Training Graph Neural Networks with 1000 Layers
— Supplementary Material —

Guohao Li'? Matthias Miiller' Bernard Ghanem 2 Vladlen Koltun '

A. Grouping of RevGNN

Grouped convolution is an effective way to reduce the pa-
rameter complexity in CNNs. We provide an ablation study
to show how grouping reduces the number of parameters of
RevGNNs. We conduct experiments on the ogbn-proteins
dataset with different group sizes and report the results in
Table 1. The number of hidden channels for all of these
models is set to 224. We find that a larger group size reduces
the number of parameters. As the group size increases from
2 to 4, the number of parameters reduces by more than 30%.
The performance of models with 3 to 56 layers decreases
slightly. The 112-layer networks achieve the same perfor-
mance while the model with group size 4 uses only around
67% parameters compared to the model with group size 2.
However, we observe that the GPU memory usage increases
from 7.30 GB to 11.05 GB as the group size increases from
2 to 4 with our current implementation. We conjecture that
this is due to our inefficient implementation. Optimizing our
code for larger group sizes and conducting a more rigorous
analysis is an interesting avenue for future investigation.

Table 1. Ablation of the group size of group reversible GNNs
on the ogbn-protein dataset. L is the number of layers. The
number of hidden channels is 224 for all the models.

‘ Group=2 ‘ Group=4
#L | Params ROC-AUC 1 | Params ROC-AUC 1
3 490k 85.09 339k 84.86
7 1.IM 85.68 750k 85.25
14 2.2M 86.62 1.5M 85.79
28 | 4.3M 86.68 2.9M 86.30
56 8.6M 86.90 5.8M 86.76
112 | 17.2M 87.02 11.5M 87.09

'Intel Labs “King Abdullah University of Science and Technol-
ogy. Correspondence to: Guohao Li <guohao.li@kaust.edu.sa>.

Proceedings of the 38" International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

B. Experimental Details and More Ablations
B.1. Datasets and Frameworks

We conduct experiments on three OGB datasets (Hu
et al., 2020) including ogbn-proteins, ogbn-arxiv and ogbn-
products. We follow the standard data splits and evaluation
protocol of OGB 1.2.4. Please refer to the OGB website!
for more details. Our code implementation relies on the
deep learning framework Pytorch 1.6.0. We use Pytorch
Geometric 1.6.1 (Fey & Lenssen, 2019) for all experiments
except for the experiments with GATs where we use DGL
0.5.3 (Wang et al., 2019). The reversible module is imple-
mented based on MemCNN (Leemput et al., 2019). The
deep equilibrium module is implemented based on DEQ
(Bai et al., 2019).

B.2. Hyperparameters and Experimental Settings

We describe all important hyperparameters and training
settings that were not mentioned in the main paper for re-
producibility. The settings are slightly different for each
dataset.

Ogbn-proteins. The node features are initialized through
aggregating connected edge features by a sum aggregation
at the first layer. We use random partitioning for mini-batch
training. The number of partitions is set to 10 for training
and 5 for validation for all the ablated models. One subgraph
is sampled at each SGD step. One layer normalization is
used in the GNN block. Dropout with a rate of 0.1 is used
for each layer. We use max as the message aggregator. Each
model is trained for 2000 epochs using the Adam optimizer
with a learning rate of 0.001.

Ablations on Ogbn-proteins. A detailed comparison of
ResGNN, Weight-tied ResGNN, DEQ-GNN, RevGNN and
Weight-tied RevGNN is shown in Table 2. Except for the
DEQ-GNN, all the other models have an explicit depth of
112 layers. The reversible connections reduce the mem-
ory consumption significantly and enable training of wider
RevGNNs. A 112-layer RevGNN achieves the best per-
formance (87.02 ROC-AUC) among the compared models.
DEQ-GNN with 64 channels and WT-RevGNN with 80

"https://ogb.stanford.edu/

Training Graph Neural Networks with 1000 Layers

Table 2. Results on the ogbn-proteins dataset for various 112-
layer networks. Note that DEQ-GNN always has only a single
layer that approximates an infinitely deep network. Each network
is trained on one V100 GPU with 32GB of memory. The column
Mem reports the GPU memory in GB, Params reports the number
of model parameters, and Time reports the training time in days.
Baselines are in italic.

Model #Ch ROC-AUC T Mem | Params Time |
ResGNN 64 85.94 271 23TM 1.3
ResGNN 224 - OOM 28.4M -

WT-ResGNN 64 83.30 274 512k 1.2
WT-ResGNN 224 - OOM 537k -
DEQ-GNN 64 83.17 222 513k 1.3
DEQ-GNN 224 85.84 7.60 537k 29
RevGNN 64 85.48 2.09 146M 1.8
RevGNN 80 85.97 2,56 225M 22
RevGNN 224 87.02 7.30 17.1M 49
WT-RevGNN 64 82.89 1.60 350k 1.7
WT-RevGNN 80 83.46 2.08 514k 2.0
WT-RevGNN 224 85.28 5.55 337k 4.8

channels have a similar number of parameters and memory
consumption and also perform similarly. However, training
DEQ-GNN is significantly faster than training WT-RevGNN
(1.3 days vs. 2 days).

Multi-view Inference on Ogbn-proteins. To further im-
prove the evaluation results, we propose multi-view infer-
ence which reduces the negative effects of random partition-
ing and noisy neighbors. During different inference passes,
each vertex will see a different set of neighbors. We refer
to this as multi-view inference and implement it by parti-
tioning the graphs into different subgraphs in each inference
pass. In Table 3, we find that performing inference with
more views yields better results. We observe a substantial
improvement with increasing number of views for both the
RevGNN-Deep and RevGNN-Wide models. The results
increase by about 0.4% in terms of ROC-AUC going from
1 view to 10 views. We also observe that a smaller number
of partitions is favorable for evaluation. To reduce memory
cost, automatic mixed precision’ by NVIDIA is used for
inference.

Ogbn-arxiv. The directed graph is converted into an undi-
rected graph and self-loops are added. We use the full-batch
setting for both training and testing. For the GCN (Kipf
& Welling, 2017), SAGE (Hamilton et al., 2017) and GEN
(Li et al., 2020) models, batch normalization and dropout
with a rate of 0.5 is applied to each layer and the Adam
optimizer with a learning rate of 0.001 is used to train the

“https://developer.nvidia.com/automatic-mixed-precision

Table 3. Ablations for multi-view inference with RevGNN-
Deep and RevGNN-Wide on the ogbn-proteins dataset. L, Ch,
Views and Parts denote the numbers of layers, channels, views and
parts respectively. Doing inference with more views and less parts
is favorable.

Model #L #Ch #Views #Parts ROC-AUC 1
RevGNN-Deep 1001 80 1 3 87.29+0.16
RevGNN-Deep 1001 80 5 3 87.68 +0.13
RevGNN-Deep 1001 80 10 3 87.74+0.13
RevGNN-Wide 448 224 1 3 87.84+0.21
RevGNN-Wide 448 224 5 3 88.20+0.16
RevGNN-Wide 448 224 10 3 88.24+0.15
RevGNN-Wide 448 224 1 3 87.84+021
RevGNN-Wide 448 224 1 5 87.62+0.18
RevGNN-Wide 448 224 1 10 87.23+0.22

models for 2000 epochs. The GAT-based (Velickovic et al.,
2018) models are implemented based on the OGB leader-
board submission GAT + norm. adj. + label reuse®. The
RevGAT models with self-knowledge distillation are imple-
mented based on the submission GAT + label reuse + self
KD*. The teacher models and student models have the same
architecture. A knowledge distillation loss is added to the
student model to minimize the Kullback-Leibler divergence
between the teacher’s predictions and the student’s predic-
tions during training. Please refer to the Github repositories
for more details about the implementation.

Ogbn-products. Self-loops are added to the graph. We
compare RevGNNs with full-batch training and mini-batch
training. For mini-batch training, the graph is randomly par-
titioned into 10 subgraphs and one subgraph is sampled at
each SGD step. We use full-batch testing in both scenarios.
Batch normalization and dropout with a rate of 0.5 are used
for each GNN block. The model is trained using the Adam
optimizer with a learning rate of 0.001 for 1000 epochs.

B.3. GPU Memory Measurement

In all the experiments, the GPU memory usage is measured
as the peak GPU memory during the first training epoch.
Note that the measured GPU memory is larger than the GPU
memory for storing node features due to the intermediate
computation and network parameters. We consider the peak
GPU memory usage as a practical metric since it is the bot-
tleneck for training neural networks. As is common practice,
we use torch.cuda.maxmemory_allocated()
for the memory measurement. However, note that

3https://github.com/Espylapiza/dgl/tree/master/examples
/pytorch/ogb/ogbn-arxiv

*https://github.com/ShunliRen/dgl/tree/master/examples
/pytorch/ogb/ogbn-arxiv

Training Graph Neural Networks with 1000 Layers

the measured peak GPU memory obtained using
torch.cuda.maxmemory-allocated () is usually
smaller than the actual peak GPU memory obtained with
NVIDIA-SMI.

B.4. Correlation of Model Predictions

We perform a correlation analysis on model predictions
of RevGNN, Weight-tied RevGNN and DEQ-GNN. The
pearson correlations of RevGNN with 1000 layers, WT-
RevGNN-224 with 7 layers and DEQ-GNN-224 with 56
iterations are: 0.8571 (RevGNN vs. WT-RevGNN), 0.8565
(RevGNN vs. DEQ-GNN) and 0.8948 (WT-RevGNN
vs. DEQ-GNN).

C. More Discussion
C.1. Gradient Checkpointing and Model Parallelism

By saving checkpoints every /L steps, gradient check-
pointing can achieve a memory complexity of O(\EN D),
which is still higher than the memory complexity O(N D)
of RevGNN. For 112-layer models with 64 hidden channels,
ResGNN with gradient checkpointing consumes 2.5X the
memory compared to RevGNN (5.22 G vs. 2.09 G) while
reaching similar performance on ogbn-proteins with sim-
ilar training time. Model parallelism is orthogonal to our
approach. It would be interesting to investigate model paral-
lelism to make RevGNN even wider with multiple GPUs.

C.2. Going Deeper and Datasets

In our experiments, we find that going deeper is very effec-
tive on ogbn-proteins. It would probably be beneficial to
pre-train overparameterized GNNs on larger-scale protein
datasets and then apply the pre-trained models to scientific
applications such as drug discovery, protein structure pre-
diction and gene-disease associations. For the other datasets
such as ogbn-products and ogbn-arxiv, we observe less im-
provement when going very deep. It is still unclear what
kind of datasets benefit more from depth and overparameter-
ization. Investigating the relationship between overparame-
terization and factors such as dataset size, graph modality
and graph learning task is an important direction of future
work to better understand when overparameterized models
are beneficial. We also anticipate that overparameterized
GNNss will be a promising solution to even larger datasets
such as OGB-LSC (Hu et al., 2021).

References

Bai, S., Kolter, J. Z., and Koltun, V. Deep equilibrium
models. In Advances in Neural Information Processing
Systems, 2019.

Fey, M. and Lenssen, J. E. Fast graph representation learning

with PyTorch Geometric. In ICLR Workshop on Repre-
sentation Learning on Graphs and Manifolds, 2019.

Hamilton, W., Ying, Z., and Leskovec, J. Inductive repre-
sentation learning on large graphs. In Advances in neural
information processing systems, pp. 1024—1034, 2017.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B.,
Catasta, M., and Leskovec, J. Open graph benchmark:
Datasets for machine learning on graphs. In Advances in

Neural Information Processing Systems, volume 33, pp.
22118-22133, 2020.

Hu, W, Fey, M., Ren, H., Nakata, M., Dong, Y.,
and Leskovec, J. Ogb-Isc: A large-scale challenge
for machine learning on graphs. arXiv preprint
arXiv:2103.09430, 2021.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. In International
Conference on Learning Representations, 2017.

Leemput, S. C. v., Teuwen, J., Ginneken, B. v., and Man-
niesing, R. Memcnn: A python/pytorch package for creat-
ing memory-efficient invertible neural networks. Journal
of Open Source Software, 4(39):1576, 7 2019. ISSN
2475-9066.

Li, G., Xiong, C., Thabet, A., and Ghanem, B. Deep-
ergen: All you need to train deeper gens. arXiv preprint
arXiv:2006.07739, 2020.

Velickovié, P., Cucurull, G., Casanova, A., Romero, A.,
Lio, P, and Bengio, Y. Graph attention networks. In
International Conference on Learning Representations,
2018.

Wang, M., Zheng, D., Ye, Z., Gan, Q., Li, M., Song, X.,
Zhou, J., Ma, C., Yu, L., Gai, Y., Xiao, T., He, T., Karypis,
G., Li, J., and Zhang, Z. Deep graph library: A graph-
centric, highly-performant package for graph neural net-
works. arXiv preprint arXiv:1909.01315, 2019.

