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Abstract
Modeling dependencies among features is fun-
damental for many machine learning tasks. Al-
though there are often multiple related instances
that may be leveraged to inform conditional de-
pendencies, typical approaches only model con-
ditional dependencies over individual instances.
In this work, we propose a novel framework, par-
tially observed exchangeable modeling (POEx)
that takes in a set of related partially observed
instances and infers the conditional distribution
for the unobserved dimensions over multiple el-
ements. Our approach jointly models the intra-
instance (among features in a point) and inter-
instance (among multiple points in a set) depen-
dencies in data. POEx is a general framework that
encompasses many existing tasks such as point
cloud expansion and few-shot generation, as well
as new tasks like few-shot imputation. Despite its
generality, extensive empirical evaluations show
that our model achieves state-of-the-art perfor-
mance across a range of applications.

1. Introduction
Modeling dependencies among features is at the core of
many unsupervised learning tasks. Typical approaches con-
sider modeling dependencies in a vacuum. For example,
one typically imputes the unobserved features of a single
instance based only on that instance’s observed features.
However, there are often multiple related instances that may
be leveraged to inform conditional dependencies. For in-
stance, a patient may have multiple visits to a clinic with
different sets of measurements, which may be used together
to infer the missing ones. In this work, we propose to jointly
model the intra-instance (among features in a point) and
inter-instance (among multiple points in a set) dependencies
by modeling sets of partially observed instances. To our
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knowledge, this is the first work that generalizes the concept
of partially observed data to exchangeable sets. We consider
modeling an exchangeable (permutation invariant) likeli-
hood over a set x = {xi}Ni=1, xi ∈ Rd. However, unlike
previous approaches (Korshunova et al., 2018; Edwards &
Storkey, 2016; Li et al., 2020b; Bender et al., 2020), we
model a partially observed set, where “unobserved” features
of points xu = {x(ui)

i }Ni=1 are conditioned on “observed”
features of points xo = {x(oi)

i }Ni=1 and oi, ui ⊆ {1, . . . , d}
and oi ∩ ui = ∅. Since each feature in xu depends not
only on features from the corresponding element but also on
features from other set elements, the conditional likelihood
p(xu | xo) captures the dependencies across both features
and set elements.

Probabilistic modeling of sets where each instance itself
contains a collection of elements is challenging, since set el-
ements are exchangeable and the cardinality may vary. Our
partially observed setting brings another level of challenge
due to the arbitrariness of the observed subset for each ele-
ment. First, the subsets have arbitrary dimensionality, which
poses challenges for modern neural network based models.
Second, the combinatorial nature of the subsets renders the
conditional distributions highly multi-modal, which makes
it difficult to model accurately. To resolve these difficulties,
we propose a variational weight-sharing scheme that is able
to model the combinatorial cases in a single model.

Partially observed exchangeable modeling (POEx) is a gen-
eral framework that encompasses many impactful applica-
tions, which we describe below. Despite its generality, we
find that our single POEx approach provides competitive or
better results than specialized approaches for these tasks.

Few-shot Imputation A direct application of the condi-
tional distribution p(xu | xo) enables a task we coin few-
shot imputation, where one models a subset of covari-
ates based on multiple related observations of an instance
{x(oi)

i }Ni=1. Our set imputation formulation leverages the
dependencies across set elements to infer the missing val-
ues. For example, when modeling an occluded region in
an image x

(ui)
i , it would be beneficial to also condition on

observed pixels from other angles x(oj)
j . This task is akin to

multi-task imputation and is related to group mean imputa-
tion (Sim et al., 2015), which imputes missing features in
an instance according to the mean value of the features in
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a related group. However, our approach models an entire
distribution (rather than providing a single imputation) and
captures richer dependencies beyond the mean of the fea-
tures. Given diverse sets during training, our POEx model
generalizes to unseen sets.

Set Expansion When some set elements have fully ob-
served features, oi = {1, . . . , d}, and others have fully
unobserved features, oj = ∅, POEx can generate novel ele-
ments based on the given set of illustrations. Representative
examples of this application include point cloud completion
and upsampling, where new points are generated from the
underlying geometry to either complete an occluded point
cloud or improve the resolution of a sparse point cloud.

Few-shot Generation The set expansion formulation can
be viewed as a few-shot generative model, where novel
instances are generated based on a few exemplars. Given
diverse training examples, the model is expected to generate
novel instances even on unseen sets.

Set Compression Instead of expanding a set, we may pro-
ceed in the opposite direction and compress a given set. For
example, we can represent a large point set with its coreset
to reduce storage and computing requirements. The likeli-
hood from our POEx model can guide the selection of an
optimal subset, which retains the most information.

Neural Processes If we introduce an index variable ti for
each set element and extend the original set {xi}Ni=1 to a set
of index-value pairs {(ti, xi)}Ni=1, our POEx model encap-
sulates the neural processes (Garnelo et al., 2018a;b; Kim
et al., 2019) as a special case. New elements corresponding
to the given indexes can be generated from a conditional
version of POEx: p(xu | xo, t), where t = {ti}Ni=1. In this
work, we focus on modeling processes in high-dimensional
spaces, such as processes of images, which are challenging
due to the multi-modality of the underlying distributions.

Set of Functions Instead of modeling a set of finite dimen-
sional vectors, we may be interested in sets of functions,
such as a set of correlated processes. By leveraging the de-
pendencies across functions, we can fit each function better
while utilizing fewer observations. Our formulation essen-
tially generalizes the multi-task Gaussian processes (Bonilla
et al., 2008) into multi-task neural processes.

The contributions of this work are as follows: 1) We extend
the concept of partially observed data to exchangeable sets
so that the dependencies among both features and set ele-
ments are captured in a single model. 2) We develop a deep
latent variable based model to learn the conditional distribu-
tions for sets and propose a collapsed inference technique
to optimize the ELBO. The collapsed inference simplifies
the hierarchical inference framework to a single level. 3)
We leverage the captured dependencies to perform various
applications, which are difficult or even impossible for alter-

native approaches. 4) Our model handles neural processes
as special cases and generalizes the original neural processes
to high-dimensional distributions. 5) We propose a novel ex-
tension of neural process, dubbed multi-task neural process,
where sets of infinite-dimensional functions are modeled
together. 6) We conduct extensive experiments to verify
the effectiveness of our proposed model and demonstrate
state-of-the-art performance across a range of applications.

2. Background
Set Modeling The main challenge of modeling set struc-
tured data is to respect the permutation invariant property
of sets. A straight-forward approach is to augment the train-
ing data with randomly permuted orders and treat them as
sequences. Given infinite training data and model capacity,
an autoregressive model can produce permutation invariant
likelihoods. However, for real-world limited data and mod-
els, permutation invariance is not guaranteed. As pointed
out in (Vinyals et al., 2015), the order actually matters for
autoregressive models.

BRUNO (Korshunova et al., 2018) proposes using invertible
transformations to project each set element to a latent space
where dimensions are factorized independently. Then they
build independent exchangeable processes for each dimen-
sion in the latent space to obtain the permutation invariant
likelihoods. FlowScan (Bender et al., 2020) instead recom-
mends using a scan sorting operation to convert the set like-
lihood to a familiar sequence likelihood and normalizing the
likelihood accordingly. ExNODE (Li et al., 2020b) utilizes
neural ODE based permutation equivariant transformations
and permutation invariant base likelihoods to construct a
continuous normalizing flow model for exchangeable data.

De Finetti’s theorem provides a principled way of mod-
eling exchangeable data, where each element is modeled
independently conditioned on a latent variable θ:

p({xi}Ni=1) =
� �N

i=1 p(xi | θ)p(θ)dθ. (1)

Latent Dirichlet allocation (LDA) (Blei et al., 2003) and
its variants (Teh et al., 2006b; Blei et al., 2007) are classic
models of this form, where the likelihood and prior are
expressed as simple known distributions. Recently, deep
neural network based models have been proposed (Yang
et al., 2019; Edwards & Storkey, 2016; Yang et al., 2020),
in which a VAE is trained to optimize a lower bound of (1).

Arbitrary Conditional Models Instead of modeling the
joint distribution p(x), where x ∈ Rd, arbitrary condi-
tional models learn the conditional distributions for an ar-
bitrary subset of features xu conditioned on another non-
overlapping arbitrary subset xo, where u, o ⊆ {1, . . . , d}.
Graphical models are a natural choice for such tasks (Koster
et al., 2002), where conditioning usually has a closed-form
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solution. However, the graph structure is usually unknown
for general data, and learning the graph structure from ob-
servational data has its own challenges (Heinze-Deml et al.,
2018; Scutari et al., 2019). Sum-Product Network (SPN)
(Poon & Domingos, 2011) and its variants (Jaini et al., 2018;
Butz et al., 2019; Tan & Peharz, 2019) borrow the idea
from graphical models and build deep neural networks by
stacking sum and product operations alternately so that the
arbitrary conditionals are tractable.

Deep generative models have also been used for this task.
Universal Marginalizer (Douglas et al., 2017) builds a feed-
forward network to approximate the conditional marginal
distributions of each dimension conditioned on xo. VAEAC
(Ivanov et al., 2018) utilizes a conditional VAE to learn
the conditional distribution p(xu | xo). ACFlow (Li et al.,
2020a) uses a normalizing flow based model for learning the
arbitrary conditionals, where invertible transformations are
specially designed to deal with arbitrary dimensionalities.
GAN based approaches (Belghazi et al., 2019) have also
been proposed to model arbitrary conditionals.

Stochastic Processes Stochastic processes are usually de-
fined as the marginal distribution over a collection of in-
dexed random variables {xt; t ∈ T }. For example, Gaus-
sian process (Rasmussen, 2003) specifies that the marginal
distribution p(xt1:tn | {ti}ni=1) follows a multivariate Gaus-
sian distribution, where the covariance is defined by some
kernel function K(t, t�). The Kolmogrov extension theo-
rem (Øksendal, 2003) provides the sufficient condition for
designing a valid stochastic process:

• Exchangeability: The marginal distribution is invariant
to any permutation π, i.e.,

p(xt1:tn | {ti}ni=1) = p(xtπ1 :tπn
| π({ti}ni=1)).

• Consistency: Marginalizing out part of the variables is
the same as the one obtained from the original process,
i.e., for any 1 ≤ m ≤ n

p(xt1:tm | {ti}mi=1) =
�
p(xt1:tn | {ti}ni=1)dxtm+1:tn .

Stochastic processes can be viewed as a distribution over the
space of functions and can be used for modeling exchange-
able data. However, classic Gaussian processes (Rasmussen,
2003) and Student-t processes (Shah et al., 2014) assume the
marginals follow a simple known distribution for tractability
and have an O(n3) complexity, which render them imprac-
tical for large-scale complex dataset.

Neural Processes (Garnelo et al., 2018a;b; Kim et al., 2019)
overcome the above limitations by learning a latent vari-
able based model conditioned on a set of context points
X(C) = {(t(C)

i , x
(C)
i )}NC

i=1. The latent variable θ implicitly
parametrizes a distribution over the underlying functions so
that values on target points {t(T )

j }NT
j=1 can be evaluated over

random draws of the latent variable, i.e.,

p(x
(T )
t1:tNT

| {t(T )
j }NT

j=1) =
� �NT

j=1 p(x
(T )
j | t(T )

j , θ)p(θ | X(C))dθ.

Neural processes generalize the kernel based stochastic pro-
cesses with deep neural networks and scale with O(n) due
to the amortized inference. The exchangeability requirement
is met by using exchangeable neural networks for inference,
and the consistency requirement is roughly satisfied with
the variational approximation.

3. Method
In this section, we develop our approach for modeling sets
of partially observed elements. We describe the variants
of POEx and their corresponding applications. We also
introduce our inference techniques used to train the model.

3.1. Partially Observed Exchangeable Modeling

3.1.1. ARBITRARY CONDITIONALS

Consider a set of vectors {xi}Ni=1, where xi ∈ Rd and N
is the cardinality of the set. For each set element xi, only
a subset of features x(oi)

i are observed and we would like
to predict the values for another subset of features x

(ui)
i .

Here, ui, oi ⊆ {1, . . . , d} and ui ∩ oi = ∅. We denote the
set of observed features as xo = {x(oi)

i }Ni=1 and the set of
unobserved features as xu = {x(ui)

i }Ni=1. Our goal is to
model the distribution p(xu | xo) for arbitrary ui and oi.
Throughout the experiment, we assume features are missing
completely at random (MCAR) for each element.

In order to model the arbitrary conditional distributions for
sets, we introduce a latent variable θ. The following theorem
states that there exists a latent variable θ such that condi-
tioning on θ renders the set elements of xu i.i.d.. Please see
appendix for the proof.

Theorem 1. Given a set of observations x = {xi}Ni=1 from
an infinitely exchangeable process, denote the observed and
unobserved part as xo = {x(oi)

i }Ni=1 and xu = {x(ui)
i }Ni=1

respectively. Then the arbitrary conditional distribution
p(xu | xo) can be decomposed as follows:

p(xu | xo) =

� N�

i=1

p(x
(ui)
i | x(oi)

i , θ)p(θ | xo)dθ. (2)

Optimizing (2), however, is intractable due to the high-
dimensional integration over θ. Therefore, we resort to
variational approximation and optimize a lower bound:

log p(xu | xo) ≥
N�

i=1

Eq(θ|xu,xo) log p(x
(ui)
i | x(oi)

i , θ)

−DKL(q(θ | xu,xo) � p(θ | xo)),

(3)
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where q(θ | xu,xo) and p(θ | xo) are variational pos-
terior and prior that are permutation invariant w.r.t. the
conditioning set. The arbitrary conditional likelihoods
p(x

(ui)
i | x(oi)

i , θ) are over a Rd feature space and can be
implemented as in previous works (Ivanov et al., 2018; Li
et al., 2020a; Belghazi et al., 2019).

Note that xo and xu are sets of vectors with arbitrary dimen-
sionality. To represent vectors with arbitrary dimensionality
so that a neural network can handle them easily, we impute
missing features with zeros and introduce a binary mask to
indicate whether the corresponding dimensions are missing
or not. We denote the zero imputation operation as I(·) that
takes in a set of features with arbitrary dimensionality and
outputs a set of d-dimensional features and the correspond-
ing set of binary masks.

3.1.2. SET COMPRESSION

Given a pretrained POEx model, we can use the arbitrary
conditional likelihoods p(xu | xo) to guide the selection
of a subset for compression. The principle is to select a
subset that preserves the most information. Set compression
is a type of combinatorial optimization problem, which
is NP-hard. Here, we propose a sequential approach that
selects one element at a time. We start from oj = ∅, uj =
{1, . . . , d} for each element xj , that is, all elements are fully
unobserved. The next element i to select should be the one
that maximizes the conditional entropy H(xi | xo), which
represents the most uncertain element across the remaining
unobserved ones given the current selected elements. Since
the original set x is given, we can estimate the entropy with

H(xi | xo) = Ep(xi|xo) − log p(xi | xo) ≈ − log p(xi | xo).

Therefore, the next element to chose is simply the one with
minimum likelihood p(xi | xo) based on the current selec-
tion xo. Afterwards, we update oi = {1, . . . , d}, ui = ∅
and proceed to the next selection step.

3.1.3. NEURAL PROCESS

Some applications may introduce index variables for each
set element. For example, a collection of frames from a
video are naturally indexed by their timestamps. Here, we
consider a set of index-value pairs {(ti, xi)}Ni=1, where ti
can be either discrete or continuous. Similarly, xi are par-
tially observed, and we define xu and xo accordingly. We
also define t = {ti}Ni=1 for notation simplicity, which are
typically given. By conditioning on the index variables t,
we modify the lower bound (3) to

log p(xu | xo, t) ≥
N�

i=1

Eq(θ|xu,xo,t) log p(x
(ui)
i | x(oi)

i , ti, θ)

−DKL(q(θ | xu,xo, t)�p(θ | xo, t)).
(4)

If we further generalize the cardinality N to be infinite and
specify a context set xc and a target set xt to be arbitrary
subsets of all set elements, i.e., xc,xt ⊆ {(ti, xi)}Ni=1, we
recover the exact setting for neural process. This is a special
case of our POEx model in that features are fully observed
(oi = {1, . . . , d}, ui = ∅) for elements of xc and fully
unobserved (oi = ∅, ui = {1, . . . , d}) for elements of xt.
That is, xo = xc and xu = xt. The ELBO objective is
exactly the same as (4). Similar to neural processes, we
use a finite set of data points to optimize the ELBO (4) and
sample a subset at random as the context.

Neural processes usually use simple feed-forward networks
and Gaussian distributions for the conditional likelihood
p(x

(ui)
i | x(oi)

i , ti, θ), which makes it unsuitable for multi-
modal distributions. Furthermore, they typically deal with
low-dimensional data. Our model, however, utilizes ar-
bitrary conditional likelihoods, which can deal with high-
dimensional and multi-modal distributions.

3.1.4. MULTI-TASK NEURAL PROCESS

Neural processes model the distributions over functions,
where one input variable is mapped to one target variable.
In a multi-task learning scenario, there exists multiple tar-
get variables. Therefore, we propose a multi-task neural
process extension to capture the correlations among target
variables. For notation simplicity, we assume the target
variables are exchangeable here. Non-exchangeable tar-
gets can be easily transformed to exchangeable ones by
concatenating with their indexes. Consider a set of func-
tions {Fk}Kk=1 for K target variables. Inspired by neural
process, we represent each function Fk by a set of input-
output pairs {(tki, xki)}Nk

i=1. The goal of multi-task neural
process is to learn an arbitrary conditional model given arbi-
trarily observed subsets from each function. We similarly
define xu = {F (uk)

k }Nk

k=1 = {{(tki, x(uki)
ki )}Nk

i=1}Kk=1 and
xo = {F (ok)

k }Nk

k=1 = {{(tki, x(oki)
ki )}Nk

i=1}Kk=1.

The multi-task neural process described above models a set
of sets. A straight-forward approach is to use a hierarchical
model

p(xu | xo) =

� K�

k=1

p(F (uk)
k | F (ok)

k , θ)p(θ | xo)dθ =

� K�

k=1

�� Nk�

i=1

p(x
(uki)
ki | x(oki)

ki , tki,φ)p(φ | F (ok)
k , θ)dφ

�
p(θ | xo)dθ,

(5)
which utilizes the Theorem 1 twice. However, inference
with such a model is challenging since complex inter-
dependencies need to be captured across two set levels.
Moreover, the latent variables are not of direct interest.
Therefore, we propose an inference technique that collapses
the two latent variables into one. Specifically, we assume the
uncertainties across θ and φ are both absorbed into θ and de-
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fine p(φ | F (ok)
k , θ) = δ(G(F (ok)

k , θ)), where G represents
a deterministic mapping. Therefore, (5) can be simplified as

p(xu | xo) =
� K�

k=1

Nk�

i=1

p(x
(uki)
ki | x(oki)

ki , tki,φ)δ(G(F (ok)
k , θ))p(θ | xo)dφdθ.

(6)
Further collapsing φ and θ into one latent variable ψ gives

p(xu | xo) =

� K�

k=1

Nk�

i=1

p(x
(uki)
ki | x(oki)

ki , tki,ψ)p(ψ | xo)dψ,

(7)
where ψ is permutation invariant for both set levels. The col-
lapsed model may seem restricted at first sight, but we show
empirically that it remains powerful when we use a flexi-
ble likelihood model for the arbitrary conditionals. More
importantly, it significantly simplifies the implementation.

A similar collapsed inference technique has been used in
(Griffiths & Steyvers, 2004; Teh et al., 2006a; Porteous et al.,
2008) to reduce computational cost and accelerate inference
for LDA models. Recently, Yang et al. (2020) propose to
use collapsed inference in the neural process framework to
marginalize out the index variables. Here, we utilize col-
lapsed inference to reduce a hierarchical generative model
to a single level.

Given the generative process (7), it is straightforward to
optimize using the ELBO

log p(xu | xo) ≥
K�

k=1

Nk�

i=1

Eq(ψ|xu,xo,t) log p(x
(uki)
ki | x(oki)

ki , tki,ψ)

−DKL(q(ψ | xu,xo, t)�p(ψ | xo, t)).
(8)

3.2. Implementation

In this section, we describe some implementation details of
POEx that are important for good empirical performance.
Please refer to Sec. B in the appendix for more details. Our
code is publicly available at https://github.com/
lupalab/POEx.

Given the ELBO objectives defined in (3), (4) and (8), it
is straightforward to implement them as conditional VAEs.
Please see Fig. 1 for an illustration. The posterior and prior
are implemented with permutation invariant networks. For
sets of vectors (such as point clouds), we first use Set Trans-
former (Lee et al., 2019) to extract a permutation equivariant
embedding, then average over the sets. For sets of images,
we use a convolutional neural network to process each image
independently and take the mean embedding over the sets.
For sets of sets/functions, Set Transformer (with a global
pooling) is used to extract the embedding for each function
respectively, then the average embedding is taken as the
final permutation invariant embedding. Index variables are

tiled as the same sized tensor as the corresponding inputs
and concatenated together. The posterior is then defined as
a Gaussian distribution, where the mean and variance are
derived from the set representation. The prior is defined as
a normalizing flow model Q with base distribution defined
as a Gaussian conditioned on the set representation. The
KL-divergence terms are calculated by Monte-Carlo esti-
mation: DKL(q�p) = −H(q)−Eq log p, where both H(q)
and log p are tractable.

In addition to the permutation invariant latent code, we
also use a permutation equivariant embedding of xo to
assist the learning of the arbitrary conditional likelihood.
For a set of vectors, we use Set Transformer to capture
the inter-dependencies. For images, Set Transformer is
computationally too expensive. Therefore, we propose
to decompose the computation across spatial dimensions
and set dimension. Specifically, for a set of images
{xi}Ni=1, shared convolutional layers are applied to each set
element, and self-attention layers are applied to each spatial
position. Such layers and pooling layers can be stacked
alternately to extract a permutation equivariant embedding
for a set of images. For sets of sets {{xki}Nk

i=1}Kk=1,
the permutation equivariant embedding contains two
parts. One part is the self attention embedding that
attends only to the features in the same set (i.e., same k)
{SelfAttention({xki}Nk

i=1)}Kk=1. Note that SelfAttention
outputs a feature vector for each element, which is a
weighted sum of a certain embedding from each element.
Another part is the attention embedding across different sets
{ 1
K−1

�K
k�=1 CrossAttention({xki}Nk

i=1, {xk�j}Nk�
j=1)I(k �=

k�)}Kk=1. For each element in the query set, the cross
attention outputs an attentive embedding over the key set.

Given the permutation equivariant embedding of xo (de-
noted as ζ), the arbitrary conditionals p(x

(ui)
i | x(oi)

i , θ),
p(x

(ui)
i | x(oi)

i , ti, θ) and p(x
(uki)
ki | x(oki)

ki , tki,ψ) in (3),
(4) and (8) are rewritten as p(x(ui)

i | x(oi)
i , θ, ζ), p(x(ui)

i |
x
(oi)
i , ti, θ, ζ) and p(x

(uki)
ki | x(oki)

ki , tki,ψ, ζ) respectively,
which can be implemented by any arbitrary conditional
models (Li et al., 2020a; Ivanov et al., 2018; Douglas et al.,
2017). Here, we choose ACFlow for most of the experi-
ments and modify it to a conditional version, where both
the transformations and the base likelihood are conditioned
on the corresponding tensors. For low-dimensional data,
such as 1D function approximation, a simple feed-forward
network that maps the conditioning tensor to a Gaussian
distribution also works well.

4. Experiments
In this section, we conduct extensive experiments with
POEx for the aforementioned applications. In order to verify
the effectiveness of the set level dependencies, we compare
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Figure 1. VAE model for partially observed exchangeable modeling.

(a) MNIST

(b) Omniglot

(c) Omniglot from unseen classes

Figure 2. Inpaint the missing values for a set of images.

to a model that treats each set element as independent in-
put (denoted as IDP). IDP uses the same architecture as
the decoder of POEx. We also compare to some specially
designed approaches for each application. Due to space
limitations, we put the experimental details and additional
results in the appendix. In this work, we emphasize the
versatility of POEx, and note that certain domain specific
techniques may further improve performance, which we
leave for future works.

Table 1. PSNR of inpainting sets
of images.

MNIST Omniglot

TRC 7.80 8.87
IDP 11.38 11.49

POEx 13.02 12.09

We first utilize our
POEx model to impute
missing values for a set
of images from MNIST
and Omniglot datasets,
where several images
from the same class are
considered a set. We
consider a setting where only a small portion of pixels are
observed for each image. Figure 2 and Table 1 compare
the results for POEx, IDP, and a tensor completion based

approach TRC (Wang et al., 2017). The results demonstrate
clearly that the dependencies among set elements can
significantly improve the imputation performance. Even
when the given information is limited for each image, our
POEx model can still accurately recover the missing parts.
TRC fails to recover any meaningful structures for both
MNIST and Omniglot, see Fig. C.1 for several examples.
Our POEx model can also perform few-shot imputation on
unseen classes, see Fig. 2(c) for several examples.

Figure 3. Expand a set by generating similar elements. Red boxes
indicate the given elements. Left: MNIST. Right: Omniglot.

If we change the distribution of the masks so that some
elements are fully observed, our POEx model can perform
set expansion by generating similar elements to the given
ones. Figure 3 shows several examples for MNIST and
Omniglot datasets. Our POEx model can generate realistic
and novel images even if only one element is given.

Figure 4. Few-shot generation with unseen Omniglot characters.

Table 2. 5-way-1-shot classifi-
cation with MAML.

Algorithm Acc.

MAML 89.7
MAML(aug=5) 93.8

MAML(aug=10) 94.7
MAML(aug=20) 95.1

To further test the general-
ization ability of POEx, we
provide the model with sev-
eral unseen characters and
utilize the POEx model to
generate new elements. Fig-
ure 4 demonstrates the few-
shot generation results given
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(a) completion (b) upsampling

Figure 5. Point cloud completion and upsampling.

several unseen Omniglot images. We can see the generated
images appear similar to the given ones. To quantitatively
evaluate the quality of generated images, we perform few-
shot classification by augmenting the few-shot support sets
with our POEx model. We evaluate the 5-way-1-shot accu-
racy of a fully connected network using MAML (Finn et al.,
2017). Table 2 reports the accuracy of MAML with and
without augmentation. We can see the few-shot accuracy
improves as we provide more synthetic data.

In addition to sets of images, our POEx model can deal with
point clouds. Figure 5 presents several examples for point
cloud completion and upsampling. Point cloud completion
predicts the occluded parts based on a partial point cloud.

Table 3. Point cloud completion.
CD EMD

PCN 0.0033 0.1393
POEx 0.0044 0.0994

Partial point clouds are
common in practice due
to limited sensor resolu-
tion and occlusion. We
use the dataset created by
Wang et al. (2020), where
the point cloud is self occluded due to a single camera view
point. We sample 256 points uniformly from the observed
partial point cloud to generate 2048 points from the com-
plete one using our POEx model. For comparison, we train
a PCN (Yuan et al., 2018) using the same dataset. PCN
is specially designed for the completion task and uses a
multi-scale generation process. For quantitative comparison,
we report the Chamfer Distance (CD) and Earth Mover’s
Distance (EMD) in Table 3. Despite the general purpose
of our POEx model, we achieve comparable performance
compared to PCN.

For point cloud upsampling, we use the ModelNet40 dataset.
We uniformly sample 2048 points as the target and cre-
ate a low resolution point cloud by uniformly sampling a
subset. Note we use arbitrary sized subset during train-

ing. For evaluation, we upsample a point cloud with 256
points. We use PUNet (Yu et al., 2018) as the baseline,
which is trained to upsample 256 points to 2048 points.

Table 4. Point cloud upsampling.
PUNet POEx

Seen CD 0.0025 0.0035
EMD 0.0733 0.0880

Unseen CD 0.0031 0.0048
EMD 0.0793 0.1018

Table 4 reports the CD
and EMD between the
upsampled point clouds
and the ground truth. We
can see our POEx model
produces slightly higher
distances, but we stress
that our model is not specifically designed for this task, nor
was it trained w.r.t. these metrics. We believe some task
specific tricks, such as multi-scale generation and folding
(Yang et al., 2018), can help improve the performance fur-
ther, which we leave as future work. Similar to the image
case, we can also generalize a pretrained POEx model to
upsample point clouds in unseen categories.

Figure 6. Point cloud compression. The EMD scores are calculated
over the entire testset.

In contrast to upsampling, we propose using our
POEx model to compress a given point cloud. Here we
use a POEx model trained for airplane to summarize 2048
points into 256 points. To showcase the significance of
leveraging set dependencies, we simulate a non-uniformly
captured point cloud, where points close to the center have
higher probability of being captured by the sensor. We ex-
pect the compressed point cloud to preserve the underlying
geometry, thus we evaluate the distance between the recov-
ered point cloud and a uniformly sampled one. Figure 6
compares the compression performance with several sam-
pling approaches, where FPS represents the farthest point
sampling (Qi et al., 2017). We can see the baselines tend to
select center points more frequently, while POEx distributes
the points more evenly. Quantitative results (Fig.6) verify
the superiority of POEx for compression.

Figure 7. Impute
missing points
for colonoscopy
data. Green:
observed. Blue:
imputed.

In addition to these syn-
thetic point cloud data,
we also evaluate on a
real-world colonoscopy
dataset. We uniformly
sample 2048 points from
the meshes and manually
drop some points to simulate the blind spots. Our
POEx model is then used to predict those missing points.
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Figure 8. Neural processes on ShapeNet. First row: ground truth,
red boxes indicate the context. Second row: predicted views given
the context. Third row: predicted views from unseen angles.

To provide guidance about where to fill in those missing
points, we divide the space into small cubes and pair each
point with its cube coordinates. Missing points are then
predicted conditioned on their cube coordinates. Figure 7
presents several imputed point clouds mapped onto their
corresponding meshes. We can see the imputed points align
well with the meshes.

The conditional version of POEx can be viewed as a neu-
ral process which learns a distribution over functions. In-
stead of modeling low-dimensional functions, we model a
process over images here. A subtle but important differ-
ence between NP and POEx is that POEx model the high-
dimensional processes. Although NP models have been
applied to images, they treat images as low-dimensional
functions, where the input is the 2D pixel positions and
the output is the corresponding pixel values. Instead, we
consider domains over the H × W × C dimensions. We
evaluate on ShapeNet dataset (Chang et al., 2015), which
is constructed by viewing the objects from different an-
gles. Our POEx model takes several images from random
angles as context and predicts the views for arbitrary an-
gles. Figure 8 presents several examples for both seen
and unseen categories from ShapeNet. We can see our
POEx model generates sharp images and smoothly tran-
sits between different viewpoints given just one context
view. Our model can also generalize to unseen categories.

Table 5. Bpd for generating 10
views given one random view.

Seen Unseen

cBRUNO 1.43 1.62
POEx 1.34 1.41

Conditional BRUNO
(Korshunova et al.,
2020) trained with the
same dataset sometimes
generates images not
in the same class as the
specified context, while
POEx generation always matches with the context classes.
Please see Fig. C.6 for additional examples. In Table 5,
we report the bits per dimension (bpd) for generating a
sequence of views given one context. Our model achieves
lower bpd on both seen and unseen categories.

With a conditional version of POEx, we can consider
a collection of video frames conditioned on their times-
tamps as a set. Figure 9 shows the inpainting results

(a) Occlusion removal (b) Youtube

Figure 9. Video inpainting. Better viewed with zoom-in.

(a) Multi-task Gaussian processes

(b) MNIST with 50 context points

Figure 10. Modeling a set of functions.

on two video datasets from Liao et al. (2020) and Xu
et al. (2018), and Table 6 reports the quantitative results.

Table 6. Video inpainting.
Occlusion Youtube

PSNR SSIM PSNR SSIM

IDP 15.01 0.77 15.10 0.95
GMI 19.85 0.82 16.49 0.96
TCC 31.35 0.84 30.18 0.98
POEx 21.69 0.92 21.62 0.99

In addition to IDP,
we compare to group
mean imputation
(GMI) (Sim et al.,
2015) and TCC
(Huang et al., 2016),
which utilizes optical
flow to infer the correspondence between adjacent frames.
We can see POEx outperforms IDP and GMI. There is still
room for improvement with the help of optical flow, but
we leave it for future works. GMI works well only if the
content in the video does not move much. TCC does not
work when the missing rate is high due to the difficulty of
estimating the optical flow. Please see Fig. C.7 and C.8 for
additional examples.

Further generalizing to the infinite dimensional set ele-
ments, we propose to model a set of functions using our
POEx model. Similar to Neural Processes, we evaluate on
Gaussian processes and simulated functions from images.

Table 7. NLL for modeling a set
of functions.

MTGP MNIST

IDP 2.04 -1.08
POEx 1.79 -1.10

Here, we use multi-task
Gaussian processes
(Bonilla et al., 2008).
For functions based on
images, a set of MNIST
images from the same
class is used so that the set
of functions are correlated. Figure 10 present examples
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of modeling a set of correlated functions. We can see our
POEx model manages to recover the processes with low
uncertainty using just a few context points, while the IDP
model that treat each element independently fails. Table 7
reports the negative log likelihood (NLL), and POEx model
obtains lower NLL on both datasets.

5. Conclusion
In this work, we develop the first model to work with sets
of partially observed elements. Our POEx model captures
the intra-instance and inter-instance dependencies in a holis-
tic framework by modeling the conditional distributions
of the unobserved part conditioned on the observed part.
We further reinterpret various applications as partially ob-
served set modeling tasks and apply POEx to solve them.
POEx is versatile and performs well for many challenging
tasks even compared with domain specific approaches. For
future works, we will explore domain specific architectures
and techniques to further improve the performance.
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