980).

Assumption 3 (polynomial covering number). Assume that
there exist two constants v > 0 and p > 0 satisfying
log N (€, Fi, || - |l2) < ve P foranyk =1,..., K.

Classes that fulfill Assumption 3 are known as satisfying
the uniform entropy condition (Wellner et al., 2013). If
the function classes F for k£ = 1, ..., K are bounded, this
type of covering number is satisfied by many Sobolev/Besov
classes (Gu, 2013). For instance, if the kernel eigenvalues
decay at a rate of tfg, where t denotes a sequence notation,
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then the RKHS satisfies this assumption of covering number
(Carl & Triebel, 1980). The popular RKHSs of Gaussian,
polynomial and finite rank kernels satisfy this assumption.

Assumption 4. Assume that there exist two constants vy > 0
and p > 0 satisfying log N (€, Fi,, || - [|2) < ve P log® 2 for
anyk=1,..., K.

Assumption 4 combines the logarithmic and the polynomial
covering number.

4.2. A Basic Excess Clustering Risk Bound

Rademacher complexity is widely used to measure the com-
plexity of the function class and has been used for classi-
fication and regression problems (Bartlett & Mendelson,
2002; Koltchinskii et al., 2002). However, the traditional
Rademacher complexity definition is not suitable for cluster-
ing learning. The summation over all pairs of observations
in Eq. (1) makes its study more difficult, rendering standard
techniques in the i.i.d case not applicable in this context.
Inspired by (Clémencon et al., 2008; 2005), by using the
permutations in U-process, we convert the non-sum-of-i.i.d
pairwise function to a sum-of-i.i.d form. The empirical
clustering Rademacher complexity thus defined on the F
function space as follows:

Definition 2. The empirical clustering Rademacher com-
plexity of F is:

K
Z O'ifW,Zk (qu, Xz‘ﬂ%j)

where 01, ...,0|, /2| are i.i.d Rademacher variables, tak-
ing values in {—1,1} with equal probability. These
Rademacher variables are independent of the samples
S = {x1,...,xn}. The expected clustering Rademacher
complexity of F is defined as follows:

R(F) = Es Ry (F).

By the proposed clustering Rademacher complexity, we
have the following Theorem.

Theorem 1. Under Assumption 1, with probability 1 — 9,
we have

1
SKM VB 810g3'

Vn n

Remark 1. Theorem 1 suggests that the (empirical) excess
clustering risk upper bound obtained by Rademacher com-
plexity has a convergence rate of order O(K/+/n) provided
that the hypothesis functions have bounded support.

L(fiyz) —L* <

It is worth noticing that Rademacher complexity considers
the worst-case of the element in function space, neglecting

that the algorithm will likely pick functions that have a small
error. As a result, the best error rate that can be obtained via
the Rademacher complexity is at least of order O(1/+/n).
Indeed, the type of algorithms we consider here is known
in the statistical literature as M-estimators. They minimize
the empirical loss in a fixed class of functions. (Bartlett
et al., 2005; Liu et al., 2019) demonstrate that the local
Rademacher complexity is more reasonable to be served as
a complexity measure. Since the local Rademacher com-
plexity cannot be defined on the non-sum-of-i.i.d pairwise
objective of Eq. (1), combined with Definition 2, we define
the expectation local Rademacher complexity for clustering
learning as follows.

Definition 3. For any r > 0, the expectation local
Rademacher complexity of the function class Fe,. for clus-
tering learning is defined as:

R(Fe) = R ({a(fw.z — fiv.z) la € [0,1],
fW,Z - fItV,Z € Fexcan < ’I"}) ’

where 1 := L1 a(fw.z, — fiy.z,))?) that is n =
E(Xr, alfwz, — fiv.z))2-

If we pick a variance as small as possible while requiring
that the fw,z — fiy z is still in FZ, ., we can choose a

exc’
much smaller class F_.. C Fe,. and obtain sharper excess

erc —
clustering risk upper bounds. With the local clustering
Rademacher complexity, we obtain a basic excess clustering

risk upper bound.
Theorem 2. Under Assumption 1, and let r* be the fixed
point of R(FL,.), that is r* is the solution of R(F.,.) =T
with respect to r. Then, Yh > max (17 T‘g), with probabil-
ityl—6:

Ch,s
n—1

L(f;VZ) —L" <cppr'+ , 4
where ¢y, g and cy, 5 are constants dependent on h, E' and
h, & respectively.

A basic excess clustering risk upper bound is given by The-
orem 2. We can choose suitable fixed points 7* to derive
sharper bounds, which will be introduced in Section 4.3.

Remark 2. [Proof Techniques] [1] The generalization error
bounds in (Bartlett et al., 2005; Koltchinskii et al., 2006)
are complex, we therefore provide excess risk bound here,
which need fine-grained generalization analysis (see proof
of Theorem 2 in Appendix) and define the local Rademacher
complexity on the excess function class F.... [2] The Eq.
(2) involves with pairwise observations, hinders the standard
1.i.d technique of local Rademacher complexity (Bartlett
et al., 2005) to apply to. To overcome this difficulty, we
consider the U-process (Clémengon et al., 2005; 2008) to
convert the Eq. (2) to a sum-of-i.i.d form (see Lemma 4 in
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Appendix); [3] To present this basic excess clustering risk
bound, we must use the Bennett concentration inequality
(Bousquet, 2002a) to bound the empirical uniform deviation
to get a term of order O(1/n), which can be together with
the fixed point 7* to derive result (4) (see Lemma 4 and
Lemma 5 in Appendix).

4.3. Sharper Excess Clustering Risk Bounds

In this paper, we use the covering number to bound the
expected local clustering Rademacher complexity R(F.,.)
to obtain the fixed point 7* and derive the sharper excess
clustering risk bounds. Covering number (Kolmogorov &
Tikhomirov, 1959; Zhou, 2002) is also a tool to measure
the complexity of the function class, which implies the
‘richness’ of a function class and is widely used in statistical
learning theory. By the covering number, we can derive the
following sharper excess risk bounds for clustering learning.

Theorem 3. With different assumptions, we have the follow-
ing different results:

1.) Under Assumptions 1 and 2, with probability 1 — 0, we
have

~ log?
L(fiy,) - L* < clKQOgT(") 2

n—1’

where c1 and co are constants dependent on v,d,p, h, M, E
and h, § respectively.

2.) Under Assumptions 1 and 3, with probability 1 — §, we
have

N 1
L(fivz) = L" < el K?—— + ——,
’ nrrz n—1
where c¢1 and co are constants dependent on v, p, h, M, E
and h, § respectively.

3.) Under Assumptions 1 and 4, with probability 1 — 0, we
have

(logn) o n Co
n

L(fiy ) — L* < 1 K?
(fv.z) >a n_1
where ¢y and cy are constants dependent on v, p, h, M, E
and h, § respectively.

For result (1) in Theorem 3, the empirical excess cluster-
ing risk L(fy; ;) — L* has a convergence rate of order
O(K?/n), which is much faster than O(K /\/n) because
usually K < n. For results (2) and (%) in Theorem 3,
the empirical excess clustering risk L(f}, ) — L™ have
convergence rates of order O(K2/n#:7) and O(K2 /nvi?)
respectively, which are all faster than O(K/y/n) when
0 < p < 2. Itis easy to verify that the upper bound of
the expected excess clustering risk E[L(f}; ;)] — L* has

the same order as L(f%,z) — L~

According to (Hanneke, 2016; Zhivotovskiy & Hanneke,
2018; Ehrenfeucht et al., 1989), if a function class is a VC
major class with finite VC dimension, which is a special
case of Assumption 2, its excess risk lower bound is of
order O(d/n). Since the upper bound of excess clustering
risk in result (1) is also of order O(d/n) (refer to Remark
4), thus the convergence rate obtained here is optimal in a
minimax sense. Besides, (Rakhlin et al., 2017; Rakhlin &
Sridharan, 2015) show that if there have the bounded loss
function assumption and the polynomial covering number
assumption on the hypothesis function space, which corre-
sponds to Assumption 1 and Assumption 3, the lower bound
obtained is of order O(n~ ﬁ) for supervised learning prob-
lems. Since we obtain the upper bound of order O(n~ %)
for the more complex pairwise clustering learning problem
under the same assumptions, thus this convergence rate in
result (2) may be optimal rate as well.

Remark 3. [Proof Techniques] To present Theorem 3,
we must establish the relationship between the expected
local clustering Rademacher complexity and the cover-
ing number, however, the conventional Dudley’s cov-
ering number bounds (Dudley, 1978; Bousquet, 2002b;
Bartlett et al., 2005; Srebro & Sridharan, 2010) are built
on the empirical constraints. In Definition 3, our lo-
cal clustering Rademacher complexity has a constraint:
L[(ZkK=1(fW,Zk — f§V7Zk))2] < r which is constructed on
the expectation. To overcome this difficulty, we extend The-
orem 2 in (Lei et al., 2016) to our pairwise clustering learn-
ing problem (see Lemma 6 in Appendix). Subsequently,
by using the commonly used mild assumptions of covering
number, the suitable fixed points r* can be derived so that
it can be substituted into the basic excess clustering risk
bound of Theorem 2.

Remark 4. The factor K? appears because of the local
Rademacher complexity technique. For example in result
(1) of Theorem 3, we need to solve the following equality:

r* =cK (x + \/7“*3:) ,

1/2
where © = M and c is a constant. Since usually
K < n, so the upper bound in Theorem 3 is obviously faster

than that in Theorem 1. For the extreme case of focusing on
K, we further improve the order of K in Section 5.

5. Improve the Order of K

The results in Section 4 and the existing studies on data-
dependent excess risk bounds for clustering (Levrard et al.,
2013; Biau et al., 2008; Levrard et al., 2015; Calandriello
& Rosasco, 2018; Clémengcon, 2011) usually build on the
following result for the Rademacher complexity:

R(F) < KmkaXR(]:k),
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where K maxy, R(F)) means the maximum Rademacher
complexity of the restrictions of the function class along
each coordinate with timing a factor of O(K). Therefore,
the existing excess risk bounds are linearly dependent on K
obtained by the clustering Rademacher complexity or K2
obtained by the local clustering Rademacher complexity.
However, for fine-grained analysis in the social network or
recommendation systems, the number of clusters X may
be very large. In this section, we reduce the order of K to
improve the results of Section 4. Moreover, we will compare
the results this paper obtained with the related work.

5.1. Improved Excess Clustering Risk Bounds

We first show that the clustering Rademacher complexity
can be bounded by the maximum Rademacher complexity
of the restrictions of the function class along each coordinate
with timing a factor of O(v/K) by refining the Theorem
1 in (Foster & Rakhlin, 2019). Under the new clustering
Rademacher complexity bound, we improve the conver-
gence rates of the excess clustering risk of Section 4.

Assumption 5. Assume the function Zszl fw,z, to be L-
lipschitz continuous with respect to the Lo, norm, that is:

va7Z7fII/V,Z e]:a

K K
> fwa =D fwz,
k=1 k=1

S L||fW,Z _f‘l/VZHoo

o

Assumption 5 is a very mild assumption. In fact, the func-
tion Zszl fw,z, in our proposed clustering framework is
K-Lipschitz w.r.t. the L., norm in the worst case (see
Lemma 7 in the supplementary material for details). In
particular, for the hard clustering scheme, such as k-means
or kernel k-means, the function Zszl fw,z, is 1-Lipschitz
with respect to the L., norm (see Lemma 7 in the supple-
mentary material), which allows us to derive the state-of-
the-art convergence rates for the hard clustering scheme.

Theorem 4. Under Assumption 1 and 5, for any n > 0 and
S =x', € X", there exists a constant C > 0 such that

Ro(F) < CLVE max I (Fi) log (v/n),

where En(}—k) = Supgecxn L (Fi).

Remark 5. From Theorem 4, one can see that the clustering
Rademacher complexity can be bounded by the maximum
Rademacher complexity of the restrictions of the function
class along each coordinate with timing a factor of O(vK).
It allows us to reduce the order of K of results of Section 4.

Remark 6. [Proof Techniques] The Theorem 1 in (Foster
& Rakhlin, 2019) has a term max; R,,(F;) in the denom-
inator, which hinders the construction of the relationship
between the expected local clustering Rademacher com-
plexity and the covering number. To present the following

Theorems 5 and 6, we must prove the lower bound of the
term max; R, (F;) to overcome this difficulty, where the
proof refers to using the Khintchine inequality (Haagerup,
1981) and the U-process technique (see the proof of Theo-
rem 4 in the supplementary material for details).

Based on Theorem 4, we can derive new excess clustering
risk upper bounds with a lower order of K.

Theorem S. Under Assumptions I and 5, for any n > 0,
there exist a constant C' > 0 such that with probability 1 — 6,

3
A log? ™ (y/n) 8log }
L(f}, 7) — L* < SMCIVK—=——=Y— 1 B/ —2£.
(fw.z) <8MC /n + "

From Theorem 5, one can see that the upper bound of the
(empirical) excess clustering risk has a convergence rate of
order O(L\/K /+/n). For the hard clustering scheme whose
L = 1, the convergence rate is of order O(vK /y/n). In
other words, if there just have assumption 1, we improve the
existing excess clustering risk upper bound to O(v/K //n)
for the hard clustering scheme.

Theorem 6. With different assumptions, we have the follow-
ing different results:

1.) Under Assumptions 1, 2 and 5, for any n > 0, with
probability 1 — §, we have

L(fyyz) - L SO(LQKW%(\/E)).

n

2.) Under Assumptions 1, 3 and 5, for any n > 0, with
probability 1 — 6§, we have

L(fys) — 1" <O (mm) .

np+2

3.) Under Assumptions 1, 4 and 5, for any n > 0, with
probability 1 — §, we have

Ly -t <o (28 e n
’ P4z (logn)#+2

np+2

wherer:?)%+3+277.

Theorem 6 reduces the order of K for the upper bounds of
the (empirical) excess clustering risk, from K2 in Theorem
3 to K. For the hard clustering scheme whose L = 1, the
convergence rate of excess clustering risk in result (1) of
Theorem 6 is of order O(K /n) and in results (2) and (3) of

Theorem 6 are of order O(K/ nﬁ), which are all faster
than the results in Theorem 3. From Theorem 6, one can
see that the best convergence rate obtained for (empirical)
excess clustering risk is of order O(K/n), which is the
state-of-the-art convergence rate under mild assumptions.
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5.2. Comparison with Related Work

Bounded Support. Suppose the distribution x4 has bounded
support, the excess clustering bounds are mostly of or-

der O (/£ ) for finite-dimensional problems(Linder et al.,

1994; Bartlett et al., 1998; Linder, 2000; 2002), or of order
O(-Z%) (Biau et al., 2008; Maurer & Pontil, 2010; Canas
et al., 2012; Fefferman et al., 2016; Calandriello & Rosasco,
2018; Fischer, 2010) for infinite-dimensional problems. For
example, it is shown in (Bartlett et al., 1998) that if y has

bounded support, then

VEm \/K'"wmlogn
— L* < Cmin m, ,
vn vn

E[L(fiv,2)]

where m is the dimension of the sample x € R™. Or, it is
shown in (Biau et al., 2008) that if  has bounded support
R, then

EIL(fiy.z)] - L* < 12KR?/v/n.

While supposing the hypothesis function has a bounded
support, (Clémenccon, 2011; Cao et al., 2016) obtain the
convergence rate of order O( j%) For example, it is shown
in (Clémenccon, 2011) that if the loss function has bounded

support B, then with probability at least 1 — 6,

L(fiz) — L* < Cs 5K/,

where Cs p is a constant dependent on B and 6.

From Theorem 5, one can see that our obtained bound for
hard clustering scheme is of order O(v/K /+/n) provided
that there just have a bounded hypothesis function assump-
tion. Note that this upper bound is suitable for infinite-
dimensional problem, thus it is faster than O(K/+/n) that
is provided for infinite dimension problem in (Biau et al.,
2008; Maurer & Pontil, 2010; Calandriello & Rosasco, 2018;
Clémengcon, 2011).

Margin Condition. As shown in Section 2, (Levrard et al.,
2015) propose an assumption on p, called margin condition,
to satisfy the technical condition (Pollard et al., 1982; Chou,
1994; Antos et al., 2005; Levrard et al., 2013) and establish
a fast convergence rate of order O(K?/n). Let M be the
set of all ¢* = {cj, ..., ¢} } where c* is the set of optimal
cluster centers constructed on the underlying distribution
w for (kernel) k-means algorithm. For ¢ > 0, we define
p(t) := supg. c g P(f(c*)"), where, for any set A C &, the
term A’ stands for the ¢-neighborhood of A in £ and where
f(¢*) denotes the frontier of the Voronoi diagram gener-
ated by ¢*. Specifically, f(c) := U, Ui(c) N Uj(c) where
Ui(c) ={z € & :Vie{l,.,K},dz,¢) < d(z,¢)}
and d(-, -) is a distance metric defined on the metric space
£. The margin condition consists of: (1) for any z € &,

P(z : |z|] < R) = 1 for some R > 0; (2) suppose
there exists 7, > 0 such that for all 0 < ¢t < r,,

(t) < Zbmint where B = infoerqizg|cf — 5| and
Pmin = Infe-epmi<j<ix P(Uj(c*)). Since P(f(c*)*) cor-
responds to the probability mass of the frontier of the as-
sociated Voronoi diagram of ¢* inflated by ¢, the margin
condition suggests that if p(t) does not increase too rapidly
with ¢, the faster rate O(K?/n) appears to be obtained.
From the introduction of the margin condition, one can see
that it is a strong assumption and difficult to be verified in
general. Assume that the underlying distribution  satisfies
the margin condition with radius r,, and let § denote the
27"3

PminB

quantity =27 A € where € > 0 is a constant derived by
the margin condition (Levrard et al., 2015), (Levrard, 2018)
refine the results in (Levrard et al., 2015):

: C(K + log(IM)R* |

E[L(fiv.z)] —L* <

(L) - o < SEL R
20K R? R sk (0~ 255)
R Y

where v = %. They show that if ]E[L(f{,“VZ)] —L* <4,
a faster convergence rate of order O(K /n) appears to be
obtained. Their result is built on stronger assumptions than
(Levrard et al., 2015) and also difficult to be verified in
general. Moreover, (Terada & Yamamoto, 2019) give the ex-
cess risk bound of order O(K?/n) for NCut (Von Luxburg,

2007) under the framework of margin condition.

Compared with these margin condition-based bounds, our
excess clustering risk bounds are first suitable for many
clustering algorithms, not just k-means. Besides, except
for the bounded function assumption, we obtain the con-
vergence rate of fast order O(K?/n) just assuming mild
assumptions of covering number on the function classes Fy,
fork =1, ..., K. Since the covering numbers of many popu-
lar function classes are already known, thus our assumption
is quite mild and easy to check. In addition, we obtain the
state-of-the-art convergence rate of order O(K /n) for the
hard clustering scheme under the same mild assumptions.

6. Conclusion

In this paper, we propose a clustering learning framework
and analyze its excess risk. We all obtain sharper excess
clustering upper bounds under two sets of mild assumptions:
bounded support of hypothesis functions and assumptions
of covering number on hypothesis function spaces, respec-
tively. Besides, the state-of-the-art upper bound of order
O(K/n) is derived for the hard clustering scheme under
mild assumptions. We believe our work will provide a new
studying perspective for clustering learning.

In future work, we will investigate the lower bound and the
optimal rate for our proposed clustering framework.
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