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1. Proofs
1.1. Proof of Proposition 1

To prove proposition 1, we first show that the anchor-point
assumption is a sufficient condition for the sufficiently scat-
tered assumption. In other words, we need to show that if
the anchor-point assumption is satisfied, then two condi-
tions of the sufficiently scattered assumption must hold.

We start with condition (2) of the sufficiently scat-
tered assumption. We need to show that if the anchor-
point assumption is hold, then there exists a set H =
{x1, . . . , xm} ⊆ X such that the matrix H = [P (Y |X =
x1), . . . , P (Y |X = xm)] satisfies that cone{H} ⊈
cone{Q}, for any unitary matrix Q ∈ RC×C that is not
a permutation matrix.

Since the anchor-point assumption is satisfied, then there
exists a matrix H = [P (Y |X = x1), ..., P (Y |X = xC)]
where x1, ...,xC are anchor points for each class. From the
definition of anchor points, we have P (Y |X = xi) = ei.
This implies that

H = [P (Y |X = x1), ..., P (Y |X = xC)] = I, (1)

where I is the identity matrix. By the definition of the
identity matrix I , it is clear that cone{H} = cone{I} ⊈
cone{Q}, for any unitary matrix Q ∈ RC×C that is not
a permutation matrix. This shows that condition (2) of the
sufficiently scattered assumption is satisfied if the anchor-
point assumption is hold.

Next, we show that condition (1) will also be satisfied,
i.e., the convex cone R ⊆ cone{H}, where R = {v ∈
RC |v⊤1 ≥

√
C − 1‖v‖2}. By Eq. (1), condition (1) of

Theorem 1 is equivalent to

R ⊆ cone{I} = {u|u =

C!

j=1

ejαj , αj ≥ 0, ∀j}. (2)

This means that all elements in R must be in the non-
negative orthant of RC , i.e., for all v ∈ R, vi ≥ 0 for all

i ∈ {1, . . . , C}. Consider v ∈ R and let v̂ be the normal-
ized vector of v, by definition of R we have the following
chain:

v⊤1 ≥
√
C − 1‖v‖2, (3a)

v⊤

‖v‖1 = v̂⊤1 ≥
√
C − 1, (3b)

!

i∈{1,2,...,C}

v̂i ≥
√
C − 1. (3c)

To show v is non-negative is equivalent to prove that v̂ is
non-negative, i.e., ∀k ∈ {1, . . . , C}, v̂k ≥ 0. Let u ∈
RC−1 be the vector which has same elements with v̂ except
that the kth element v̂k is removed. Following Eq. 3, we
have:

v̂k ≥
√
C − 1−

!

i∈{1,2,...,C}\{k}

v̂i, (4a)

v̂k ≥
√
C − 1− u⊤1. (4b)

By the Cauchy-Schwarz inequality, we get the following
inequality:

|u⊤1| ≤ ‖u‖‖1‖. (5)

Then by the definition of u and 1, we have ‖u‖ ≤ 1 and
‖1‖ =

√
C − 1. Combined this with Eq. 4 and Eq. 5, we

get:

v̂k ≥
√
C − 1− ‖u‖‖1‖ ≥ 0. (6)

This simply implies that vk ≥ 0 for all k ∈ {1, 2, . . . , C}
and we have proved that the anchor-point assumption is
a sufficient condition of the sufficiently scattered assump-
tion.

We now prove that the anchor-point assumption is not
a necessary condition for the sufficiently scattered as-
sumption. Suppose P (Y |X) has the property that
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x1, x2, . . . xC /∈ X which means that the anchor-point as-
sumption is not satisfied. We also assume that there exist
a set H = {x1, . . . , xm} ⊆ X such that cone{H} cov-
ers the whole non-negative orthant except the area along
each axis (area formed by noisy class-posterior of anchor
points). Since these areas along each axis are not part of
R when C > 2, it is clear that condition (1) of the suffi-
ciently scattered assumption is satisfied. Besides, by def-
inition of H , there is no other unitary matrix which can
cover cone{H} except permutation matrices. This shows
that condition (2) of the sufficiently scattered assumption is
also satisfied and the proof is completed.

1.2. Proof of Theorem 1

The insights of our proof are from previous works in non-
negative matrix factorisation (Fu et al., 2015). To proceed,
let us first introduce following classic lemmas in convex
analysis:

Lemma 1. If K1 and K2 are convex cones and K1 ⊆ K2,
then, dual{K2} ⊆ dual{K1}.

Lemma 2. If A is invertible, then dual(A) =
cone(A−⊤).

Readers are referred to Boyd et al.(2004) for details. Our
purpose is to show that criterion (5) has unique solutions
which are the ground-truth P (Y |X) and T . To this end,
let us denote (T !, hθ!) as a feasible solution of Criterion
(5), i.e.,

T !hθ!
= TP (Y |X) = P (Ỹ |X). (7)

As defined in sufficient scattered assumption, we have the
matrix H = [P (Y |X = x1), . . . , P (Y |X = xm)] de-
fined on the set H = {x1, . . . , xm} ⊆ X . Let H! =
[hθ!

(x1), . . . , hθ!
(xm)], it follows that

T !H! = TH. (8)

Note that both T ! and T have full rank because they are
diagonally dominant square matrices by definition. In ad-
dition, since the sufficiently scattered assumption is satis-
fied, rank(H) = C also holds (Fu et al., 2015). Therefore,
there exists an invertible matrix A ∈ RC×C such that

T ! = TA−⊤, (9)

where A−⊤ = HH†
! and H†

! = H⊤
! (H!H

⊤
! )

−1 is the
pseudo-inverse of H!.

Since 1⊤H = 1⊤ and 1⊤H! = 1⊤ by definition, we get

1⊤A−⊤ = 1⊤HH†
! = 1⊤H†

! = 1⊤H!H
†
! = 1⊤.

(10)

Let v ∈ cone{H}, which by definition takes the form v =
Hu for some u ≥ 0. Using H = A−⊤H!, v can be
expressed as v = A−⊤ũ where ũ = H!u ≥ 0. This
implies that v also lies in cone{A−⊤}, i.e. cone{H} ⊆
cone{A−⊤}.

Recall Condition (1) of the sufficiently scattered assump-
tion, i.e., R ⊆ cone{H} where R = {v ∈ RC |1⊤v ≥√
C − 1‖v‖2}. It implies

R ⊆ cone{H} ⊆ cone(A−⊤). (11)

By applying Lemmas (1-2) to Eq. (11), we have

cone(A) ⊆ dual{R}, (12)

where dual{R} is the dual cone of R, which can be shown
to be

dual{R} = {v ∈ RC |‖v‖2 ≤ 1⊤v}. (13)

Then we have the following inequalities:

|det(A)| ≤
C"

i=1

‖A:,i‖2 (14a)

≤
C"

i=1

1⊤A:,i (14b)

≤ (

#C
i=1 1

⊤A:,i

C
)C (14c)

= (
1⊤A1

C
)C = 1, (14d)

where (14a) is Hadamard’s inequality; (14b) is by Eq. (12);
(14c) is by the arithmetic-geometric mean inequality; and
(14d) is by Eq. (10).

Note that |det(A)|−1 = |det(A−⊤)| and det(T !) =
det(TA−⊤) = det(T )|det(A)|−1 from properties of the
determinant, it follows from Eq. (14) that det(T !) ≥
det(T ). We also know that det(T !) ≤ det(T ) must hold
from Criterion (5), hence we have

det(T !) = det(T ) (15)

By Hadamard’s inequality, the equality in (14a) holds only
if A is column-orthogonal, which is equivalent to that A−⊤

is column-orthogonal. Considering condition (2) in the def-
inition of sufficiently scattered and the property of A−⊤

that cone{H} ⊆ cone(A−⊤), the only possible choices of
column-orthogonal A−⊤ are

A−⊤ = ΠΦ (16)
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where Π ∈ RC×C is any permutation matrix and Φ ∈
RC×C is any diagonal matrix with non-zero diagonals. By
Eq. (10), we must have Φ = I. Subsequently, we are left
with A−⊤ = Π, or equivalently, T ! = ΠT . Since T and
T ! are both diagonal dominant, the only possible permuta-
tion matrix is I , which means T ! = T holds. By Eq. (7),
it follows that hθ! = P (Y |X). Hence we conclude that
(T !, hθ!

) = (T , P (Y |X)) is the unique optimal solution
to criterion (5).

2. Experiments on datasets where possible
anchor points are manually removed.

Following Xia et al.(2019), to show the importance of an-
chor points, we remove possible anchor points from the
datasets, i.e., instances with large estimated class-posterior
probability P (Y |X), before corrupting the training and
validation sets. For MNIST we removed 40% of the in-
stances with the largest estimated class posterior probabil-
ities in each class. For CIFAR-10 and CIFAR-100, we re-
moved 10% of the instances with the largest estimated class
posterior probabilities in each class. We add "/NA" fol-
lowing the dataset’s name denote those datasets which are
modified by removing possible anchor points. The detailed
experimental results are shown in Figure 1 (estimation er-
ror) and Table 1 (classification accuracy). The experimen-
tal performance shows that our proposed method outper-
forms the baseline methods.
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Figure 1. Transition matrix estimation error on MNIST/NA, CIFAR-10/NA, CIFAR-100/NA. Datasets with “/NA” means that possible
anchor points are removed. The error bar for the standard deviation in each figure has been shaded. The lower the better.

MNIST/NA CIFAR-10/NA CIFAR-100/NA
Sym-20% Sym-50% Sym-20% Sym-50% Sym-20% Sym-50%

Decoupling 96.72± 0.16 92.72± 0.33 75.51± 0.38 49.96± 0.51 38.83± 0.37 20.42± 0.53
MentorNet 97.10± 0.10 95.10± 0.14 80.25± 0.52 71.65± 0.28 39.72± 0.35 29.39± 0.35

Co-teaching 97.06± 0.12 94.89± 0.10 81.74± 0.32 73.38± 0.45 44.92± 0.11 33.13± 0.88
Forward 98.46± 0.07 97.59± 0.05 84.25± 0.22 70.00± 3.07 50.58± 0.68 36.79± 1.86

T-Revision 98.72± 0.13 97.86± 0.11 86.81± 0.19 74.10± 2.34 59.57± 1.13 43.75± 0.84
DMI 98.42± 0.03 97.87± 0.18 83.42± 0.54 77.82± 0.45 56.29± 0.28 41.81± 0.70

Dual T 98.61± 0.12 97.91± 0.12 86.70± 0.06 78.92± 0.42 56.99± 1.00 42.04± 1.96
VolMinNet 98.72± 0.06 97.94± 0.07 88.72± 0.03 82.38± 0.65 63.40± 1.25 51.04± 1.23

MNIST/NA CIFAR-10/NA CIFAR-100/NA
Pair-20% Pair-45% Pair-20% Pair-45% Pair-20% Pair-45%

Decoupling 96.92± 0.06 93.29± 0.57 77.06± 0.26 50.81± 0.73 40.42± 0.47 26.21± 0.67
MentorNet 96.88± 0.04 88.17± 0.70 77.62± 0.28 57.60± 0.35 39.11± 0.41 25.17± 0.36

Co-teaching 96.96± 0.07 95.34± 0.09 80.70± 0.18 69.15± 0.89 43.04± 0.73 26.67± 0.29
Forward 98.61± 0.33 78.51± 17.48 85.87± 0.82 53.92± 11.39 51.37± 0.99 34.69± 1.37

T-Revision 98.71± 0.31 82.65± 14.61 87.52± 0.58 53.96± 14.67 59.70± 1.43 38.35± 0.60
DMI 98.78± 0.11 97.46± 1.38 86.14± 1.52 70.01± 5.63 54.05± 1.09 35.03± 2.91

Dual T 98.76± 0.13 85.77± 7.85 89.02± 0.40 65.17± 0.72 59.07± 3.79 36.95± 3.19
VolMinNet 98.87± 0.11 97.80± 2.43 89.26± 0.22 84.48± 3.85 64.88± 1.87 56.07± 3.35

Table 1. Classification accuracy (percentage) on MNIST, CIFAR-10,CIFAR-100 and MNIST/NA, CIFAR-10/NA, CIFAR-100/NA.
Datasets with “/NA” means that possible anchor points are removed.


