Provably End-to-end Label-noise Learning without Anchor Points
Supplementary Material

1. Proofs

1.1. Proof of Proposition 1

To prove proposition 1, we first show that the anchor-point
assumption is a sufficient condition for the sufficiently scat-
tered assumption. In other words, we need to show that if
the anchor-point assumption is satisfied, then two condi-
tions of the sufficiently scattered assumption must hold.

We start with condition (2) of the sufficiently scat-
tered assumption. We need to show that if the anchor-
point assumption is hold, then there exists a set H =
{z1,..., 2} C X such that the matrix H = [P(Y|X =
z1),...,P(Y|X = )] satisfies that cone{H} ¢
cone{Q@}, for any unitary matrix @ € RE*® that is not
a permutation matrix.

Since the anchor-point assumption is satisfied, then there
exists a matrix H = [P(Y|X = z!),.., P(Y|X = )]
where 2!, ..., ¢ are anchor points for each class. From the
definition of anchor points, we have P(Y|X = z!) = e;.
This implies that

H=[PY|X=2"),.,PY|X=2]=1, (1)

where I is the identity matrix. By the definition of the
identity matrix I, it is clear that cone{ H} = cone{I} ¢
cone{Q}, for any unitary matrix @ € R¢* that is not
a permutation matrix. This shows that condition (2) of the
sufficiently scattered assumption is satisfied if the anchor-
point assumption is hold.

Next, we show that condition (1) will also be satisfied,
i.e., the convex cone R C cone{H}, where R = {v €
RCwv "1 > /C —1|v|2}. By Eq. (1), condition (1) of
Theorem 1 is equivalent to

c
R C cone{l} = {ulu = Zejaj, a; >0, Vil ()

Jj=1

This means that all elements in R must be in the non-
negative orthant of R, ie., forall v € R, v; > 0 for all

1 € {1,...,C}. Consider v € R and let ¥ be the normal-
ized vector of v, by definition of R we have the following
chain:

v'1>VC —1|v]s, (3a)
.
”"’1)—”1:@T12\/0—1, (3b)
Z 0 > VO —1. (3¢)
i€{1,2,....C}

To show v is non-negative is equivalent to prove that v is
non-negative, i.e., Vk € {1,...,C}, v > 0. Letu €
R~ be the vector which has same elements with © except
that the kth element vy, is removed. Following Eq. 3, we
have:

S

ie{1,2,...,C\{k}

p2VO—1- > @, (4)
VO —1—u'l. (4b)

S
IV

k

By the Cauchy-Schwarz inequality, we get the following
inequality:

w1 < [lull]|1]]. (5)

Then by the definition of w and 1, we have ||u| < 1 and
[I1]] = v/C — 1. Combined this with Eq. 4 and Eq. 5, we
get:

o =2 VO —1—[ulll1] = 0. (6)

This simply implies that v, > 0 for all k € {1,2,...,C}
and we have proved that the anchor-point assumption is
a sufficient condition of the sufficiently scattered assump-
tion.

We now prove that the anchor-point assumption is not
a necessary condition for the sufficiently scattered as-
sumption.  Suppose P(Y|X) has the property that
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z' 2%, 2% ¢ X which means that the anchor-point as-

sumption is not satisfied. We also assume that there exist
aset X = {z1,...,2m}t € X such that cone{H } cov-
ers the whole non-negative orthant except the area along
each axis (area formed by noisy class-posterior of anchor
points). Since these areas along each axis are not part of
R when C > 2, it is clear that condition (1) of the suffi-
ciently scattered assumption is satisfied. Besides, by def-
inition of H, there is no other unitary matrix which can
cover cone{ H } except permutation matrices. This shows
that condition (2) of the sufficiently scattered assumption is
also satisfied and the proof is completed. O

1.2. Proof of Theorem 1

The insights of our proof are from previous works in non-
negative matrix factorisation (Fu et al., 2015). To proceed,
let us first introduce following classic lemmas in convex
analysis:

Lemma 1. If K1 and Ko are convex cones and K1 C Ks,
then, dual{Ks} C dual{K:}.

Lemma 2. If A is invertible,
cone(A~T).

then dual(A) =

Readers are referred to Boyd et al.(2004) for details. Our
purpose is to show that criterion (5) has unique solutions
which are the ground-truth P(Y'|X) and T. To this end,
let us denote (T, hg, ) as a feasible solution of Criterion
(5),1ie.,

T, he, = TP(Y|X) = P(Y|X). (7)

As defined in sufficient scattered assumption, we have the
matrix H = [P(Y|X = z1),...,P(Y|X = z,)] de-
fined on the set H = {x1,...,2,n} C X. Let H, =
[ho, (1), ..., he, ()], it follows that

T.H,=TH. (8)

Note that both T', and T" have full rank because they are
diagonally dominant square matrices by definition. In ad-
dition, since the sufficiently scattered assumption is satis-
fied, rank(H ) = C also holds (Fu et al., 2015). Therefore,
there exists an invertible matrix A € R such that

T,=TA ', 9)

where A" = HH! and Hl = H] (H,H]) ! is the
pseudo-inverse of H .

Since1"H =17 and 1" H, = 1" by definition, we get

1"A" "=1"HH  =1"HI =1"H ,Hl =1".
(10)

Let v € cone{ H }, which by definition takes the form v =
Hu for some u > 0. Using H = A_TH*, v can be
expressed as v = A~ "@ where @ = H,u > 0. This
implies that v also lies in cone{ A~ "}, i.e. cone{H} C
cone{A™"}.

Recall Condition (1) of the sufficiently scattered assump-
tion, i.e., R C cone{H} where R = {v € RC|1T’U >

VC — 1||v||2}- Tt implies
R C cone{H} C cone(A™"). (11)
By applying Lemmas (1-2) to Eq. (11), we have
cone(A) C dual{R}, (12)

where dual{R} is the dual cone of R, which can be shown
to be

dual{R} = {v € RE|||v|s < 1Tw}. (13)

Then we have the following inequalities:

C
|det(A)] < T 1442

(14a)
i=1
C
<J[17A. (14b)
i=1
C T )
< (Lzlé Ao (14c)
17A1
(=) =1 (14d)

where (14a) is Hadamard’s inequality; (14b) is by Eq. (12);
(14c) is by the arithmetic-geometric mean inequality; and
(14d) is by Eq. (10).

Note that |det(A)|™' = |det(A™T)| and det(T,) =
det(TA™") = det(T)|det(A)|~" from properties of the
determinant, it follows from Eq. (14) that det(T,) >
det(T'). We also know that det(T) < det(T) must hold
from Criterion (5), hence we have

det(T,) = det(T) (15)

By Hadamard’s inequality, the equality in (14a) holds only
if A is column-orthogonal, which is equivalent to that A~ "
is column-orthogonal. Considering condition (2) in the def-
inition of sufficiently scattered and the property of AT
that cone{H} C cone(A~ "), the only possible choices of
column-orthogonal A" are

AT =TI (16)
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where IT € RY*® is any permutation matrix and ® €
RE*C is any diagonal matrix with non-zero diagonals. By
Eq. (10), we must have ® = 1. Subsequently, we are left
with A~ T = II, or equivalently, T', = IIT'. Since T" and
T, are both diagonal dominant, the only possible permuta-
tion matrix is I, which means T', = T holds. By Eq. (7),
it follows that hg, = P(Y|X). Hence we conclude that
(T4, he,) = (T, P(Y|X)) is the unique optimal solution
to criterion (5). Il

2. Experiments on datasets where possible
anchor points are manually removed.

Following Xia et al.(2019), to show the importance of an-
chor points, we remove possible anchor points from the
datasets, i.e., instances with large estimated class-posterior
probability P(Y'|X), before corrupting the training and
validation sets. For MNIST we removed 40% of the in-
stances with the largest estimated class posterior probabil-
ities in each class. For CIFAR-10 and CIFAR-100, we re-
moved 10% of the instances with the largest estimated class
posterior probabilities in each class. We add "/NA" fol-
lowing the dataset’s name denote those datasets which are
modified by removing possible anchor points. The detailed
experimental results are shown in Figure 1 (estimation er-
ror) and Table 1 (classification accuracy). The experimen-
tal performance shows that our proposed method outper-
forms the baseline methods.
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Figure 1. Transition matrix estimation error on MNIST/NA, CIFAR-10/NA, CIFAR-100/NA. Datasets with “/NA” means that possible
anchor points are removed. The error bar for the standard deviation in each figure has been shaded. The lower the better.

MNIST/NA CIFAR-10/NA CIFAR-100/NA
Sym-20% Sym-50% Sym-20% Sym-50% Sym-20% Sym-50%
Decoupling  96.72 + 0.16 92.72 £ 0.33 75.51 £ 0.38 49.96 £+ 0.51 38.83 £0.37 20.42 £+ 0.53
MentorNet 97.10 £0.10 95.10 £0.14 80.25 + 0.52 71.65 + 0.28 39.72 £ 0.35 29.39 £ 0.35
Co-teaching  97.06 +0.12 94.89 £+ 0.10 81.74 £ 0.32 73.38 + 0.45 44.92 £0.11 33.13 £0.88
Forward 98.46 £+ 0.07 97.59 £+ 0.05 84.25 + 0.22 70.00 + 3.07 50.58 £ 0.68 36.79 + 1.86
T-Revision 98.72 £0.13 97.86 £ 0.11 86.81 £ 0.19 74.10 + 2.34 59.57 £ 1.13 43.75 £ 0.84
DMI 98.42 £ 0.03 97.87 £0.18 83.42 £ 0.54 77.82+0.45 56.29 £ 0.28 41.81 £0.70
Dual T 98.61 £0.12 97.91 £0.12 86.70 = 0.06 78.92 +0.42 56.99 £+ 1.00 42.04 £1.96
VolMinNet 98.724+0.06 97.94+0.07 88.72+0.03 8238+0.65 63.40+1.25 51.04+1.23
MNIST/NA CIFAR-10/NA CIFAR-100/NA
Pair-20% Pair-45% Pair-20% Pair-45% Pair-20% Pair-45%

Decoupling  96.92 4+ 0.06 93.29 + 0.57 77.06 +0.26 50.81 £ 0.73 40.42 4+ 0.47 26.21 £ 0.67
MentorNet 96.88 + 0.04 88.17 £ 0.70 77.62 £ 0.28 57.60 £+ 0.35 39.11 £0.41 25.17 +0.36
Co-teaching  96.96 + 0.07 95.34 £ 0.09 80.70 £ 0.18 69.15 £ 0.89 43.04 £0.73 26.67 £ 0.29
Forward 98.61 £0.33 7851 +17.48 85.87+0.82 53.92+11.39 51.37+0.99 34.69 +£1.37
T-Revision 98.71 £0.31 82.65+£14.61 87.52+£0.58 53.96+14.67 59.70 £ 1.43 38.35 £ 0.60
DMI 98.78 £ 0.11 97.46 £ 1.38 86.14 + 1.52 70.01 +5.63 54.05 £+ 1.09 35.03 £2.91
Dual T 98.76 £0.13 85.77 £ 7.85 89.02 £+ 0.40 65.17 £0.72 59.07 £ 3.79 36.95 + 3.19
VolMinNet 98.87+0.11 97.80+243 89.26+0.22 8448 +3.85 64.88+1.87 56.07+3.35

Table 1. Classification accuracy (percentage) on MNIST, CIFAR-10,CIFAR-100 and MNIST/NA, CIFAR-10/NA, CIFAR-100/NA.
Datasets with “/NA” means that possible anchor points are removed.



