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Abstract mark problem for decision making under uncertainty that 

In this paper, we study the bandits with knapsacks 
(BwK) problem and develop a primal-dual based 
algorithm that achieves a problem-dependent log-
arithmic regret bound. The BwK problem extends 
the multi-arm bandit (MAB) problem to model 
the resource consumption associated with play-
ing each arm, and the existing BwK literature has 
been mainly focused on deriving asymptotically 
optimal distribution-free regret bounds. We frst 
study the primal and dual linear programs under-
lying the BwK problem. From this primal-dual 
perspective, we discover symmetry between arms 
and knapsacks, and then propose a new notion 
of sub-optimality measure for the BwK problem. 
The sub-optimality measure highlights the impor-
tant role of knapsacks in determining algorithm 
regret and inspires the design of our two-phase 
algorithm. In the frst phase, the algorithm identi-
fes the optimal arms and the binding knapsacks, 
and in the second phase, it exhausts the binding 
knapsacks via playing the optimal arms through 
an adaptive procedure. Our regret upper bound 
involves the proposed sub-optimality measure and 
it has a logarithmic dependence on length of hori-
zon T and a polynomial dependence on m (the 
numbers of arms) and d (the number of knap-
sacks). To the best of our knowledge, this is the 
frst problem-dependent logarithmic regret bound 
for solving the general BwK problem. 

1. Introduction 

The Multi-Armed Bandit (MAB) problem is a problem in 
which a limited amount of resource must be allocated be-
tween competing (alternative) choices in a way that maxi-
mizes the expected gain (Gittins et al., 2011). It is a bench-
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has been studied for nearly a century. As a prototypical 
reinforcement learning problem, MAB problem exemplifes 
the exploration–exploitation tradeoff dilemma (Weber et al., 
1992). The original problem frst formulated in its predomi-
nant version in (Robbins, 1952), has inspired a recent line 
of research that considers additional constraints that refect 
more accurately the reality of the online decision making 
process. Bandits with Knapsacks (BwK) was introduced by 
(Badanidiyuru et al., 2013) to allow more general constraints 
on the decisions across time, in addition to the customary 
limitation on the time horizon. The BwK problem, as a 
general framework, encompasses a wide range of applica-
tions, including dynamic pricing and revenue management 
(Besbes & Zeevi, 2012), online advertisement (Mehta et al., 
2005), network and routing (Agrawal et al., 2014), etc. 

While the existing BwK literature (Badanidiyuru et al., 
2013; Agrawal & Devanur, 2014) has derived algorithms 
that achieve optimal problem-independent regret bounds, 
a problem-dependent bound that captures the optimal per-
formance of an algorithm on a specifc BwK problem in-
stance remains an open question. For the setting of standard 
MAB problem, the problem-dependent bound has been well 
understood, and an upper bound with logarithmic depen-
dence on T can be achieved by both UCB-based algorithm 
(Auer et al., 2002) and Thompson sampling-based algorithm 
(Agrawal & Goyal, 2012). In this paper, we focus on de-
veloping a problem-dependent bound for the BwK problem 
and identify parameters that characterize the hardness of a 
BwK problem instance. 

Two existing works along this line are (Flajolet & Jail-
let, 2015) and (Sankararaman & Slivkins, 2020). The 
paper (Flajolet & Jaillet, 2015) considers several specifc 
settings for the problem, and for the general BwK prob-
lem, it achieves an O(2m+d log T ) regret bound (with 
other problem-dependent parameters omitted) where m 
is the number of arms and d is the number of the knap-
sacks/resource constraints. In addition, the results in (Fla-
jolet & Jaillet, 2015) require the knowledge of some pa-
rameters of the problem instance a priori. The recent work 
(Sankararaman & Slivkins, 2020) considers the BwK prob-
lem under the assumptions that there is only one single 
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knapsack/resource constraint and that there is only one sin-
gle optimal arm. In contrast to these two pieces of work, 
we consider the problem in its full generality and do not 
assume any prior knowledge of the problem instance. We 
will further compare with their results after we present our 
regret bound. 

Specifcally, we adopt a primal-dual perspective to study the 
BwK problem. Our treatment is new in that we highlight 
the effects of resources/knapsacks on regret from the dual 
perspective and defne the sub-optimality measure based 
on the primal and dual problems jointly. Specifcally, we 
frst derive a generic upper bound that works for all BwK 
algorithms. The upper bound consists of two elements: (i) 
the number of times for which a sub-optimal arm is played; 
(ii) the remaining knapsack resource at the end of the hori-
zon. It emphasizes that the arms and knapsacks are of equal 
importance in determining the regret of a BwK algorithm. 
By further exploiting the structure of the primal and dual 
LPs, we develop a new sub-optimality measure for the BwK 
problem which can be viewed as a generalization of the 
sub-optimality measure for the MAB problem frst derived 
in (Lai & Robbins, 1985). The sub-optimality measure 
accounts for both arms and knapsacks, and it aims to dis-
tinguish optimal arms from non-optimal arms, and binding 
knapsacks from non-binding knapsacks. We use this mea-
sure as a key characterization of the hardness of a BwK 
problem instance. 

Inspired by these fndings, we propose a two-phase algo-
rithm for the problem. The frst phase of our algorithm is 
elimination-based and its objective is to identify the opti-
mal arms and binding knapsacks of the BwK problem. The 
second phase of our algorithm utilizes the output of the frst 
phase and it uses the optimal arms to exhaust the remaining 
resources through an adaptive procedure. Our algorithm and 
analysis feature for its full generality and we only make a 
mild assumption on the non-degeneracy of the underlying 
LP. In addition, the algorithm requires no prior knowledge 
of the underlying problem instance. 

Other related literature: (Agrawal & Devanur, 2015; 
Agrawal et al., 2016) study the contextual BwK problem 
where the reward and resource consumption are both linear 
in a context vector. (Immorlica et al., 2019; Kesselheim 
& Singla, 2020) study the BwK problem under an adver-
sarial setting. (Ferreira et al., 2018) analyzes Thompson 
sampling-based algorithms for the BwK problem. 

2. Model and Setup 

The problem of bandits with knapsacks (BwK) was frst 
defned in (Badanidiyuru et al., 2013), and the notations 
presented here are largely consistent with (Badanidiyuru 
et al., 2013; Agrawal & Devanur, 2014). Consider a fxed 

and known fnite set of m arms (possible actions) avail-
able to the decision maker, henceforth called the algo-
rithm. There are d type of resources and a fnite time 
horizon T , where T is known to the algorithm. In each 
time step t, the algorithm plays an arm of the m arms, 
receives reward rt, and consumes amount Cj,t ∈ [0, 1] 
of each resource j ∈ [d]. The reward rt and consump-
tion Ct = (C1,t, ...., Cd,t)

> ∈ Rd are revealed to the al-
gorithm after choosing arm it ∈ [m]. The rewards and 
costs in every round are generated i.i.d. from some un-
known fxed underlying distribution. More precisely, there 
is some fxed but unknown µ = (µ1, ..., µm)

> ∈ Rm and 
C = (c1, ..., cm) ∈ Rd×m such that 

E[rt|it] = µit , E[Ct|it] = cit 

where µi ∈ R and ci = (c1i, ..., cdi)> ∈ Rd are the ex-
pected reward and the expected resource consumption of 
arm i ∈ [m]. In the beginning of every time step t, the al-
gorithm needs to pick an arm it, using only the history of 
plays and outcomes until time step t − 1. There is a hard 
constraint capacity Bj for the j-th type of resource. The 
algorithm stops at the earliest time τ when one or more ofPτ +1the constraints is violated, i.e. t=1 cj,t > Bj for some 
j ∈ [d] or if the time horizon ends, if i.e. τ ≥ T. Its total re-
ward is given by the sum of rewards in all rounds preceding Pτ
τ , i.e t=1 rt. The goal of the algorithm is to maximize 
the expected total reward. The values of Bj are known to 
the algorithm, and without loss of generality, we make the 
following assumption. 

Assumption 1. We assume Bj = B = minj Bj for all 
j ∈ [d] (by scaling the consumption matrix C). Let 
B = (B, ..., B)> ∈ Rd . Moreover, we assume the re-
source capacity B scales linearly with T , i.e., B = T · b = 
T · (b, ..., b)> ∈ Rd for some b > 0. 

The assumption is mainly for notation simplicity and it will 
not change the nature of the analysis in this paper. Given 
that our focus is to derive asymptotic problem-dependent 
bound, it is natural to have the resource capacity scales 
linearly with the length of horizon. Throughout this paper, 
we use bold symbols to denote vectors/matrices and normal 
symbols to denote scalars. 

Furthermore, without loss of generality, a “null” arm is 
introduced to represent the time constraint (time horizon T ). 
Specifcally, let µm = 0, cm = (b, 0, ..., 0)> , and c1,i = b 
for all i ∈ [m]. In this way, the frst constraint captures the 
constraint of fnite time horizon T and the “null” arm can be 
played with no reward achieved and with no cost induced to 
the other factual constraints except for the time constraint. 

Regret is defned as the difference in the total reward ob-
tained by the algorithm and OPT, where OPT denotes the 
total expected reward for the optimal dynamic policy. In 
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this paper, we are interested in the (expected) problem-
dependent regret, " # 

τX 
Regretπ (P, B) := OPT − E rtT 

t=1 

where π denotes the algorithm, and P encapsulates all the 
parameters related to the distributions of reward and re-
source consumption, including µ and C. The expectation 
is taken with respect to the randomness of the reward and 
resource consumption. 

Consider the following linear program: 

>OPTLP := max µ x (1) 
x 

s.t. Cx ≤ B 

x ≥ 0 

where the decision variables are x = (x1, ..., xm)
> ∈ Rm . 

One can show that (see (Badanidiyuru et al., 2013)) 

OPTLP ≥ OPT 

so that OPTLP provides a deterministic upper bound for the 
expected reward under the optimal dynamic policy. Let 
∗ ∗ ∗ x = (x1, ..., x )> denote the optimal solution to (1).m 

3. Primal-dual Perspective for BwK 

In this section, we present a generic regret upper bound and 
explore the properties of the underlying primal and dual 
LPs. 

Let I∗ and I 0 denote the set of optimal basic variables and 
the set of optimal non-basic variables of (1), respectively. 
Let J ∗ and J 0 denote the set of binding and non-binding 
constraints of (1), respectively. That is, 

∗ I ∗ := {x > 0, i ∈ [m]} ,i 
∗ I 0 := {x = 0, i ∈ [m]} ,i( )

mX 
∗ J ∗ := B − cjixi = 0, j ∈ [d] , 

i=1( )
mX 

∗ J 0 := B − cjix > 0, j ∈ [d] .i 
i=1 

So, we know I∗ ∩I 0 = [m] and J ∗ ∩J 0 = [d]. Accordingly, 
we call an arm i ∈ I∗ as an optimal arm and i ∈ I 0 as a sub-
optimal arm. Here and hereafter, we will refer to knapsack 
as constraint so that the terminology is more aligned with 
the LPs. 

We make the following assumption on the LP’s optimal 
solution. 

Assumption 2. The LP (1) has an unique optimal solution. 
Moreover, the optimal solution is non-degenerate, i.e., 

|I ∗ | = |J ∗ |. 

The assumption is a standard one in LP’s literature, and any 
LP can satisfy the assumption with an arbitrarily small per-
turbation (Megiddo & Chandrasekaran, 1989). To interpret 
the non-degeneracy, consider if |I∗| = |J ∗| = l, then the 
optimal solution to LP (1) is to play the only l arms in I∗ . 
When there is no linear dependency between the columns of 
C, that will result in a depletion of l resource constraints. 

The dual problem of (1) is 

min B> y (2) 
y 

C> 

y ≥ 0. 

s.t. y ≥ µ 

∗ ∗ ∗Denote its optimal solution as y = (y1 , ..., y ). From LP’s d 
complementarity condition, we know the following relation 
holds under Assumption 2, 

∗ ∗ j ∈ J ∗ ⇔ yj > 0, j ∈ J 0 ⇔ yj = 0. 

The following lemma summarizes the LP’s properties. 

Lemma 1. Under Assumption 2, we have the primal LP (1) 
and the dual LP (2) share the same optimal objective value. 
Also, 

|I ∗ | + |J 0| = d, 

|I 0| + |J ∗ | = m. 

3.1. A Generic Regret Upper Bound 

We begin our discussion with deriving a new upper bound 
for a generic BwK algorithm. First, we defne the knapsack 
process as the remaining resource capacity at each time t. 
Specifcally, we defne B(0) := B and 

B(t+1) := B(t) − Ct 

for t ∈ [T ]. Recall that Ct is the (random) resource con-
sumption at time t. The process B(t) is pertaining to the 
BwK algorithm. In addition, we follow the convention of 
the bandits literature and defne the count process ni(t) as 
the number of times the i-th arm is played up to the end of 
time period t. 

Proposition 1. The following inequality holds for any BwK 
algorithm, X h i> 

B(τ) ∗RegretπT (P, B) ≤ ni(t)Δi + E y . (3) 
i∈I0 

>where Δi = c y ∗ − µi for i ∈ [m].i 
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Here Δi is known as reduced cost/proft in LP literature 
and it quantifes the cost-effciency of each arm (each basic 
variable in LP). The upper bound in Proposition 1 is new to 
the existing literature and it can be generally applicable to 
all BwK algorithms. It consists of two parts: (i) the number 
of times for which a sub-optimal arm is played multiplied by 
the corresponding reduced cost; (ii) the remaining resource 
at time τ , either when any of the resource is depleted or 
at the end of time horizon T . The frst part is consistent 
with the classic bandits literature in that we always want to 
upper bound the number of sub-optimal arms being played 
throughout the horizon. At each time a sub-optimal arm 
i ∈ I 0 is played, a cost of Δi will be induced. Meanwhile, 
the second part is particular to the bandits with knapsacks 
setting and can easily be overlooked. Recall that the def-
nition of τ refers to the frst time that any resource j ∈ [d] 
is exhausted (or the end of the horizon). It tells that the 
left-over of resources when the process terminates at time 
τ may also induce regret. For example, for two binding 
resources j, j0 ∈ J ∗ , it would be less desirable for one 
of them j to have a lot of remaining while the other one 
j0 is exhausted. Since the binding resources are critical in 
determining optimal objective value for LP (1), intuitively, 
it is not proftable to waste any of them at the end of the 
procedure. 

3.2. Symmetry between Arms and Bandits 

From Proposition 1, we see the importance of dual prob-
lem (2) in bounding an algorithm’s regret. Now, we pur-
sue further along the path and propose a new notion of 
sub-optimality for the BwK problem. Our sub-optimality 
measure is built upon both the primal and dual LPs, and it 
reveals the combinatorial structure of the problem. In the 
following, we defne two classes of LPs, one for the arm 
i ∈ [m] and the other for the constraints j ∈ [d]. 

First, for each arm i ∈ [m], defne 

>OPTi := max µ x, (4) 
x 

s.t. Cx ≤ B, 

xi = 0, x ≥ 0. 

By defnition, OPTi denotes the optimal objective value of 
an LP that takes the same form as the primal LP (1) except 
with an extra constraint xi = 0. It represents the optimal 
objective value if the i-th arm is not allowed to use. For 
a sub-optimal arm i ∈ I 0 , OPTi = OPTLP, while for an 
optimal arm i ∈ I∗ , OPTi < OPTLP. In this way, OPTi 

characterizes the importance of arm i. 

Next, for each constraint j ∈ [d], defne 

OPTj := min B> y − B, (5) 
y 

s.t. C> y ≥ µ + Cj,·, 

y ≥ 0, 

where Cj,· denotes the j-th row of the constraint matrix 
C. Though it may not be as obvious as the previous case 
of OPTi, the defnition of OPTj aims to characterize the 
bindingness/non-bindingness of a constraint j. The point 
can be illustrated by looking at the primal problem for (5). 
From LP’s strong duality, we know 

>OPTj = max µ x − (B − Cj, 
>
·x), (6) 

x 
mX 

s.t. Cx ≤ B, 
i=1 

x ≥ 0. 

Compared to the original primal LP (1), there is an extra 
term in the objective function in LP (6). The extra term is 
a penalization for the left-over of the j-th constraint, and 
thus it encourages the usage of the j-th constraint. For a 
binding constraint j ∈ J ∗ , it will be exhausted under the 

∗optimal solution x to LP (1) so the penalization term does 
not have any effect, i.e., OPTj =OPTLP. In contrast, for a 
non-binding constraint j ∈ J 0 , the extra term will result 
in a reduction in the objective value, i.e., OPTj < OPTLP. 
We note that one can introduce any positive weight to the 
penalization term so as to trade off between the reward and 
the left-over of the j-th constraint in (6), but its current 
version suffces our discussion. 

The following proposition summarizes the properties of 
OPTi and OPTj . 

Proposition 2. Under Assumption 2, we have 

OPTi < OPTLP ⇔ i ∈ I ∗ , 

OPTi = OPTLP ⇔ i ∈ I 0 , 
OPTj = OPTLP ⇔ j ∈ J ∗ , 

OPTj < OPTLP ⇔ j ∈ J 0 . 

In this way, the defnition of OPTi distinguishes optimal 
arms I∗ from sub-optimal arms I 0, while the defnition of 
OPTj distinguishes the binding constraints J ∗ from non-
binding constraints J 0 . The importance of such a distin-
guishment arises from the upper bound in Proposition 1: on 
one hand, we should avoid playing sub-optimal arms, and 
on the other hand, we should exhaust the binding resources. 
A second motivation for defning both OPTi and OPTj can 
be seen after we present our algorithm. Furthermore, we 
remark that a measurement of the sub-optimality of the arms 
has to be defned through the lens of LP due to the combi-
natorial nature of the problem. The effect of the i-th arm’s 
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removal on the objective value can only be gauged by solv-
ing an alternative LP of OPTi. Similarly, a measurement 
of the bindingness of the constraints should also take into 
account the combinatorial relation between constraints. 

Next, defne � � �� 
1 

δ := OPTLP − max max OPTi, max OPTj . 
T i∈I∗ j∈J 0 

1where the factor is to normalize the optimality gap by T 
the number of time periods. Under Assumption 1, all the 
objective values in above should scale linearly with T. 

To summarize, δ characterizes the hardness of distinguish-
ing optimal arms from non-optimal arms (and binding con-
straints from non-binding constraints). It can be viewed 
as a generalization of the sub-optimality measure δMAB = 
mini6=i∗ µi∗ − µi for the MAB problem (Lai & Robbins, 
1985). δMAB characterizes the hardness of an MAB problem 
instance, i.e., the hardness of distinguishing the optimal arm 
from sub-optimal arms. In the context of BwK, δ is a more 
comprehensive characterization in that it takes into account 
both the arms and the constraints. Imaginably, it will be 
critical in both algorithm design and analysis for the BwK 
problem. 

3.3. Key Parameters of the LPs 

Now, we defne two LP-related quantities that will appear 
in our regret bound: 

• Linear Dependency between Arms: Defne σ be the 
minimum singular value of the matrix CI∗ ,J ∗ . Specif-
ically, 

σ := σmin (CJ ∗ ,I∗ ) = σmin ((cji)j∈J ∗,i∈I∗ ) . 

In this light, σ represents the linear dependency be-
tween optimal arms across the binding constraints. For 
a smaller value of σ, the optimal arms are more linearly 
dependent, and then it will be harder to identify the 
optimal numbers of plays. Under Assumption 2, the 
uniqueness of optimal solution implies σ > 0. 

• Threshold on the optimal solution: 

1 ∗ χ := · min{x =6 0, i ∈ [m]}iT 

If the total resource B = T · b, both the optimal so-
∗ ∗lution (x1, ..., x ) should scale linearly with T . Them 

factor 1 normalizes the optimal solution into a prob-T 
ability vector. χ denotes the smallest non-zero entry 
for the optimal solution. Intuitively, a small value of χ 
implies that the optimal proportion of playing an arm 
i ∈ I∗ is small and thus it is more prone to “overplay” 
the arm. 

Remarks. By the defnition, it seems that the above param-
eters δ and χ both involve a factor of T . But if we replace 
B (the right-hand-side of LP) with b from Assumption 1, 
then the factor T disappears, and the parameters χ and δ are 
essentially dependent on µ, C, and b which are inherent to 
the problem instance but bear no dependency on the horizon 
T . In other words, Assumption 1 frees the dependency on 
T by introducing the quantity b. Practically, the assumption 
states the resource capacity should be suffciently large and 
it is natural in many application contexts (for example, the 
small bids assumption in AdWords problem (Mehta et al., 
2005)). Theoretically, in two previous works (Flajolet & Jail-
let, 2015; Sankararaman & Slivkins, 2020), either a factor 
of 1/T appears in the parameter defnition (Sankararaman 
& Slivkins, 2020) or the assumption is explicitly imposed 
(Flajolet & Jaillet, 2015). Such an assumption might be 
inevitable for a logarithmic regret to be derived. 

3.4. LCB and UCB 

Throughout this paper, we denote the reward and resource 
consumption of the s-th play of the i-th arm as ri,s and 
Ci,s = (C1i,s, ..., Cdi,s)

> respectively, for i ∈ [m] and 
s ∈ [T ]. Let ni(t) be the number of times the i-th arm is 
played in the frst t time periods. Accordingly, we denote 
the estimators at time t for the i-th arm as 

nXi(t)1 
µ̂i(t) := ri,s, 

ni(t) s=1 

nXi(t)1 
Ĉ 

ji(t) := Cji,s 
ni(t) s=1 

for i ∈ [m] and j ∈ [d]. In a similar manner, we defne the 
estimator for the i-th arm’s resource consumption vector as 
Ĉ 

i(t) := (Ĉ1i(t), ..., Ĉdi(t))
>, and the resource consump-

tion matrix as Ĉ(t) := (Ĉ 
1(t), ..., Ĉ 

m(t)). Specifcally, 
without changing the nature of the analysis, we ignore the 
case that when ni(t) = 0. Then, we defne the lower conf-
dence bound (LCB) and upper confdence bound (UCB) for 
the parameters as s ! 

L µi (t) := proj[0,1] µ̂i(t) − 
2 log T 
ni(t) s ! 

U µi (t) := proj[0,1] µ̂i(t) + 
2 log T 
ni(t) s ! 
2 log T 

CL ˆ 
ji(t) := proj[0,1] Cji(t) − 

ni(t) s ! 
2 log T 

CU ˆ= proj[0,1] Cji(t) + ji (t) : ni(t) 
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where proj[0,1](·) projects a real number to interval [0, 1]. 
The following lemma is standard in bandits literature and 
it characterizes the relation between the true values and 
the LCB/UCB estimators. It states that all the true values 
will fall into the intervals defned by the corresponding 
estimators with high probability. 

Lemma 2 (Concentration). The following event holds with 
probability no less than 1 − 4md ,T 2 � �

L U µi ∈ µi (t), µi (t) ,� � 
cji ∈ Cji 

L (t), Cji 
U (t) , 

for all i ∈ [m], j ∈ [d], t ∈ T . 

With the UCB/LCB estimators for the parameters, we can 
construct UCB/LCB estimators for the objective of the pri-
mal LP. Specifcally, 

OPTU = maxLP :
� �>U µ x, (7) 

x 

s.t. CL x ≤ B, 

x ≥ 0. 

OPTL = maxLP :
� �>Lµ x, (8) 

x 

s.t. CU x ≤ B, 

x ≥ 0. 

The following lemma states the relation between OPTU 
LP, 

OPTL 
LP, and OPTLP. Intuitively, if we substitute the original 

constraint matrix C with its LCB (or UCB) and the objective 
coeffcient µ with its UCB (or LCB), the resultant optimal 
objective value will be a UCB (or LCB) for OPTLP. 

Lemma 3. The following inequality holds with probability 
no less 1 − 4md ,T 2 

OPTL 
LP.LP ≤ OPTLP ≤ OPTU 

A similar approach is used in (Agrawal & Devanur, 2014) 
to develop an UCB-based algorithm for the BwK problem. 
For our algorithm presented in the following section, we 
will construct estimates not only for the primal LP (1), but 
also for the LPs (4) and (5). By comparing the estimates 
of OPTLP, OPTi, and OPTj , we will be able to identify the 
optimal arms I∗ and the non-binding constraints J 0 . 

4. Two-Phase Algorithm 

In this section, we describe our two-phase algorithm for the 
BwK problem. The main theme is to use the underlying LP’s 
solution to guide the plays of the arms. The two phases in 
the algorithm correspond to the two parts of the regret upper 
bound in Proposition 1. In the following, we describe the 
two phases of the algorithm and their intuitions respectively. 

Phase I of Algorithm 1 is an elimination algorithm and it 
aims to identify the optimal arms I∗ and the non-binding 
constraints J 0 . In each round of the while loop in Phase I, all 
the arms are played once to improve the estimators for µ and 
C. After each round of plays, an identifcation procedure is 
conducted by comparing the LCB of the original optimal 
value (OPTL 

LP) against the UCBs (OPTU
i and OPTU

j ). Recall 
that Proposition 2, there will be a non-zero sub-optimality 
gap if i ∈ I∗ or j ∈ J 0 . So, if the algorithm observes a 
gap between the corresponding LCBs/UCBs, it will assert 
i ∈ I∗ or j ∈ J 0 , and the assertion will be true with high 
probability. 

The stopping rule in Phase I originates from the complemen-
tary condition in Lemma 1, i.e., |Î∗| + |Ĵ 0| < d. This is a 
key in the primal-dual design of the algorithm and it further 
justifes the consideration of the dual problem. Without 
maintaining the set Ĵ 0 , we cannot decide whether we have 
obtain the true primal set, i.e., Î∗ = I∗ . Specifcally, since 
there is no precise knowledge of the number of optimal arms 
|I∗|, while we keep adding arms into ˆ , we do not know I∗ 

when to stop. The complementarity in Lemma 1 provides 
a condition on the number of arms in I∗ and the number 
of constraints in J 0 . Accordingly, Phase I is terminated 
when this condition is met. Moreover, we emphasize that a 
by-product of the Phase I is a best arm identifcation proce-
dure. To the best of our knowledge, this is the frst result on 
identifying optimal arms for the BwK problem. 

Phase II of Algorithm 1 is built upon the output of Phase 
I. At each time t, the algorithm solves an adaptive version 
LP (9) and normalizes its optimal solution into a sampling 
scheme on arms. Also, in Phase II, the algorithm will only 
play arms i ∈ Î∗; this is achieved by enforcing xi = 0 for 
i ∈ Î∗ in (9). The adaptive design is exemplifed on the 
right-hand-side of the LP (9), where instead of the static 
resource capacity B, it uses the remaining resource at the 
end of last time period B(t−1). To see its intuition, consider 
if a binding resource j ∈ J ∗ is over-used in the frst t time 

(t−1)periods, then it will result in a smaller value of Bj , and 
then the adaptive mechanism will tend to be more reluctant 
to consume the j-th resource in the future, and vice versa 
for the case of under-use. 

We emphasize that the adaptive design is not only intuitive 
but also necessary to achieve a regret that is logarithmic 
in T . If we adopt a static right-hand-side B in (9) (as in 
(Badanidiyuru et al., 2013; Agrawal & Devanur, 2014)), 
then the fuctuation of the process Bt will be on the order of √ 
Ω( t). Consequently, when it approaches to the end of the 
horizon, certain type of binding resource may be exhausted √ 
while other binding resources still have Ω( T ) left-over, √ 
and this may result in an Ω( T ) upper bound in Proposition 
1. The intuition is made rigorous by (Arlotto & Gurvich, 
2019); the paper establishes that without an adaptive design, 
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Algorithm 1 Primal-dual Adaptive Algorithm for BwK 
1: Input: Resource capacity B, T 
2: %% Phase I: Identifcation of I∗ and J 0 

3: Initialize Î∗ = Ĵ 0 = ∅, t = 0 
4: Initialize the knapsack process B(0) = B 
5: while |Î∗| + |Ĵ 0| < d do 
6: Play each arm i ∈ [m] once 
7: Update t = t + m and the knapsack process B(t) 

8: Update the estimates µ̂(t) and Ĉ(t) 
9: Solve the LCB problem (8) and obtain OPTL 

LP(t) 
10: for i ∈/ Î∗ do 
11: Solve the following UCB problem for OPTi � �>

OPTU
i (t) := max µ U (t) x, 

x 

s.t. CL(t)x ≤ B, 

xi = 0, x ≥ 0. 

12: if OPTL
i (t) thenLP(t) > OPTU 

ˆ13: Update Î∗ = I∗ ∪ {i}
14: end if 
15: end for 
16: for j ∈/ Ĵ 0 do 
17: Solve the following UCB problem for OPTj 

OPTU
j (t) := min B> y − B, 

y 

s.t. (CL(t))> y ≥ µ U (t) + Cj, 
U 
·(t), 

y ≥ 0. 

18: if OPTL
j (t) thenLP(t) > OPTU 

ˆ ˆ19: Update J 0 = J 0 ∪ {j}
20: end if 
21: end for 
22: end while 
23: Update t = t + 1 
24: %% Phase II: Exhausting the binding resources 
25: while t ≤ τ do 
26: Solve the following LP � �> 

max µ U (t − 1) x, (9) 
x 

s.t. CL(t − 1)x ≤ B(t−1), 

xi = 0, i / ,∈ I ∗ 

x ≥ 0. 

27: Denote its optimal solution as x̃ 
28: Normalize x̃ into a probability and randomly play an 

arm according to the probability 
29: Update estimates µ̂(t), Ĉ(t), and B(t) 

30: Update t = t + 1 
31: end while 

√ 
the regret is at least Ω( T ) for the multi-secretary problem 
(can be viewed as a one-constraint BwK problem) even if 
the underlying distribution is known. 

5. Regret Analysis 

In this section, we derive an regret upper bound for Algo-
rithm 1 by analyzing the two phases separately. 

5.1. Analysis of Phase I 

Proposition 3 provides an upper bound on the number of 
time periods within which Phase I will terminate. It also 
states that the identifcation of I∗ and J 0 will be precise 
conditional on the high probability event in Lemma 2. 

Proposition 3. In Phase I of Algorithm 1, each arm i ∈ [m]� �2 72 log Twill be played for no more than 2 + 1 · timesb δ2 

where b is defned in Assumption 1. If the resources are not 
exhausted in Phase I, then its output satisfes � � 4md Î∗ = I ∗ Ĵ 0 = J 0P , ≥ 1 − . 

T 2 

The surprising point of Proposition 3 lies in that there are 
O(2m+d) possible confgurations of (I∗ , J 0) and, without 
any prior knowledge, the true confguration can be iden-
tifed within O(log T ) number of plays for each arm. In 
contrast, (Flajolet & Jaillet, 2015) does not utilize the primal-
dual structure of the problem and conducts a brute-force 
search in all possible confgurations which results in an 
O(2m+d log T ) regret. In addition, the search therein re-
quires the knowledge of a non-degeneracy parameter a 
priori. The result also explains why (Sankararaman & 
Slivkins, 2020) imposes a single-best-arm condition for 
the BwK problem, which assumes I∗ = 1. This additional 
greatly simplifes the combinatorial structure and reduces 
the BwK problem more closely to the standard MAB prob-
lem. In this light, Proposition 3 can be viewed as a best-arm-
identifcation result (Audibert & Bubeck, 2010) for the BwK 
problem in full generality and without any prior knowledge. 

5.2. Analysis of Phase II 

Proposition 4 provides an upper bound on the remaining 
resource for binding constraints when the procedure termi-
nate, which corresponds to the second part of Proposition 
1. Notably, the upper bound has no dependency on T . In√ 
a comparison with the Ω( T ) fuctuation under the static 
design, it demonstrates the effectiveness of our adaptive 
design. 

Proposition 4. For each binding constraint j ∈ J ∗ , we 
have � �h i d3 

(τ )E B = Oj b min{χ2, δ2} min{1, σ2} 



��� ���
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where χ and σ are defned in Section 3.3, and b is defned 
in Assumption 1. 

(t)The idea of proof is to introduce an auxiliary process bj = 
B

(t) 
(t)j for t ∈ [T − 1] and j ∈ J ∗ . Recall that B is the T −t j 

j-th component of the knapsack process B(t), we know its 
(0)initial value b = b. Then defne j 

(t)
τj = min{t : b ∈/ [b − �, b + �]} ∪ {T }j 

(t)for a fxed � > 0. With the defnition, bj can be interpreted 
as average remaining resource (per time period) and τj can 
be interpreted as the frst time that b(t) deviates from its j 
initial value b by a small amount. It is easy to see that 
τj ≤ τ with a proper choice of �. Next, we aim to upper 

(t)bound E[T − τj ] by analyzing the process {b }tT 
=0. Fromj 

the dynamic of the knapsack process Bt, we know that 

(t) (t−1)
B B − Cj,t (t) j j

b = = j T − t T − t� �1(t−1) (t−1)
= bj − Cj,t − bj (10)

T − t 

where Cj,t as defned earlier is the resource consumption of 
j-th constraint at time t. The above formula (10) provides 
a technical explanation for the motivation of the adaptive 
design in (9). Intuitively, when the right-hand-side of (9) is 
B(t−1), it will lead to a solution that (approximately and on 

(t−1)expectation) consumes bj of the j-th resource for each 
of the following time periods. Ideally, this will make the 
second term in (10) have a zero expectation. However, due 
to estimation error for the LP’s parameters, this may not be 
the case. The idea is to frst provide an upper bound for the 
“bias” term h i 

(t−1)E Cj,t − b |Ht−1j 

where Ht−1 = {(rs, Cs, is)}t−1 encapsulates all the infor-s=1 
mation up to time t − 1. Unsurprisingly, the upper bound is � � 

1on the order of O √ . Next, with this bias upper bound, 
t 

we can construct a super-martingale (sub-martingale) based 
on the dynamic (10) and employ Azuma–Hoeffding inequal-
ity to provide a concentration result for the value of the 

(t)martingale. Through the analysis of the process bj , we can 
derive an upper bound for E[T − τj ], and consequently, it 

(τ )leads to an upper bound on E[Bj ]. 

The importance of the adaptive design has been widely rec-
ognized in other constrained online learning problems, such 
as online matching problem (Manshadi et al., 2012), online 
assortment problem (Golrezaei et al., 2014), online linear 
programming problem (Li & Ye, 2019), network revenue 
management problem (Jasin & Kumar, 2012), etc. The 
common pattern of these problem is to allocate limited re-
sources in a sequential manner, and the idea of adaptive 

design is to adjust the allocation rule dynamically accord-
ing to the remaining resource/inventory. This is in parallel 
with LP (9) where the solution at each time t is contingent 
on the remaining resources B(t). The signifcance of our 
algorithm design and analysis lies in that (i) to the litera-
ture of BwK, our paper is the frst application of the idea 
of adaptive design; (ii) to the existing literature of adap-
tive design in constrained online learning problems, our 
work provides its frst application and analysis in a partial-
information environment. For the second aspect, all the ex-
isting analysis on the adaptive design fall in the paradigm of 
“frst-observe-then-decide” while the BwK problem is “frst-
decide-then-observe”. Specifcally, in matching/resource 
allocation/revenue management problems, at each time pe-
riod, a new agent arrives, and upon the observation, we 
decide the matching for the agent; or a new customer ar-
rives, and upon the observation of her preference, we decide 
the assortment decision for the customer. So, the existing 
analyses are analogous to a BwK “setting” where the re-
ward and resource consumption of playing an arm are frst 
observed (magically), and then we decide whether we want 
to play the arm or not. 

5.3. Regret Upper Bound for Algorithm 1 

Combining the two parts, we have the following result on 
the regret of Algorithm 1. 

Proposition 5. The regret of Algorithm 1 has the following 
upper bound, !� �2

1 md log T d4 

O 2 + + 
b bδ2 b2 min{χ2, δ2} min{1, σ2} 

where b is defned in Assumption 1, δ is defned in Section 
3.2, and σ and χ are defned in Section 3.3. 

The result reduces the exponential dependence on m and 
d in (Flajolet & Jaillet, 2015) to polynomial, and also it 
does not rely on any prior knowledge. Specifcally, the 
authors consider several settings for BwK problem, many of 
which assume special structures such as one or two resource 
constraints. The most general settings therein, which is 
comparable to ours, allows arbitrary number of constraints 
and number of optimal arms. In terms of the key parameters, 
the way we defne δ is the same as their defnition of Δx. 
However, the regret bound (Theorem 8 therein) involves a 

1summation of exponentially many Δx 
’s (the same as the 

total number of the bases of the LP). Our parameter σ is 
related to their � (Assumption 8 therein) while the latter 
is more restrictive. Because σ in our paper represents the 
minimal singular value of the matrix corresponding to only 
the optimal basis of the primal LP, whereas the parameter � 
therein represents a lower bound of the determinant of the 
matrices corresponding to all the possible (exponentially 
many) bases of the primal LP. In this light, if they adopt 
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our parameter σ, their bound would be improved by a factor 
of d! (C! therein). Moreover, � is a lower bound for our 
parameter χ and (Flajolet & Jaillet, 2015) explicitly requires 
the knowledge of � a priori. 

The proposition also generalizes the one-constraint bound in 
(Sankararaman & Slivkins, 2020) and relaxes the determin-
istic resource consumption assumption therein. Specifcally, 
the authors assume there is one single optimal arm and one 
single resource (other than time), i.e., the optimal solution to 
the primal LP has only one non-zero entry (|I∗| = |J ∗| = 1 
and d = 2). They also assume the underlying LP is non-
degenerate. Our results generalize their work in allowing 
arbitrary d, |I∗| and |J ∗|. In terms of the key parameters, 
under their assumption, our parameter σ = 1 because it is 
defned by a 1-by-1 matrix. Our parameter χ is deemed as a 
constant in their paper. For δ, under their assumptions, our 
defnition of OPTi can be adjusted accordingly. Specifcally, 
we can replace the constraint xi = 0 in defning OPTi with 
xi0 = 0, i

0 6= i. Then our defnition of δ would reduce to 
their defnition of GLAG(a), both of which characterize the 
sub-optimality gap of an arm. 

The above comparison against the existing literature high-
lights that the parameters σ, δ, and χ or other LP-based 
parameters might be inevitable in characterizing logarithmic 
regret bound. Our paper makes some preliminary efforts 
along this line, but we do not believe our bound is tight: 
parameters such as χ and σ may be replaced with some 
tighter parameter through a better algorithm and sharper 
analysis. As remarked in Section 3.3, the parameters are not 
dependent on T under Assumption 1. But to characterize 
the dependency of these parameters (such as δ and χ) on the 
problem size m and d remains an open question. Moreover, 
our algorithm and analysis highly rely on the structural prop-
erties of the underlying LP, which might not be the unique 
method to handle the BwK problem. 

6. Conclusion 

In this paper, we introduce a new BwK algorithm and derive 
problem-dependent bound for the algorithm. In the Phase I 
of the algorithm, it involves a round-robin design and may 
result in playing sub-optimal arms for ineffciently many 
times. Our regret bound can be large when the parameters 
σ, δ, and χ are small and the ineffcient plays of the sub-
optimal arms may prevent the algorithm from achieving an√ 
O( T ) worst-case regret. In the extreme case, these param-
eters may scale with O( 1 ), though Assumption 1 prevents T 
such a possibility. So the question is whether Assumption 1 
is necessary in admitting a logarithmic problem-dependent 
bound. 

We conclude our discussion with a new one-phase algorithm 
– Algorithm 2. The algorithm is also LP-based, and at each 

time t, it solves a UCB version of the primal LP to sample 
the arm. The algorithm has an adaptive design to exhaust the 
resources. On one hand, the algorithm naturally incorporates 
the Phase I of Algorithm 1 as a part of its Phase II. It directly 
enters the Phase II of Algorithm 1 and lets the adaptive LP 
to fully determine the arm(s) to play (without the extra 
constraint in (9)). On the other hand, the algorithm can be 
viewed as an adaptive version of the algorithm in (Agrawal 
& Devanur, 2014). Our conjecture is that Algorithm 2 is 
the optimal algorithm for BwK: it is optimal in the sense 
that it achieves optimal problem-dependent bound, but also √ 
admits O( T ) problem-independent bound. Unfortunately, 
its analysis is more challenging than Algorithm 1, which we 
leave as an open question. 

Algorithm 2 One-Phase Adaptive Algorithm for BwK 
1: Input: Resource capacity B, T 
2: Initialize the knapsack process B(0) = B 
3: Initialize the estimates µ̂(0) and Ĉ(0) 
4: Set t = 1 
5: while t ≤ τ do 
6: Solve the following LP 

max 
� �> 
µ U (t − 1) x, (11) 

x 

s.t. CL(t − 1)x ≤ B(t−1), 

x ≥ 0. 

7: Denote its optimal solution as x̃ 
8: Normalize x̃ into a probability and randomly play an 

arm according to the probability 
9: Update estimates µ̂(t), Ĉ(t), and B(t) 

10: Update t = t + 1 
11: end while 
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