
Partially Observed Exchangeable Modeling

A. Proof
Theorem 1. Given a set of observations x = {xi}Ni=1 from
an infinitely exchangeable process, denote the observed and
unobserved part as xo = {x(oi)

i }Ni=1 and xu = {x(ui)
i }Ni=1

respectively. Then the arbitrary conditional distribution
p(xu | xo) can be decomposed as follows:

p(xu | xo) =

� N�

i=1

p(x
(ui)
i | x(oi)

i , θ)p(θ | xo)dθ.

Proof. According to the definition, we have ui, oi ⊆
{1, . . . , d}. Define mi = ui ∪ oi and xm = xu ∪ xo =

{x(mi)
i }Ni=1, where xm represents the set of features that

contains both observed and unobserved dimensions.

From the De Finetti’s theorem, we can derive the following
equations:

p(xm) =

� N�

i=1

p(x
(mi)
i | θ)p(θ)dθ

=

� N�

i=1

�
p(x

(ui)
i | x(oi)

i , θ)p(x
(oi)
i | θ)

�
p(θ)dθ

=

� N�

i=1

p(x
(ui)
i | x(oi)

i , θ)

N�

i=1

p(x
(oi)
i | θ)p(θ)dθ

=

� N�

i=1

p(x
(ui)
i | x(oi)

i , θ)p(xo | θ)p(θ)dθ

=

� N�

i=1

p(x
(ui)
i | x(oi)

i , θ)p(θ | xo)p(xo)dθ

The key step is the penultimate equation, where the De
Finetti’s theorem is applied for xo in reverse direction. That
is, given the same latent code, we assume set elements of xo

are conditionally i.i.d.. Since xo contains subsets of features
from xm, the above assumption holds.

Dividing both side of the equation by p(xo) gives

p(xu | xo) =

� N�

i=1

p(x
(ui)
i | x(oi)

i , θ)p(θ | xo)dθ

B. Models
As shown in Fig. 1, our model mainly contains 4 parts: pos-
terior, prior, permutation equivariant embedding and the
generator. The prior can be further divided as base distribu-
tion (B) and the flow transformations (Q). Here, we describe
the specific architectures used for each component respec-
tively. Please see Table B.1 for details. Note we did not tune

the network architecture heavily. Further improvement is
expected by tuning the network for each task separately.

For simplicity, the posterior and prior are mostly constructed
by processing each set element independently then pooling
across the set. A Gaussian distribution is then derived from
the permutation invariant embedding. For point clouds,
we use set transformer to incorporate dependencies among
points. For set of functions (each function is represented as a
set of (input, target) pairs), we first use set transformer to get
an permutation invariant embedding for each function. Then,
we take the average pooling over the set as the embedding
for the set. The prior utilizes a normalizing flow to increase
the flexibility, which is implemented as a stack of invertible
transformations over the samples. For images, we use a
multi-scale ACFlow as the generator, which is similar to the
original model used in (Li et al., 2020a). We modify it to a
conditional version so that both the base distribution and the
transformations are conditioned on the given embeddings.
For point cloud, we use the conditional ACFlow with an
autoregressive base likelihood.

C. Experiments
C.1. Image Inpainting

For image inpainting, we evaluate on both MNIST and Om-
niglot datasets. We construct the sets by randomly selecting
10 images from a certain class. The observed part for each
image is a 10× 10 square placed at random positions.

The baseline TRC (Wang et al., 2017) is based on tensor
ring completion. We use their official implementation 1

and cross validate the hyperparameters on our datasets.
The set of images with size [32, 32, 10] are treated as a
3-order tensor and reshaped into a 10-order tensor of size
[4, 2, 2, 2, 4, 2, 2, 2, 2, 5]. The tensor is then completed by
alternating least square method with a specified tensor ring
rank (TR-Rank). We found the TR-Rank of 9 works best
for our datasets.

Figure C.1 presents several additional examples for inpaint-
ing a set of images. We can see the TRC fails to recover any
meaningful structures, IDP fails to infer the right classes,
while our POEx model always generates the characters from
the specified classes.

At the request of the reviewers, we also provide a compari-
son to Neural Process. We would like to emphasize that our
experimental setting is different from NP. NP models each
image independently, while POEx models a set of images
jointly. Conceptually NP is similar to the IDP baseline, but
IDP learns a normalizing flow-based generative model for
p(x

(ui)
i | x(oi)

i ), which performs better than NP based on
our past experience. Figure C.2 shows several imputation

1https://github.com/wangwenqi1990/TensorRingCompletion



Partially Observed Exchangeable Modeling

Table B.1. Network architectures
Data Type Components Architecture

Set of Images

Posterior [Conv(128,3,1), Conv(128,3,1), MaxP(2,2)]×4 + FC(256) + SetAvgPool → Gaussian(128)
Prior (B) [Conv(128,3,1), Conv(128,3,1), MaxP(2,2)]×4 + FC(256) + SetAvgPool → Gaussian(128)
Prior (Q) [Linear, LeakyReLU, Affine Coupling, Permute]×4

Peq Embed [Conv(64,3,1), Conv(64,3,1), MaxP(2,2)]×2 + [DecomAttn, ResBlock]×4 + [DeConv(64,3,2), Conv(64,3,1)]×2
Generator Conditional ACFlow(multi-scale)

Point Clouds

Posterior [SetTransformer(256)]×4 + SetAvgPool + FC(512) → Gaussian(256)
Prior (B) [SetTransformer(256)]×4 + SetAvgPool + FC(512) → Gaussian(256)
Prior (Q) [Linear, LeakyReLU, Affine Coupling, Permute]×4

Peq Embed [SetTransformer(256)]×4
Generator Conditional ACFlow

Set of Functions

Posterior [SetTransformer(256)]×4 + SetAvgPool + SetAvgPool + FC(512) → Gaussian(256)
Prior (B) [SetTransformer(256)]×4 + SetAvgPool + SetAvgPool + FC(512) → Gaussian(256)
Prior (Q) [Linear, LeakyReLU, Affine Coupling, Permute]×4

Peq Embed SelfAttention + CrossAttention
Generator [FC(256)]×4 + FC(2) → Gaussian(1)

(a) MNIST

(b) Omniglot

Figure C.1. Inpaint the missing values for a set of images.

results from convolutional NP (Gordon et al., 2020), which
is trained with the recommended hyperparameter in the offi-
cial implementation. We can see it has difficulty accurately
recovering the underlying classes given the limited context.

(a) MNIST (b) Omniglot

Figure C.2. Imputation results from Convolutional NP.

C.2. Image Set Expansion

To expand a set, we modify the distribution of the masks so
that some elements are fully observed and others are fully
unobserved. We randomly select the number of observed
elements during training. During test, our model can expand
the set to arbitrary size.

C.3. Few-shot Learning

Since our model can expand sets for even unseen categories,
we utilize it to augment the support set for few-shot learning.
Given a N-way-K-shot training set, we use the K exemplars

from each class to generate M novel instances, thus change
the problem to N-way-(M+K)-shot classification. We train
the MAML with fully connected networks using the official
implementation 2.

C.4. Point Cloud Completion

For point cloud completion, we build the dataset by sam-
pling 256 points from the observed part and 1792 points
from the occluded part, thus there are 2048 points in total.
PCN is trained with a multi-scale architecture, where the
given point cloud is first expanded to 512 points and then
expanded further to 2048 points. We use EMD loss and CD
loss for the coarse and fine outputs respectively.

C.5. Point Cloud Upsampling

Point cloud upsampling uses the ModelNet40 dataset. We
leave 10 categories out that are not used during training to
evaluate the generalization ability of our model. We uni-
formaly sample 2048 points as the target. During training,
an arbitrary subset is taken as input. PUNet is not built for
upsampling arbitrary sized point cloud, therefore we sub-
sample 256 points as input. PUNet is trained to optimize
the EMD loss and a repulsion loss as in their original work.
For comparison, we evaluate our POEx model and PUNet
for upsampling 256 points.

C.6. Point Cloud Compression

One advantage of our POEx model is that the likelihood
can be used to guide the subset selection. To evaluate the
selection quality, we build a biased point cloud by sam-
pling the center points with higher probability. Specifically,
2048 points are selected from the original point cloud with
probability softmax(�x−m�2/T 2), where x and m are the
coordinates of each candidate points and the center respec-
tively. We use T = 0.1 for our experiments. Given 2048
non-uniformly sampled points, our goal is to sample 256

2https://github.com/cbfinn/maml



Partially Observed Exchangeable Modeling

Figure C.3. Additional examples for point cloud completion.

Figure C.4. Additional examples for point cloud upsampling.



Partially Observed Exchangeable Modeling

Figure C.5. Additional examples for imputing colonoscopy point
cloud.

points from it to represent the underlying geometry. We
propose a sequential selection strategy, where one point is
selected per step based on its conditional likelihood. The
one with lowest likelihood given the current selected points
is selected at each step. Baseline approaches include uni-
form sampling, where 256 points are uniformly sampled. A
k-means based sampling method group the given points into
256 clusters and we select one point from each cluster that
is closest to its cluster center. The farthest point sampling
algorithm also proceeds sequentially, where the point that is
farthest from the current selected points is selected at each
step. To quantitatively evaluate the selection quality we
reconstruct the selected subset to 2048 points and compare
it to a uniformly sampled point cloud. If the selected subset
represents the geometry well, the upsampled point cloud
should be close to the uniformly sampled one.

C.7. Colonoscopy Point Cloud Imputation

We uniformly sample 2048 points from the reconstructed
colonoscopy meshes as our training data. During training,
points inside a random ball are viewed as unobserved blind
spot and our model is trained to impute those blind spots.
To provide guidance for the imputation, we divide the space
into small cubes and condition our model on the cube coor-
dinates. That is, points inside the cube are indexed by the
corresponding cube coordinates. To train the conditional
POEx model, the indexes and the point coordinates are con-
catenated together as inputs. Figure C.5 presents several
examples of the imputed point clouds.

C.8. Neural Processes over Images

The conditional version of POEx can be interpreted as a
neural process. We evaluate our model on the ShapeNet
dataset, where images of a object viewed from different
angles are used as the target variables. Given the context
that contains images from several random views, the neural
processes are expected to generate novel images for arbitrary
view points. We split the dataset into seen and unseen

Figure C.6. Neural Process sampling from conditional BRUNO.
Red coxes indicate the given context. First row: ground truth.
Second row: generation.

categories and train our POEx model and the conditional
BRUNO only on seen categories. Images are indexed with
the continuous angles, which we translate to their sin and
cos values. Figure C.6 shows several examples of generated
images from conditional BRUNO. We can see the generated
images do not always match with the provided context.

C.9. Video Inpainting

We evaluate our model for video inpainting with two
datasets. 10 frames are randomly selected from a video
to construct a set. The frames are indexed by their times-
tamps. We normalize them to the range of [0,1] and further
calculate a 32-dimensional positional embedding similar
to (Vaswani et al., 2017). To simulate occluded pixels, we
put a 16× 16 square at random position, pixels inside the
square are considered missing. For occlusion removal, since
we do not have the ground truth values for occluded pixels,
those pixels are excluded for training and evaluation. We
run TCC (Huang et al., 2016) using the official code 3 and
their recommended hyperparameters. For group mean impu-
tation, if a certain pixel is missing in all frames, we impute
it using the global mean of all observed pixels. Figure C.7
and C.8 present additional examples for these two datasets.
GMI works well if the movement is negligible, but it fails
when the object moves too much. It also struggles if certain
pixels are missing in all frames. In the second example of
Fig. C.7, TCC fails to run since the missing rate is too high
for certain frames and the optical flow cannot be properly
estimated. For quantitative evaluation, we report the PSNR
and SSIM scores between the ground truth and the imputed
images. We calculate PSNR only for the missing part and
the SSIM for the whole image.

C.10. Set of Functions

Generalizing the concept of partial sets to infinite dimen-
sional set elements, we can utilize POEx to model a set of
functions. Each function is represented as a set of (input,
target) pairs. We first evaluate on the multi-task Gaussian
processes. Following (Bonilla et al., 2008), we directly

3https://github.com/amjltc295/Temporally-Coherent-
Completion-of-Dynamic-Video



Partially Observed Exchangeable Modeling

Figure C.7. Additional examples for occlusion removal.

Figure C.8. Additional examples for inpainting Youtube videos.

specify the correlations among functions:

�fl(x), fk(x�)� = Kf
lkk

x(x, x�), yil = N (fl(xi),σ
2
l ),

where Kf is a positive semi-definitive matrix that specifies
the inter-task similarities, kx is a covariance function over
inputs. To model N functions, Kf is a N ×N matrix and
Kf

lk is the element in row l and column k. Here, we assume
the tasks are permutation equivariant, that is, every two tasks
have the same correlation:

Kf
lk =

�
c, l �= k
1, l = k

Similar to Neural processes, we use a Gaussian kernel for
kx. During training, we generate synthetic data from 5
functions with c = 0.9. We sample at most 100 points from
each function and select at most 10 points as context. The
sampled points are then transformed by shifting or reversing
to obtain 5 target functions. Our POEx model is trained by
conditioning on a one-hot function identifier.

Following Neural Processes, we also build a set of functions
from a set of images. Given a set of MNIST images from
the same class, we view each image as a function between
the pixel index and its value. During training, we sample an
arbitrary subset from each image as context.


