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Abstract
0-1 knapsack is of fundamental importance across
many fields. In this paper, we present a game-
theoretic method to solve 0-1 knapsack problems
(KPs) where the number of items (products) is
large and the values of items are not predeter-
mined but decided by an external value assign-
ment function (e.g., neural network in our case)
during the optimization process. While existing
papers are interested in predicting solutions with
neural networks for classical KPs whose objec-
tive functions are mostly linear functions, we are
interested in solving KPs whose objective func-
tions are neural networks. In other words, we
choose a subset of items that maximizes the sum
of the values predicted by neural networks. Its key
challenge is how to optimize the neural network-
based non-linear KP objective with a budget con-
straint. Our solution is inspired by game-theoretic
approaches in deep learning, e.g., generative ad-
versarial networks. After formally defining our
two-player game, we develop an adaptive gradient
ascent method to solve it. In our experiments, our
method successfully solves two neural network-
based non-linear KPs and conventional linear KPs
with 1 million items.

1. Introduction
The 0-1 knapsack problem (KP), which chooses an opti-
mal subset of items (products) that maximizes an objective
function under a budget constraint, is an NP-hard problem
that frequently occurs in real world applications. According
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to a study, KPs are one of the top-20 most popular prob-
lems (Kellerer et al., 2004; Skiena, 1999). Most of existing
linear and some special non-linear KPs can be solved by
various algorithms (Kellerer et al., 2004; Martello & Toth,
1990; Garey & Johnson, 1979). Some of them are classical
combinatorial optimization algorithms, whereas other works
rely on deep learning methods (Bello et al., 2016; Gu & Hao,
2018; Hertrich & Skutella, 2021). Those deep learning mod-
els predict linear KP solutions after being trained. Note that
we use the term ‘predict’ instead of ‘solve’ because given
a linear KP instance they predict its solution. However,
they do not consider non-linear KPs and moreover, their
scalabiliy is not satisfactory either. They consider at most
hundreds of items whereas we consider up to a million of
items in our experiments.

In this paper, we consider a more complicated KP definition
whose objective function consists of neural networks, which
we call neural knapsack problems. Our definition belongs to
non-linear KPs and has many applications in deep learning.
We propose a method to solve such complicated KPs on
deep learning platforms such as TensorFlow — we do not
predict solutions but solve.

However, one difficulty in designing such a constrained opti-
mization technique on top of deep learning platforms is how
to consider the hard budget constraint — we must not vio-
late the budget limitation. As such, our key contribution is
to design a gradient-based constrained optimization method,
which we call adaptive gradient ascent. Our method is op-
timized to solve a max-min game formulation devised by
us. It is noted that the equilibrium state of our max-min
game is equivalent to the optimal feasible solution of KP
that does not violate the budget limitation and yields the
biggest objective value. While the existence of equilibrium
does not necessarily imply its achievement (see Thm. (1)
and the discussion afterward), our method works well in
practice. As a matter of fact, exact algorithms are known
only for a few special non-linear KPs as will be discussed
in Sec. 2. In our case, neural network-based objectives can
be arbitrary non-linear and non-convex functions whose
global convergence theorems are not known (Boyd & Van-
denberghe, 2004; Bretthauer & Shetty, 2002; Fomeni &
Letchford, 2014).
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Class Objective Related Work
LKP

∑
i vixi (Pisinger, 2005)

QKP
∑
i vixi +

∑
i,j vi,jxixj (Fomeni & Letchford, 2014)

NKP o(x1, · · · , xn) where o is convex for minimization or concave for maximization (Bretthauer & Shetty, 2002)
MDKP

∑
i vixi/

∑
i cixi (Cohen & Katzir, 2008)

Table 1: Various linear and non-linear KP classes and their objective definitions

We evaluate our method with two main deep learning-based
experiments and one more secondary experiment with a
linear KP benchmark set. First, we show that the point
cloud resampling (PCR) (The CGAL Project, 2019) can
be formulated as a non-linear KP and compare our method
with other existing PCR methods. Second, we show that
improving the transductive inference of graph convolutional
networks (GCNs) can also be formulated as a non-linear KP.
Our method improves the transductive inference accuracy
of a state-of-the-art GCN model (Gao et al., 2018). Overall,
our contributions can be summarized as follows:

1. Our non-linear KP definitions are much more com-
plicated than others as we use neural network-based
objectives. See our review in Sec. 2.

2. In deep learning platforms, it is not straightforward to
consider the budget constraint of KPs. To resolve this,
we design a max-min game (whose equilibrium state
is equivalent to the optimal KP solution) and solve it
using our proposed adaptive gradient ascent method.

3. Our adaptive gradient ascent method guarantees a de-
crease in the total cost after one iteration if any cost
overrun. Therefore, a series of updates can eventu-
ally address the cost overrun situation and produce a
feasible KP solution.

4. We show that our proposed method can be used in
various applications including but not limited to the two
deep learning applications and one more benchmark
linear KP experiment that we will introduce in our
experimental evaluation section.

2. Related Work
The definition of KP is, given a cost ci of item i for all
1 ≤ i ≤ n, a total budget B, and a value assignment
function o : {0, 1}n → R, to decide xi ∈ {0, 1}, which
denotes if we choose item i or not, for all i such that the
sum of the value assignments is maximized and the total
cost, denoted

∑n
i=1 cixi, is not larger than B.

For example, the quadratic KP, one of the most popular non-
linear KP definitions, maximizes

∑
i vixi +

∑
i,j vi,jxixj

where vi is the value (profit) of item i and vi,j is the syn-
ergistic profit when selecting both items i and j (Fomeni

& Letchford, 2014). The most general research was done
by Bretthauser et al., where they considered convex (for
minimization) or concave (for maximization) functions for
o (Bretthauer & Shetty, 2002). However, they only consid-
ered relatively simple functions that are not based on neural
networks. We summarize popular KP definitions in Table 1.

If o is fixed or has a specific property, one can design an
efficient search method specific to o. In our case, however,
o has no limitations and can be an arbitrary function (neural
network). Therefore, it can be regarded as one of the hardest
KPs to design a general search algorithm for.

Several other deep learning models predict the solutions of
combinatorial optimization problems such as traveling sales-
man problem, minimum vertex cover, maximal independent
set, and so forth (Vinyals et al., 2015; Bello et al., 2016;
Zoph & Le, 2016; Gu & Hao, 2018; Khalil et al., 2017; Li
et al., 2018; Gu & Yang, 2018; Yolcu & Poczos, 2019; Sato
et al., 2019; Wu et al., 2019; Mena et al., 2018; Yu et al.,
2018), which cannot be applied to solve our non-linear KPs
because they solve unconstrained minimization problems
or a specific type of problems different from our problem
definition. Some works (Bello et al., 2016; Gu & Hao, 2018;
Nomer et al., 2020) did experiments for linear KPs with at
most hundreds of items. They did not consider non-linear
KPs either.

One more recent work is in (Hertrich & Skutella, 2021).
Hertrich et al. showed that neural networks can predict
linear KP solutions. Their main contribution is that they
found a relation between the size of a KP instance to solve
and the size of a neural network that can predict its solution.

3. Proposed Method
As discussed, o can be an application-dependent neural
network in our case. We note that o requires a binary vec-
tor x = [x1, x2, . . . , xn]T which itself is a KP solution
(boldface is used to denote vectors). Here we propose an
application-agnostic neural network f generating the binary
vector. Our neural network can be described by a function
f : θ → {0, 1}n, where θ is a set of neural network pa-
rameters. In other words, our neural network f outputs a
set of selected items (products) and does not require any
inputs other than θ. The objective and constraint of KPs are
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(a) Our item selection network f
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(b) PCR example

Figure 1: (a) We rely on the straight-through estimator
(STE) or the pass-through estimator (PTE) to select items.
The backward pass of STE, i.e., the pass with a sigmoid
only, is differentiable. We directly feed ei into the estimator.
(b) Our PCR experiment example.

used to describe a training objective with which we optimize
θ using our novel gradient ascent method. As mentioned
earlier, our neural network f does not predict, but solve
KPs.

The architecture of f is shown in Fig. 1 (a). For each item
i, we have a scalar parameter ei ∈ R that will be optimized
— in fact, these parameters are the only ones to optimize in
our model, i.e., θ = [e1, e2, . . . , en]. The straight-through
estimator (STE) or the pass-through estimator (PTE) pro-
duces xi ∈ {0, 1} from ei, where i = 1, 2, . . . , n. In the
straight-through estimator (STE),

xi =

{
Round(Sigmoid(τei)), if forward-pass
Sigmoid(τei), if backward-pass

,

where τ ≥ 1 is a slope annealing parameter and we perform
τ ← rb

p/scτ at epoch p with the change rate r > 1 and the
step parameter s (Chung et al., 2016). When τ becomes
large enough, the slope of the sigmoid function becomes
precipitous and close to the binary rounding function. The
pass-through estimator is defined in a simpler form and we
refer to (Bengio et al., 2013). These two estimators are pop-
ular techniques to train binary stochastic neurons (Bengio
et al., 2013). We note that the differentiable backward pass
is used for optimizing θ.

We solve the following non-linear KP in Eq. (1) based on our
proposed neural network f — we will describe shortly how
we consider the budget constraint — and after optimizing
θ, we can take xi ∈ {0, 1} to know which items have been

selected with the forward pass of STE/PTE:

max
θ

o(f(θ))

subject to cf(θ) ≤ B,
(1)

where f(θ) = x, c = [c1, c2, . . . , cn], and o is an
application-dependent neural network. One can consider
that Eq. (1) is based on a continuous relaxation of binary
variables with STE/PTE minimizing the gap between the
discrete and continuous variables incurred by the relaxation.

The objective function is a composite function of o and f ,
which makes our problem definition further complicated.
The inner function f is application-agnostic and in any cases,
we need it to produce the binary selection vector. The outer
function o can be changed depending on applications. In our
study, o is considered to be a pre-trained neural network1

and our proposed neural network f produces the binary
selection vector optimizing the outputs of o.

For instance, Fig. 1 (b) shows the objective function of
PCR problem in our experiments, where o is a point cloud
classification network. The solution by f optimizes the
prediction by o so that selected points are still recognized
as a guitar in the example. Note that the selected points
successfully capture the key characteristics of the guitar.
Therefore, we do not predict solutions but solve.

Complexity. The space complexity of f is O(n) where n
is the number of items. Because of the space-efficient archi-
tecture, f incurs small GPU memory overhead. As f does
not involve any matrix multiplications, its computational
overhead is also O(n).

3.1. Game-Theoretic Approach

If we ignore the budget constraint, optimizing θ to improve
o(x) can be done in TensorFlow — recall that the backward
passes of STE and PTE are differentiable thus optimizing
θ with a gradient-based method is also feasible. However,
we need to take into account the budget constraint in reality.
To this end, we rely on the Karush–Kuhn–Tucker (KKT)
condition-based approach, a popular method to solve both
differentiable and non-differentiable non-linear optimization
problems (Ruszczynski, 2006) — one can use subgradients
for non-differentiable functions. Eq. (1) then can be rewrit-
ten as follows:

max
θ

o(f(θ))− λb(f(θ)), (2)

where b(f(θ)) = cf(θ)−B = cx−B is the cost overrun,
and λ ≥ 0 is the Lagrange multiplier.

1In some cases, both o and f can be trained together to find
better solutions. For example, we use a pre-trained point cloud
classification network in the first PCR experiment, whereas we
train both a GCN and f together in the second experiment.
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By properly setting λ, we can solve Eq. (2). If i) a closed-
form of∇o◦f can be defined, ii) o◦f is concave, or iii) o◦f
is one of some special non-concave functions, the optimal
λ can be found (Bretthauer & Shetty, 2002; Wang et al.,
2019). In our case, however, none of those three conditions
can be assumed because o is an arbitrary neural network. To
resolve this issue, we use the following max-min game to
find a stable λ and an optimized θ:

max
θ

min
λ≥0

o(f(θ))− λb(f(θ)) + δλ2, (3)

where δλ2 ≥ 0 is a regularization term to prevent λ from
getting too large. When there is no such regularization term,
the optimal λ∗ for the inner minimization is ill-defined as
follows: λ∗ = 0, if b(f(θ)) ≤ 0; λ∗ →∞, if b(f(θ)) > 0.
In particular, λ∗ →∞ is problematic when the regulariza-
tion term δλ2 is missing. With our regularization, however,
the optimal λ∗ can be defined as follows:

Lemma 1. Given a fixed θ, λ∗ = max
{

0, b(f(θ))2δ

}
mini-

mizes Eq. (3).

Proof. Eq. (3) is a parabolic function (δ > 0) w.r.t. λ after
fixing θ; thus its global minimum is where the following
partial derivative becomes zero.

∂(o(f(θ))− λb(f(θ)) + δλ2)

∂λ
= −b(f(θ)) + 2δλ

Thus, −b(f(θ)) + 2δλ = 0 yields λ = b(f(θ))
2δ . By the

constraint that λ ≥ 0, λ∗ = max
{

0, b(f(θ))2δ

}
.

After replacing λ with λ∗, Eq. (3) can be rewritten as fol-
lows:

max
θ
o(f(θ))− max{0, b(f(θ))}2

4δ
. (4)

Or equivalently,

max
θ
o(f(θ))− 1

2
βR(b(f(θ)))2, (5)

where β = 1
2δ , and the function R : R → R+ denotes the

rectifier.

We solve Eq. (5) instead of Eq. (3) as the inner minimiza-
tion is now eliminated, which is the main reason why we
formulate Eq. (4) with the quadratic regularization term.
Eq. (5) has the squared cost overrun penalty, which greatly
drives the optimization process toward the zero cost overrun
point — note that in KPs, optimal solutions are achieved
when b(f(θ)) . 0.

The rationale behind the proposed max-min game between
θ and λ is that θ tries to maximize the objective while λ

tries to suppress the selection of items to minimize the cost
overrun term. However, by adding the regularization we try
to limit λ within a reasonable range. Therefore, it will easily
converge to a balancing point between the objective and the
budget constraint.

Theorem 1. The equilibrium state of the proposed max-min
game corresponds to the optimal solution of Eq. (1) with a
proper setting of β.

Proof. In this theorem, we prove that θ∗ maximizes Eq. (5)
if and only if it is the optimal KP solution of Eq. (1), with a
proper setting of β.

Since Eq. (5) is equivalent to Eq. (3) with the optimal form
of λ, we first prove that the optimal solution of the input KP
instance maximizes Eq. (5).

Let x∗ = f(θ∗) be the optimal KP solution. The opti-
mal KP solution maximizes o(f(θ∗)) with b(f(θ∗)) ≤ 0
(and as a result, βR(b(f(θ∗)))2 = 0 by its definition).
Therefore, we can make any θ with b(f(θ)) > 0 and
o(f(θ)) > o(f(θ∗)) sub-optimal in Eq. (5) by setting

β >
2
(
o(f(θ))−o(f(θ∗))

)
b(f(θ))2 . In conclusion, only θ∗ maximizes

Eq. (5) if β is large enough.

We then prove that the optimal solution of Eq. (5) also yields
the optimal KP solution with the same configuration of β.

If β >
2
(
o(f(θ))−o(f(θ∗))

)
b(f(θ))2 , we already have seen that any

θ with b(f(θ)) > 0 and o(f(θ)) > o(f(θ∗)) cannot be
the optimal solution of Eq. (5). This implies that only θ∗

maximizes Eq. (5) and according to its definition, θ∗ can
yield the optimal KP solution x∗.

The above equilibrium theorem shows i) the correctness
of formulating our problem as a two-player game and ii)
the importance of deciding β. Therefore, we propose the
adaptive gradient ascent algorithm that dynamically controls
β in the next subsection. Nevertheless, it should be noted
that the equilibrium state is not always achievable even
if it is well defined, which is also the case in generative
adversarial networks (Goodfellow et al., 2014; Arjovsky &
Bottou, 2017).

3.2. Adaptive Gradient Ascent Method

Because maximizing L = o(f(θ)) − 1
2βR(b(f(θ)))2, we

need to use the gradient ascent method with θ ← θ+ γ∇L,
where γ > 0 is a learning rate. When b(f(θ)) ≤ 0, i.e., no
cost overrun, we do not need to control β because of the
rectifier R. However, we simply set β = 0 to enable more
aggressive search for the KP objective without needing to
consider the budget constraint.

When b(f(θ)) > 0, however, we need to enforce that its
steepest gradient ascent direction reduces the total cost. For
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Algorithm 1 Adaptive gradient ascent
Input: k, γ
Output: x

1 tolerance← k; β ← 0; best← 0; Initialize θ;
2 while not converged do
3 θ̄ ← a ξ portion of θ; /* Mini-batch selection */
4 θ̄ ← θ̄ + γ∇L; /* Gradient ascent */
5 x← f(θ); /* Use the forward-pass of STE/PTE */
6 if b(x) > 0 or o(x) ≤ best then
7 tolerance← tolerance− 1;
8 else
9 tolerance← k; best← o(x);

10 if tolerance ≤ 0 then break;
11 return x;

Figure 2: To show the efficacy of our adaptive gradient ascent, we maximize x21+x22 with a constraint (x1−1)2+(x2−1)2 ≤ 1
from an initial point — note that we do not use our item selection network f but directly optimize x1, x2 ∈ R in this
example. The adaptive gradient ascent converges to the optimal solution. Gray circle means there is no cost overrun and
blue circle means b′ · o′ < 0, i.e., their directions are opposite to each other. Green arrow represents o′ and red arrow b′.
Note that our algorithm pulls the trajectory into the gray circle as soon as there is any small cost overrun.

ease of notation in this section, we simply use b(θ) and
o(θ) to represent b(f(θ)) and o(f(θ)), and use b′ and o′

to represent their gradients w.r.t. θ. Using these notations,
the steepest gradient ascent direction of L w.r.t. θ, when
b(θ) > 0, will be as follows:

∇L = o′ − βb(θ)b′.

The following theorem shows the condition of β that de-
creases the total cost after one gradient ascent update.

Theorem 2. For any θ with b(θ) > 0, b(θ+ γ∇L) < b(θ)

with a sufficiently small γ > 0 if and only if β > b′·o′
b(θ)b′·b′ .

Proof. We first prove that the left-hand side of the theorem
derives the right-hand side. From b(θ+γ(o′−βb(θ)b′)) <
b(θ) with a sufficiently small γ > 0, we have

lim
γ→0+

b(θ + γ(o′ − βb(θ)b′))− b(θ)

γ
< 0.

Similarly, if we assume b(θ + γ(o′ − βb(θ)b′)) > b(θ)
with a sufficiently small γ < 0, we have

lim
γ→0−

b(θ + γ(o′ − βb(θ)b′))− b(θ)

γ
< 0.

γ should be positive (resp. negative) if gradient ascent
(resp. descent). We mention both of γ → 0+ and γ →
0− in this proof so our theorem is the case for both the
gradient ascent and descent, which makes our proof rigorous.
These indicate that the directional derivative of b(θ) along
o′ − βb(θ)b′ is negative.

Following the definition of directional derivative, we have

∇o′−βb(θ)b′b(θ) ≡ ∇b(θ) ·
(
o′ − βb(θ)b′

)
≡ b′ ·

(
o′ − βb(θ)b′

)
.

Thus, we obtain

b′ ·
(
o′ − βb(θ)b′

)
< 0.

Then,

β >
b′ · o′

b(θ)b′ · b′
.

The opposite direction from the right-hand side to the left-
hand side is straightforward by reversing the deduction pro-
cess.

In addition, the following theorem shows the condition that
the objective value does not decrease, i.e., o(θ + γ∇L) ≥
o(θ), after one gradient ascent update.
Theorem 3. For any θ with b(θ) > 0, o(θ + γ∇L) ≥
o(θ) with a sufficiently small γ > 0 if and only if

β

{
≥ o′·o′

b(θ)b′·o′ , if b′ · o′ < 0

≤ o′·o′
b(θ)b′·o′ , if b′ · o′ > 0

.

Proof. This can be proved following the same procedure
as Thm. (??); but one should be careful at the last step
considering the sign of the dot product.

Note that in Thm. (3) we do not consider the case that
b′ · o′ = 0 because o(θ + γ∇L) ≥ o(θ) is automatically
satisfied.
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It leads to the best outcome if we can achieve both b(θ +
γ∇L) < b(θ) and o(θ + γ∇L) ≥ o(θ) after one gradient
ascent update. Therefore, we need to combine the two
theorems. From the above two theorems, we can collectively
have the following conditions:

β ≥ 0 , if b′ · o′ < 0
β > 0 , if b′ · o′ = 0
b′·o′

b(θ)b′·b′ < β ≤ o′·o′
b(θ)b′·o′ , if b′ · o′ > 0

.

If b′·o′ < 0 in the above condition, then β ≥ 0 satisfies both
Thm. (2) and Thm. (3). However, if it is not the case that
b′·o′

b(θ)b′·b′ <
o′·o′

b(θ)b′·o′ , then the decrease in the cost (Thm. (2))
and the non-decrease in the objective (Thm. (3)) cannot be
fulfilled at the same time, in which case we rely only on
Thm. (2). Considering all these conditions, β can have one
of the following three values:

β =


0 , if b′ · o′ < 0
b′·o′

2b(θ)b′·b′ + o′·o′
2b(θ)b′·o′ , if (b′ · o′ > 0)∧(

b′·o′
b(θ)b′·b′ <

o′·o′
b(θ)b′·o′

)
b′·o′

b(θ)b′·b′ + ε , otherwise
(6)

where ε > 0 is a small positive value we can analytically
decide by the following theorem.

Theorem 4. There will be no cost overrun after one gradi-
ent ascent update of θ if ε = 1

γb′·b′ and b(θ) is linear.

Proof. Let b(θ + γ∇L) = 0, i.e., there is no cost overrun
after one gradient ascent update of θ. b(θ + γ∇L) = 0
implies that b(θ)+γ∇L·b′ ≡ b(θ)+γ(o′−βb(θ)b′)·b′ =
0, if b(θ) is linear, because the directional derivative γ∇L·b′
represents the rate of changes in b(θ) after one update.2

Replacing β with b′·o′
b(θ)b′·b′ + ε, we have

b(θ) + γ

[
o′ −

(
b′ · o′

b(θ)b′ · b′
+ ε

)
b(θ)b′

]
· b′ = 0.

Then, we have ε = 1
γb′·b′ .

The final proposed adaptive gradient ascent method is shown
in Alg. (1). Let θ = {e1, e2, . . . , en} be the set of the one-
dimensional (scalar) parameters to learn. At line 3, we
choose a ξ portion of θ as a mini-batch θ̄ which is updated
at line 4.

2b(θ) + γ∇L · b′ becomes 0 if b(θ) is linear. Because we use
STE/PTE, however, b is not linear but concave w.r.t. θ, although it
is a linear w.r.t. x. As a heuristic, however, we use the derived ε and
it sometimes requires more than one gradient ascent update. In any
cases, however, the cost overrun will decrease. Our experiments
show that it works well in practice.

Note that all deep learning platforms support if-else condi-
tional statements; thus L with β in Eq. (6) can be directly
programmed, and there is no need to control β from outside.
Therefore, β is implicitly controlled during the update at
line 4. Finally, line 10 is to check the early-stopping con-
dition. If there are no improvements in the past k epochs,
we stop the process. In Fig. 2, we show an example of
optimizing a simple function with the proposed method.

4. Experiments
We test our proposed method in two deep learning experi-
ments, resampling point clouds, and transductive inferences
of GCNs, and one more benchmark linear KP experiment.
We use Ubuntu 18.04 LTS, Python 3.6.6, NVIDIA Driver
417.22, CUDA 10, TensorFlow 1.14.0, Numpy 1.14.5,
Scipy 1.1.0, and machines with Intel Core i9 CPU and
NVIDIA RTX 2080 Ti.

4.1. Point Cloud Resampling

Point clouds are usually generated by a large set of collected
(scanned) points on the external surface of objects from
3D scanners. Point cloud resampling (PCR) is to choose
a subset of scanned points to reduce the space and time
overheads of point processing algorithms. However, there
are no well-defined metrics to evaluate and perform resam-
pling. Each resampling algorithm relies on its own heuristic
method. To this end, we solve the KP problem in Eq. (1)
where o includes a point cloud classification model and B
is the number of desired points in ratio — i.e., find a B
portion of points that maximize the quality of resampling.
We introduce our formal problem definition as follows:

min
θ

σ(`,m(θm,P⊗ f(θ)))

subject to
1 · f(θ)

n
≤ B,

(7)

where P ∈ Rn×3 is a set (matrix) of n 3-dimensional points
scanned from one object; m is a point cloud classification
model, in particular PointNet (Qi et al., 2016) in our experi-
ments; θm is its model parameters; f(θ) outputs a column
vector x ∈ {0, 1}n; 1 · f(θ) is a dot product to sum the
elements of x generated by f ; ‘⊗’ denotes the row-wise
multiplication3 to apply the selection vector x to P; and
σ is the cross-entropy loss created from the ground-truth
label ` and the predicted label by m. Our problem defini-
tion is greatly inspired by attention where neural networks
focus on a meaningful subset of information (Vaswani et al.,
2017). Although Eq. (7) is a minimization problem, we can
still apply the adaptive gradient ascent by maximizing its
negative value.

3Because of the PointNet design, this row-wise multiplication
is identical to selecting/deselecting points.
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Original
(resampling ratio = 1.0)

Random
(0.05)

Octree
(0.06)

WLOP
(0.05)

Grid
(0.06)

Ours
(0.05)

PointNet Micro F-1 0.8842 0.6353 0.7208 0.7070 0.7414 0.8268
PointNet Macro F-1 0.8304 0.5398 0.6344 0.6150 0.6607 0.7457

Table 2: PointNet accuracy after resampling points with various methods

(a) Original (b) Ours
(ratio=5%,
logit=40.8)

(c) Grid
(ratio=5.7%,
logit=37.3)

(d) WLOP
(ratio=5%,
logit=31.4)

(e) Original (f) Ours
(ratio=5%,
logit=49.1)

(g) Grid
(ratio=4.3%,
logit=42.5)

(h) Random
(ratio=5%,
logit=46.1)

Figure 3: PCR Visualization. The logit values are extracted from PointNet. We remove Octree due to its relatively poor
quality.

Datasets. We use the Princeton ModelNet40 (Zhirong Wu
et al., 2015) which contains 12,308 samples from various
different object classes, e.g., sofa, desk, chair, etc. 2,468
samples were reserved for our resampling test and others
were used to train PointNet.

Baselines and Hyperparameters. We test four baselines:
random resampling (Random) (CloudCompare Open Source
Project Team, 2019), Octree (CloudCompare Open Source
Project Team, 2019), weighted locally optimal projec-
tion (WLOP) (The CGAL Project, 2019), and grid resam-
pling (Grid) (The CGAL Project, 2019). As there are no
commonly-accepted evaluation metrics for PCR, we com-
pare our KP-based PCR with the baselines using the classi-
fication performance by PointNet.

We set B = 0.05, ξ = 0.1, γ = 0.0001, and k = 3, 000.
We initialize ei with the LeCun normal initializer (Sutskever
et al., 2013) for our method. In particular, we test with a
low resampling ratioB = 0.05, which is highly challenging.
We use PTE to generate xi from ei. For those baselines, we
set the same resampling ratio of 0.05. However, Octree and
Grid sometimes resample more than 0.05 and their average
resampling ratios are 0.06 as shown in Table 2.

Experimental Results. We feed each resampling result
to PointNet and check if PointNet correctly recognizes its
original class. In Table 2, we report the accuracy of each
resampling method. Our method shows the best accuracy,
which proves that our method optimizes well even with the
complicated neural network-based objective. We also show
some resampling results in Fig. 3 — more figures can be
found in our supplementary file. In the figure, note that our
results have the highest logit values. In all those airplane,
guitar, and lamp examples, our method successfully captures
all the important characteristics.

4.2. Graph Convolutional Networks

Let G = (V,E) be a graph. When we know the ground-
truth class labels for a subset V ′ ⊂ V , the transductive
inference of GCNs is to infer other unknown vertex labels
from the known subset V ′. Transductive inference is popular
in machine learning, e.g., label propagation, belief propa-
gation, and so forth (Bishop, 2006). It can be described as
minimizing σ(`, g(θg,A)), where g is a GCN model; θg is
its model parameters; A ∈ {0, 1}|V |×|V | is the adjacency
matrix of G; ` is a set of ground-truth labels which we al-
ready know for V ′ ⊂ V ; and σ is an evaluation metric such
as cross-entropy loss4. We solve the following problem to
improve the transductive inference of GCNs:

min
θg,θ

σ(`, g(θg, abs(A− f(θ))))

subject to
1 · vec(f(θ))

|V | × |V |
≤ B,

(8)

where f(θ) outputs a flipping matrix F ∈ {0, 1}|V |×|V |.
Each element of the flipping matrix is a binary variable to
decide whether we flip (invert) av,u ∈ A or not. abs(A−
f(θ)) means the flip operation in the problem definition and
our method can correctly deal with the absolute function.
One can consider the proposed KP problem is to find the
optimal adjacency modification, given the modification ratio
budget B, that leads to the highest inference performance.
The value assignment function o in Eq. (1) corresponds to
σ(`, g(·)) in this problem definition.

The rationale behind our problem definition is that graphs
often include weak and/or missing connections that may

4This cross-entropy loss is defined only for V ′. For other
testing vertices V \ V ′, we can infer their labels as side products
of minimizing the loss for V ′ because vertices are connected.
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Model Cora Citeseer Model Cora Citeseer Model Cora Citeseer
GAT 0.830 0.725 GLN 0.812 0.709 Chebyshev 0.812 0.698

AGNN 0.831 0.717 GCN 0.815 0.703 LNet 0.795 0.662
LGCN 0.833 0.730 AdaNet 0.804 0.687 FastGCN 0.798 0.688
GIN 0.776 0.661 SGC 0.810 0.719 Ours (LGCN + Flip) 0.840 0.732

Table 3: GCN transductive inference accuracy

disturb the inference process (Liben-Nowell & Kleinberg,
2003). By correcting them, we show that we can achieve
better performance. We train θ and θg together in this
experiment, which shows the flexibility in our method.

Datasets. We test two standard benchmark graphs: Cora
and Citeseer. These datasets were used in many works such
as (Yang et al., 2016; Kipf & Welling, 2016; Gao et al.,
2018), to name a few.

Baselines and Hyperparameters. We compare with sev-
eral state-of-the-art transductive inference models such as
FastGCN (Chen et al., 2018), GAT (Veličković et al., 2017),
GLN (Wu et al., 2019), AGNN (Wu et al., 2019), LNet (Liao
et al., 2019), AdaNet (Liao et al., 2019), SGC (Wu et al.,
2019), GCN (Kipf & Welling, 2016), and LGCN (Gao et al.,
2018). We also compare with other non-GCN-based models
such as Chebyshev (Defferrard et al., 2016). To test our
method, we choose LGCN as the base GCN model g in
Eq. (8).

We use the default hyperparameters of LGCN. For B, we
test with B = {0.005, 0.001, 0.0001}. We use ξ = 0.1 as
the mini-batch size. We set the initialization of ei to zero
for all i, γ to 0.01, and k to 1000. We use the STE-based
item selection network with the slope annealing step size
s = 50 and the change rate r = 1.004 to generate xi from
ei. θ and θg are trained alternately. We use Adam to train
θg and the proposed adaptive gradient method for θ.

Experimental Results. In Table 3, we summarize results.
While both LGCN and GAT show reliable performance, our
method based on LGCN with the adjacency matrix modi-
fication shows the best performance in the two benchmark
graphs. Theoretically, the accuracy of our method is lower
bounded by the original LGCN as our method is reduced to
the original LGCN when there are no flippings.

4.3. Benchmark Linear KP Instances

We also test with linear KP instances, whose problem for-
mulations follow the equation below.

max
xi∈{0,1},1≤i≤n

n∑
i=1

vixi

subject to
n∑
i=1

cixi ≤ B.
(9)

In this case, the objective is not based on a neural network.
We include this experiment, although our main interest lies
in neural network-based KPs, since the comparison with
other mathematical solvers for linear KP instances can high-
light the efficacy of our proposed method.

Datasets. We use the benchmark KP instance generator
created by Pisinger (Pisinger, 2005). It can generate many
realistic KP instances where item values/costs and budgets
are decided by the generator. We only generate large-scale
instances where n = 1, 000, 000, as smaller-scale instances
can be exactly solved with many other existing techniques.

These KP instances can be classified into six types depend-
ing on the characteristics of vi and ci for each item i. One
representative type is spanner where vi and ci are multiples
of a quite small set of numbers that is called spanner set. In
Table 4, we use the spanner set span(2, 10) where the two
parameters 2 and 10 were chosen by Pisinger. We strictly
follow his benchmark design.

In each type, item values and costs are determined following
a special distribution/function. We describe the six types we
used for our experiments as follows. We choose R ≥ 104

for our experiments wherever applicable:

1. Uncorrelated Span(p, m): A set of p items are gener-
ated with costs in the interval [1,R] and uncorrelated
values. The items (vj , cj) in the spanner set are normal-
ized by diving the values and the costs withm+1. The
n items are then constructed, by repeatedly choosing
a item (vj ,cj) from the spanner set and a multiplier
a, randomly generated in the interval [1,m]. The con-
structed item has value and cost (a · vj , a · cj). It is
suggested that hard instances are generated for smaller
spanner sets (Pisinger, 2005) with p = 2 and m = 10.

2. Weakly Correlated Span(p, m): A similar method de-
scribed in 1 is used with p = 2 and m = 10 while vj
and cj are weakly correlated.

3. Strongly Correlated Span(p, m): A similar method
described in 1 is used with p = 2 and m = 10 while
vj and cj are strongly correlated.

4. Strongly correlated: Costs cj are distributed in [1, R]
and vj = cj +R/10, for some R > 1.
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Method Uncorr. Span(2,10) Weak. Corr. Span(2,10) Str. Corr. Span(2,10)
Is optimal? Time Is optimal? Time Is optimal? Time

Combo O 329 sec O 3018 sec O 19.13 sec
Gurobi O 2.61 sec O 2.78 sec O 2.70 sec
Ours O 4.46 sec O 1.70 sec O 3.17 sec

Method Strongly correlated Inverse strongly correlated Uncorrelated
Is optimal? Time Is optimal? Time Is optimal? Time

Combo O < 1 sec O < 1 sec N/A Timeout
Gurobi O 42.72sec O 19.39sec O 21.71 sec
Ours O 60.16 sec O 4.72 sec O < 1 sec

Table 4: Results on benchmark KP instances with 6 types. Each type defines how to generate item values and costs. Due to
the very large scale of objective values, we only show whether solution is optimal or not. ‘Timeout’ means it cannot be
solved in an hour in our experiments. OR-Tools and LS are timed out in all cases and are not listed in this table.

5. Inverse strongly correlated: Values vj are distributed
in [1, R] and cj = vj +R/10 for some R > 1.

6. Uncorrelated: vj and cj are chosen randomly in [1,R]
for some R > 1. In these instances, no correlation
exists between the value and the cost of an item.

Baselines and Hyperparameters. We test four baselines:
Combo (Martello et al., 1999), Gurobi (Gurobi Optimiza-
tion, LLC, 2019), LocalSolver (LS) (LocalSolver, LLC,
2019), and OR-Tools by Google AI (Google, LLC, 2019).

All these baselines returned optimal solutions. They resort
to many techniques such as dynamic programming, branch
and bound, integer linear programming with LP-relaxation,
Horowitz-Sahni decomposition, and so on. However, only
few of them are scalable up to n = 1, 000, 000. Existing
deep learning methods (Bello et al., 2016; Gu & Hao, 2018)
are not scalable because their LSTM-based architectures
cannot process a list of one million items. We give an hour
for each solver to solve each instance. For our method, we
use ξ = 0.1 as the mini-batch size. We set the initialization
of ei to zero for all i, γ to 0.1, and k to 100. We use STE
with the slope annealing step size s = 50 and the change
rate r = 1.01 to generate xi from ei. For baseline solvers,
we rely on their automatic configurations.

Experimental Results. In Table 4, we summarize all the
results. In general, Combo and Gurobi show better perfor-
mance than other baselines except for the type 6, where
Combo could not solve in an hour. OR-Tools and LS were
all timed out. We think that Gurobi shows great perfor-
mance considering its wide applicability — Gurobi is a
versatile tool to solve (mixed integer) linear programming,
quadratic programming, etc. Our proposed method solves
all instances in less than about a minute. Moreover, our
method and Gurobi are the only ones which solve all the
instances. Due to the simplicity of linear KPs, our method
could find optimal solutions in all types.

5. Conclusions & Future Work
To solve 0-1 KPs with neural network-based objective func-
tions, we presented a max-min game and then developed a
more efficient but equivalent way where the inner minimiza-
tion can be completely removed. After that, our presented
adaptive gradient ascent method is able to find feasible so-
lutions with good objective values for large-scale KPs with
up to a million of items. Our adaptive gradient ascent is
designed to guarantee a decrease in the total cost if any cost
overrun. We also showed that our method can be utilized for
a couple of applications, including but not limited to PCR
and the transductive inference of GCNs. In our application
to PCR, we could achieve high accuracy, which was also
corroborated by the GCN experimental results. We also
showed that our presented method can be used to solve lin-
ear KPs. In comparison with classical solvers, our method
shows comparable performance. In addition, we see that
many deep learning-related problems can be modeled as
KPs (although the effectiveness of modeling them as KPs
is under-explored). Therefore, our work can inspire other
related researchers.

One limitation in our work is that we do not support ad-
vanced optimization techniques yet. In particular, trusted
region methods (Dauphin et al., 2014) are effective opti-
mization techniques in increasing the quality of solutions
and avoiding saddle points. This paper is our first work in
this line of research and we plan to keep extending Thm. (3)
in the future. Our overall framework should still work after
redefining β in Thm. (3) for other optimization techniques.

Acknowledgements
This work was supported by the Institute of Information &
Communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government (MSIT) (No. 2020-
0-01361, Artificial Intelligence Graduate School Program
(Yonsei University)).



A Novel Method to Solve Neural Knapsack Problems

References
Arjovsky, M. and Bottou, L. Towards Principled Methods

for Training Generative Adversarial Networks. In ICLR,
2017.

Bello, I., Pham, H., Le, Q. V., Norouzi, M., and Bengio,
S. Neural combinatorial optimization with reinforcement
learning. CoRR, abs/1611.09940, 2016.
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