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Abstract
We study distributed computing of the truncated
singular value decomposition problem. We de-
velop an algorithm that we call LocalPower
for improving communication efficiency. Specifi-
cally, we uniformly partition the dataset amongm
nodes and alternate between multiple (precisely p)
local power iterations and one global aggregation.
In the aggregation, we propose to weight each lo-
cal eigenvector matrix with orthogonal Procrustes
transformation (OPT). As a practical surrogate
of OPT, sign-fixing, which uses a diagonal ma-
trix with ±1 entries as weights, has better com-
putation complexity and stability in experiments.
We theoretically show that under certain assump-
tions LocalPower lowers the required number
of communications by a factor of p to reach a
constant accuracy. We also show that the strat-
egy of periodically decaying p helps obtain high-
precision solutions. We conduct experiments to
demonstrate the effectiveness of LocalPower.

1. Introduction
In this paper we consider the truncated singular value decom-
position (SVD) which has broad applications in machine
learning, such as dimension reduction (Wold et al., 1987),
matrix completion (Candès & Recht, 2009), and information
retrieval (Deerwester et al., 1990). Let a1, · · · ,an ∈ Rd
be sampled i.i.d. from some fixed but unknown distribution.
The goal is to compute the k (k < min{d, n}) singular
vectors of A , [a1, . . . ,an]> ∈ Rn×d. Let Vk ∈ Rd×k
contain the top k singular vectors. The power iteration and
its variants such as Krylov subspace iterations are common
approaches to the truncated SVD. They have O(nd) space
complexity andO(ndk) per-iteration time complexity. They
take Õ(log d

ε ) iterations to converge to ε precision, where
Õ hides the spectral gap and constants (Golub & Van Loan,
2012; Saad, 2011).
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When either n or d is big, the data matrix A ∈ Rn×d may
not fit in the memory, making standard single-machine algo-
rithms infeasible. A distributed power iteration is feasible
and practical for large-scale truncated SVDs. In particular,
we partition the rows of A among m worker nodes (see
Figure 1(a)) and let the nodes perform power iterations in
parallel (see Figure 1(b)). In every iteration, every node
performs O(ndkm ) FLOPs (suppose the load is balanced),
while the server performs only O(dk2) FLOPs.

When solving large-scale matrix computation problems,
communication costs are not negligible; in fact, commu-
nication costs can outweigh computation costs. The large-
scale SVD experiments in (Gittens et al., 2016; Wang et al.,
2019) show that the runtime caused by communication and
straggler’s effect1 can exceed the computation time. Due
to the communication costs and other overheads, parallel
computing can even demonstrate anti-scaling; that is, when
m is big, the overall wall-clock runtime increases with m.
Reducing the frequency of communications will reduce the
communication and synchronization costs and thereby im-
proving the scalability.

1.1. Our Contributions

Inspired by the FedAvg algorithm (McMahan et al., 2017),
we propose an algorithm called LocalPower to improve
communication-efficiency. LocalPower is based on the
distributed power iteration (DPI) described in Figure 1. The
difference is that LocalPower makes every node locally
perform orthogonal iterations using its own data for p iter-
ations. In the case for p = 1, LocalPower degenerates
to DPI. When p ≥ 2, local updates are employed to reduce
communication frequency.

In practice, a naive implementation of the proposed
LocalPower does not work very well. We propose three
effective techniques for improving LocalPower:

• We propose to decay the communication interval, p,
over time. In this way, the loss drops fast in the be-
ginning and converge to the optimal solution in the
end. Without the decay strategy, LocalPower is not

1Straggler’s effect means that one outlier node is tremendously
slower than the rest, and the system waits for the slowest to com-
plete.



Communication-Efficient Distributed SVD via Local Power Iterations

!"

!#

!$

⋮

&

'

(a) Partition.

𝐙"#$

𝐘& =
1
𝑠&
𝐀&+𝐀&𝐙"#$

Node 2

𝐘, =
1
𝑠,

𝐀,+ 𝐀,𝐙"#$
Node m

⋮ 𝐘 = ∑ 𝑝0𝐘0,
01$

𝐙"

Orthogonalize
Broadcast Aggregation

Communication Computation by worker nodes Communication Computation by server

𝐘$ =
1
𝑠$
𝐀$+𝐀$𝐙"#$

Node 1

(b) Standard parallel power iteration (DPI).

Notation Definition
A data matrix
n number or rows
d number of columns
ρ rank of data matrix
m number of partitions
k target rank of truncated SVD
r running columns
p number of local iterations
si number of rows in i-th node

pi =
si
n fraction of rows in i-th node

(c) Commonly used symbols

Figure 1. (a) The n× d data matrix A is partitioned among m worker nodes. (b) In every iteration of the distributed power iteration, there
are two rounds of communications. Most of the computations are performed by the worker nodes. (c) Commonly used symbols.

guaranteed to converge to the optimum.

• Orthogonal Procrustes transformation (OPT) post-
processes the output matrices of the m nodes after
each iteration so that the m matrices are close to each
other. OPT makes LocalPower stable at the cost of
more computation.

• To reduce the computation of OPT, we replace its
orthogonal space to the set of all diagonal matrices
with ±1 entries. In this way, OPT becomes the sign-
fixing technique which is stable (slightly worse than
OPT) and efficient. Sign fixing was originally pro-
posed by Garber et al. (2017) for the special case of
k = 1, while we generalize sign-fixing to k > 1.

In summary, this work’s contributions include the new al-
gorithm, LocalPower, its convergence analysis, and the
effective techniques for improving LocalPower.

The remainder of this paper is organized as follows. In Sec-
tion 2, we define notation and give preliminary backgrounds
on the orthogonal Procrustes problem and the distributed
power iteration. In Section 3, we propose LocalPower
and its variants and then provide theoretical analysis in Sec-
tion 4. In Section 5, we conduct experiments to illustrate
the effectiveness of LocalPower and to validate our the-
oretical results. In Section 6, we give further discussions
on some aspects of LocalPower. All proof details can be
found at Appendix A. In Appendix D, we discuss related
work on SVD and parallel algorithms.

2. Preliminary
Notation. For any A ∈ Rn×d, we use ‖A‖2 and ‖A‖F
to denote its spectral norm and Frobenius norm. Let A† ∈
Rd×n denote the Moore-Penrose pseudo-inverse of A. For
any positive integer T , let [T ] = {1, 2, · · · , T}. Od×k is

the set of all d × k column orthonormal matrices (1 ≤
k ≤ d). Ok, short for Ok×k, denotes the set of k × k
orthogonal matrices. R(U) denotes the subspace spanned
by the columns of U. The commonly used notation is
summarized in Figure 1(c).

Power iteration. The top k right singular vectors of A
can be obtained by the subspace iteration that repeats

Y ←− MZ and Z ←− orth
(
Y
)
, (1)

where M = 1
nA>A. In every power iteration, computing

Y hasO(ndk) time complexity, and orthogonalizing Y has
O(dk2) time complexity. It is well known that the tangent
of principle angles betweenR(Z) andR(Uk) converges to
zero geometrically (Arbenz et al., 2012; Saad, 2011) and
thus so their projection distance.

Distributed power iteration (DPI) is a direct distributed
variant of power iteration. Consider data parallelism and
partition the data (rows of A) among m worker nodes. See
Figure 1(a) for the illustration. We partition A as A> =
[A>1 , · · · ,A>m] where Ai ∈ Rsi×d contains si rows of
A. Using m worker nodes and data parallelism, one power
iteration works in four steps. First, the server broadcasts Z to
the workers, which has O(dk) or O(dkm) communication
complexity (depending on the network structure). Second,
every worker (say, the i-th) locally computes

Yi = MiZ ∈ Rd×k with Mi =
1

si
A>i Ai, (2)

which has O(d2k) or O(sidk) time complexity. Third,
the server aggregates Yi, for all i ∈ [m], to obtain Y =∑m
i=1 piYi; this step is equivalent to Y = MZ, where

M =
∑m
i=1 piMi with pi = si

n . It has O(dk) or O(dkm)
communication complexity. Last, the server locally orthogo-
nalizes Y to obtain Z = orth(Y), which has merelyO(dk2)
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Algorithm 1 LocalPower
1: Input: distributed dataset {Ai}mi=1, target rank k, iter-

ation rank r ≥ k, number of iterations T .
2: Initialization: generate a standard Gaussian matrix,

Y0;
3: for t = 0 to T do
4: Broadcast: If t ∈ IT , the server sends Yt to work-

ers; let Y
(i)
t ← Yt;

5: Local computation: For all i ∈ [m], the i-th worker
locally computes

Z
(i)
t = orth(Y

(i)
t ) and Y

(i)
t+1 = 1

si
A>i AiZ

(i)
t ;

6: Aggregation: If (t+ 1) ∈ IT , the server computes
Yt+1 =

∑m
i=1 piY

(i)
t+1;

7: end for
8: Output: orth(Yt+1).

time complexity. The algorithm is described in Figure 1(b).
The following lemma is a well-known result (Arbenz et al.,
2012; Saad, 2011).
Lemma 1. To obtain a column-orthonormal matrix Z such
that the subspace distance dist(Z,Uk) ≤ ε (see Definition 1
for detail), with high probability, the communication needed
by DPI is

Ω

(
σk

σk − σk+1
log

(
d

ε

))
. (3)

Here, σj is the j-th largest singular value of the matrix M.

3. Algorithms

LocalPower is a new algorithm that we propose for im-
proving communication efficiency. It is described in Algo-
rithm 1. Its basic idea is to trade more local power iterations
for fewer communications via reducing the communication
frequency. Between two communications, every worker
node locally runs eqn. (2) for multiple times. We let the set
IT (⊆ [T ]) index the iterations that perform communica-
tions; for example,

IT =
{

0, p, 2p, · · · , T
}

means that the algorithm communicates once after p lower
power iterations. The cardinality |IT | is the total number of
communications.

Suppose LocalPower performs one communication ev-
ery p iterations. In T iterations, each worker performs
O(sidkT ) FLOPs, the server performsO(dk2T/p) FLOPs,
and the overal communication complexity is O(dkT/p).
The standard distributed power iteration is a special case of
LocalPower with p = 1, that is, IT = {0, 1, 2, · · · , T}.2

2The reason why we average Y
(i)
t instead of Z(i)

t is that we
hope LocalPower is reduced to DPI when p = 1.

One-shot SVD, aka divide-and-conquer SVD, (Liang et al.,
2014; Garber et al., 2017; Fan et al., 2019), is a special case
of LocalPower with p = T , that is, IT = {0, T}.

Decaying p. In practice, it is helpful to use a big p in the
beginning but let p = 1 in the end. For example, we can
decrease p by half every few communications. The rationale
is that the error of LocalPower does not converge to zero
if p is big; see the theoretical analysis in the next section.
Our empirical observation confirms the theories: if p is set
big, then the error drops very fast in the beginning, but it
does not vanish with the iterations.

Orthogonal Procrustes Transformation. In Algo-
rithm 1, the i-th worker locally computes

Y
(i)
t+1 = 1

si
A>i AiZ

(i)
t .

When it comes to the time of communication (i.e., t+ 1 ∈
IT ), we replace the equation by the following steps. First,
we choose the device which has the maximum number
of samples as a base. Without loss of generality, we
can assume the first device is selected (which indicates
1 = argmini∈[m] pi). Second, we compute

O
(i)
t = argmin

O∈Ok

∥∥Z(i)
t O− Z

(1)
t

∥∥2

F
. (4)

Eqn. (4) is a classic matrix approximation problem in linear
algebra, named as the Procrustes problem (Schönemann,
1966; Cape, 2020). The solution to eqn. (4) is referred to
as orthogonal Procrustes transformation (OPT) and has a
closed form:

O
(i)
t = W1W

>
2 ,

where W1ΣW>
2 is the SVD of (Z

(i)
t )>Z

(1)
t . Finally, we

compute
Y

(i)
t+1 = 1

si
A>i AiZ

(i)
t O

(i)
t .

Remak 1. Intuitively, such O
(i)
t adjusts Z

(i)
t such that it

aligns with Z
(1)
t better. In an ideal case, all Z

(i)
t ’s would be

identical with Z
(1)
t and thus the aggregation step (line 6 in

Algorithm 1) would be the same as that in DPI . From our
theory, it is important to use OPT. It weakens the assump-
tion on the smallness of a residual error which is incurred
by local computation. From our experiments, it stabilizes
vanilla LocalPower and achieves much smaller errors.

Remak 2. To compute such O
(i)
t , the i-th client should

communicate Z
(i)
t to the server, which results in additional

communication cost. However, the cost is the same in mag-
nitude as that of sending Y

(i)
t+1 in the aggregation step. Be-

sides, the computation of O
(i)
t as well as the communication

of Y
(i)
t+1 only happens when t + 1 ∈ IT . These make the

additional communication cost affordable.



Communication-Efficient Distributed SVD via Local Power Iterations

Sign-Fixing. While OPT makes LocalPower more sta-
ble in practice, OPT incurs more local computation. Specif-
ically, it has time complexity O(dk2) via calling the SVD
of (Z

(i)
t )>Z

(1)
t . To attain both efficiency and stability, we

propose to replace the k × k matrix O(i) in eqn. (4) by

D
(i)
t = argmin

D∈Dk

∥∥Z(i)
t D− Z

(1)
t

∥∥2

F
, (5)

where Dk denotes all the k × k diagonal matrices with ±1

diagonal entries. D
(i)
t can be computed in O(kd) time by

D
(i)
t [j, j] = sgn

(〈
Z

(i)
t [:, j] , Z

(1)
t [:, j]

〉)
, ∀ j ∈ [k].

We empirically observe that sign-fixing serves as a good
practical surrogate of OPT; it maintains good stability and
achieves comparably small errors.
Remak 3. If we decay p, p will drop to one after a few
communications. When p = 1, we stop using OPT (or
sign-fixing); we simply set O

(i)
t (or D

(i)
t ) to the identity

matrix.
Remak 4. The technique of sign-fixing has been proposed
in the setting of k = 1 by Garber et al. (2017). In the
k = 1 setting, OPT and sign-fixing coincide with each other.
In eqn. (5), we provide a simple way to extend it to high-
dimensional k > 1. We compute D

(i)
t that simultaneously

adjusts the signs of columns of Z
(i)
t and Z

(1)
t . There exists

other way to handle the high-dimensional sign-fixing prob-
lem. For example, if first k eigenvalues are well-separated
from others, we can reduce the top-k sign-fixing problem to
the one-dimensional sign-fixing problem instanced k times.

4. Convergence Analysis
In this section we analyze the convergence of
LocalPower and show the benefit of OPT under
an ideal setting. We use the projection distance of two
subspaces as the metric for convergence evaluation.
Definition 1 (Projection Distance). Let U, Ũ ∈ Od×k be
any matrices with orthonormal columns. The projection
distance3 between them is

dist(U, Ũ) ,
∥∥UU> − ŨŨ>

∥∥
2
.

Projection distance is equivalent to dist(U, Ũ) =

sin θk(U, Ũ) where θk(U, Ũ) denotes the k-th largest prin-
cipal angle between the subspaces spanned by U and Ũ.
Principal angles quantify how different two subspaces are.
We can actually calculate

θ1

(
U, Ũ

)
, θ2

(
U, Ũ

)
, · · · , θk

(
U, Ũ

)
3Unlike the spectral norm or the Frobenius norm, the projection

norm will not fall short of accounting for global orthonormal
transformation. Check Ye & Lim (2014) to find more information
about distance between two spaces.

via the SVD of U>Ũ. The l-th largest singular value of
U>Ũ is equal to cos θl(U, Ũ) for all l = 1, · · · , k.

Definition 2 (Local Approximation). Let Mi = 1
si

A>i Ai

be hosted by the i-th worker. Let M = 1
n

∑m
i=1 A>i Ai =∑m

i=1 piMi. Define

η , max
i∈[m]

‖Mi −M‖2
‖M‖2

,

which measures how far the local matrices, M1, · · · ,Mm,
are from M. If si = pin is sufficiently larger than d, then η
is sufficiently small.

Definition 3 (Residual Error). If OPT is not used, define

ρt , max
i∈[m]

∥∥Z(i)
t − Z

(1)
t

∥∥
2
.

If OPT is used, define

ρt , max
i∈[m]

min
O∈Ok

∥∥Z(i)
t O− Z

(1)
t

∥∥
2
.

The residual error ρt measures how the local top-k
eigenspace estimator varies across the m worker. Based
on the definition, using OPT makes ρt smaller than without
using OPT. When t ∈ IT , Z

(1)
t = · · · = Z

(m)
t and thus

ρt = 0. When t /∈ IT , each local update would enlarge
ρt. Hence, intuitively ρt depends on p, i.e., the local iter-
ations between two communications. However, later we
will show that with OPT ρt does not depend on p (when p
is sufficiently large) while it depends on p without OPT. A
residual error is inevitable in previous literature of empirical
risk minimization that uses local updates to improve com-
munication efficiency (Stich, 2018; Wang & Joshi, 2018b;
Yu et al., 2019; Li et al., 2019a;b). In our case, it takes the
form of ρt.

Assumption 1 (Uniformly small residual errors). Let r be
the running column number, σj be the j-th largest singular
value of M, and ε ∈ (0, 0.5) be a constant. Assume η ≤
1

3κ where κ = ‖M‖‖M†‖ is the condition number of M.
Assume for all t ∈ [T ],

η · 1t/∈IT + (1− pmax)(ρt + ρt−11t/∈IT ) = O(ε0), (6)

where pmax = maxi∈[m] pi, 1t/∈IT is the indication function
of the event {t /∈ IT }, and

ε0 ,
σk − σk+1

σ1κ
min

{√
r −
√
k − 1

τ
√
d

, ε

}
for some small constant τ > 0.

Theorem 1 (Convergence for LocalPower). Let τ be a
positive constant, and Assumption 1 hold. Then, after |IT |
rounds of communication where

T = Ω

(
σk

σk − σk+1
log

(
τd

ε

))
,
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with probability at least 1− τ−Ω(r+1−k)− e−Ω(d), we have

dist(ZT ,Uk) = sin θk(ZT ,Uk) ≤ ε.

Theorem 1 shows LocalPower takes T = Θ̃
(

σk

σk−σk+1

)
iterations to obtain an ε-optimal solution, the same quantity
required by DPI . However, LocalPower uses less com-
munications. For example, with IT = {0, p, 2p, · · · , T},
LocalPower makes only |IT | = Θ̃

(
1
p

σk

σk−σk+1

)
com-

munications, saving a factor of p than DPI .

Theorem 1 depends on Assumption 1 which requires eqn. (6)
holds for all t ∈ [T ]. What’s more, the final error ε is
positively related to η and ρt via eqn. (6). The first part
of eqn. (6) (i.e., η · 1t/∈IT ) is incurred by the variety of
Mi’s. So, if all devices have access to M (which implies
M1 = · · · = Mm), then it would vanish. The second
part eqn. (6) is brought by intermittent communication. In-
deed, if communication happens at iteration t (i.e., t ∈ IT ),
we have ρt = 0 and 1t/∈IT = 0, implying eqn. (6) holds
obviously. Without communication, ρt is likely to grow con-
tinually, which is harmful to obtaining an accurate solution.
Therefore, the assumption actually requires the communi-
cation interval p is not too large. From another hand, when
p is fixed, the assumption instead imposes restriction on
η when t /∈ IT , because we show in Theorem 2 that ρt is
bounded by a function of η. If OPT is used, then ρt = O(η),
without dependence on p. However, if OPT is not used, then
ρt = O(

√
kpκpη) has an exponential dependence on p.

Theorem 2 (Benefits of OPT). Let τ(t) ∈ IT be the nearest
communication time before t and p = t− τ(t). Let e be the
natural constant. Assume η ≤ min( 1

3κ ,
1
p ).

• With OPT, ρt is bounded by

min

{
2e2κppη,

ησ1

δk
+ 2γ

p/4
k Ct

}
= O(η),

where γk ∈ (0, 1), δk = Θ(σk − σk+1), and
lim supt Ct = O(η + ε).

• Without OPT, ρt is bounded by

4e
√
kpκpη = O(

√
kpκpη).

Why using OPT has such an exponential improvement on
dependence on p in theory? This is mainly because of the
property of OPT. Let O∗ = argminO∈Ok

‖U− ŨO‖F for
U, Ũ ∈ Od×k. Then, up to some universal constant, we
have ‖U − ŨO∗‖2 u dist(U, Ũ). See Lemma 3 in Ap-
pendix for a formal statement and detailed proof. It implies
up to a tractable orthonormal transformation, the difference
between the orthonormal bases of two subspaces is no larger
than the projection distance between the subspaces. By the

Davis-Kahan theorem (see Lemma 11), their projection dis-
tance is not larger thanO(η) up to some problem-dependent
constants. However, without OPT, we have to use pertur-
bation theory to bound ρt, which inevitably results in expo-
nential dependence on p.

5. Experiments
Settings. We use 15 datasets available on the LIBSVM
website.4 The n data samples are randomly shuffled and
then partitioned among m nodes so that each node has s =
n
m samples. We set m = max(b n

1000c, 3) so that each node
has s = 1, 000 samples, unless n is too small. The features
are normalized so that all the values are between −1 and 1.
All the algorithms start from the same initialization Y0. We
fix the target rank to k = 5. Our focus is on communication
efficiency, so we use communication rounds for evaluating
the compared algorithms. Due to the space limit, we defer
more experiment details and additional experiment results
to Appendix E.

Compared algorithms. We evaluate three variants of
LocalPower : the vanilla version, with OPT, and with
sign-fixing. We compare our algorithms with one-shot algo-
rithms, UDA (Fan et al., 2019), WDA (Bhaskara & Wijew-
ardena, 2019), and DR-SVD5; the algorithms are described
in Appendix E.2.

Final precision. In this set of experiments, we study the
precision when the algorithms converge. For three variants
of LocalPower we fix p = 4 (without decaying p). We
run each algorithm 10 times and report the mean and stan-
dard deviation (std) of the final errors. Due to limited space,
Table 1 shows the results on 7 datasets. Table 6 and Figure 4
(in the appendix) present all the results on the 15 datasets.
Out of the 15 datasets, LocalPower has the smallest error
mean and std on 12 datasets. The results indicate that one-
shot methods do not find high-precision solutions unless the
local data size is sufficiently large.

The final error depends on p. With p > 1, the final error,
limt→∞ sin θk(Zt,Uk), does not convergence to zero; in-
stead, it remains to be a constant after a number of iterations.
Figure 3(c) shows that the final error depends on p: the
bigger p is, the bigger the final error is. The final error is not
sensitive to p. The final error stops growing with p when p
is sufficiently large. Note that LocalPower as p→∞ be-
comes a one-shot algorithm, that is, the algorithm performs
only one aggregation.6 One-shot algorithms typically have

4This page contains them all. https://www.csie.ntu.
edu.tw/~cjlin/libsvmtools/datasets/. See Table 4
in the Appendix for n, d information.

5It is a direct distributed variant of Randomized SVD, the latter
proposed by Halko et al. (2011).

6The one-shot method is different from those we introduced in

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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reasonable empirical performance and theoretical bounds.

The final error depends on m. Big m means smaller local
sample size, s = n

m , and thereby big matrix approximation
error, η (in Definition 2). Our theory indicates that big m
(and thereby big η) is bad for the final error. The empirical
results in Figure 3(c) corroborate our theories.

Effect of local power iterations. In this set of experi-
ments, we set p to 1, 2, 4, or 8 (without decaying p) and
compare the convergence curves. Note that LocalPower
with p = 1 is the standard distributed power iteration (DPI).
We plot the error, sin θk(Zt,Uk), against communications.
The convergence curves indicate how p affects the communi-
cation efficiency. Figure 2(a) shows the experimental results
on one dataset. Due to page limit, the results on the other
datasets are left to the appendix; see Figures 5, 6, and 7. In
all the experiments, large p leads to fast convergence in the
beginning but has a nonvanishing error in the end.

Some machine learning tasks, such as principal compo-
nent analysis and latent semantic analysis (Deerwester
et al., 1990), do not require high-precision solutions. In
this case, LocalPower is advantageous over DPI, as
LocalPower finds a satisfactory solution using very few
communications. For two-stages methods like (Garber et al.,
2017) It is also implied that LocalPower helps If a higher
precision is required, we can decay p so that LocalPower
will have the same precision as DPI. While one-shot algo-
rithms are more communication-efficient, their precision is
too low unless each node has a large sample size.

The decay strategy. We have observed that large p fastens
initial convergence but enlarges the final error. By contrast,
p = 1 has the lowest error (which actually can be zero)
but also the lowest convergence rate. Similar phenomena
have been previously observed in distributed empirical risk
minimization (Wang & Joshi, 2018a; Li et al., 2019b). To
allow for both fast initial convergence and vanishing final
error, we are motivated to decay p gradually. We halve p
every iteration until it reaches 1. We apply the decay strategy
to the three variants of LocalPower. For each setting and
each dataset, we repeat the experiment 10 times and report
the mean and std. Table 2 and Figure 3(a) show the results
on some datasets. The results on all the 15 datasets are left
to the appendix; see Table 7, Figures 8, 9, and 10. The
decay strategy not only makes convergence faster but also
improves the final precision well.

Stability. In almost all the experiments, LocalPower
with OPT has smaller std and more stable convergence
curves than LocalPower without OPT. Why does OPT
improve stability. Theorem 2 shows that with OPT, ρt (in

related work. It simply averages local top-k eigenvectors rather
than distributed averaging methods (see Algorithm 2 and 3).

Definition 3) has a linear function of p. Even if p is large,
Assumption 1 can be satisfied, and thus Theorem 1 guaran-
tees the convergence of LocalPower with OPT. However,
Theorem 2 shows that without using OPT, ρt is an exponen-
tial function of p. If p is large, Assumption 1 is violated,
and thus the convergence of LocalPower without OPT is
not guaranteed.

Sign-fixing is practical alternative to OPT. Table 1 and Fig-
ures 5 and 6 show that sign-fixing has comparable stability
as OPT. To explain why sign-fixing works, we first explain
what causes instability. Note that if we flip the signs of some
columns of Z

(i)
t , the subspace R(Z

(i)
t ) remains the same.

During the local power iterations on the i-th node, the signs
of the columns of Z

(i)
t can flip. While the sign flipping does

not affectR(Z
(i)
t ), it changes the outcome of the aggrega-

tion of Z
(1)
t , · · · ,Z(m)

t . The sign-fixing method can coun-
teract sign flippings and thereby stabilizes LocalPower.

Table 2 shows that LocalPower with decaying p has bet-
ter stability. With the decaying strategy used, pwill drop to 1
after several communications, and LocalPower becomes
the standard DPI which does not suffer from the instability
issue.

Effect of local sample size. Since the n data samples are
partitioned among m nodes uniformly at random, every
node holds s = n

m samples. Figure 3(b) shows that small m,
equivalently, big s, is good for LocalPower. We use η =
maxi∈[m] ‖Mi −M‖2/‖M‖2 to measure the difference
between a local covariance matrix and the full one. We give
the values of η under different uniform partitions in Table 3.
It shows that if s is large (so m is small), η is small, which
implies M1, · · · ,Mm well approximate the global matrix
M, and the residuals accumulated by the local iterations are
small. It in turn makes the curves with small m have small
errors. This can be explained by our theories.

6. Discussion
Smallness on η. Theorem 1 requires η = O( 1

κ ) which
might be too stringent in practice. If we use a refined analy-
sis just like Guo et al. (2021), it can be relaxed to η = O(1)
as well as ε0 whose dependence on κ can be removed.7 Be-
sides, the concurrent work (Charisopoulos et al., 2020) pro-
vides sharper analysis on one-shot average via OPT, which
might be used to refine our analysis and relax the strictness
on η further.

7In particular, Guo et al. (2021) analyzes the convergence of
the virtual sequence in a form of Zt =

∑n
i=1 piZ

(i)
t D

(i)
t , while

we focus on the weighted Y (i)
t , i.e., Yt =

∑n
i=1 piY

(i)
t D

(i)
t .

Roughly speaking, ‖Yt‖ is about ‖M‖2 larger than ‖Zt‖, while
‖Y†t‖ is about ‖M†‖2 smaller than ‖Z†t‖. It leads to an additional
factor κ = ‖M‖2‖M†‖2.
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Table 1. We report the errors of three proposed algorithms and three baselines methods on seven datasets. We show the mean errors of ten
repeated experiments with its standard deviation enclosed in parentheses. The result of full fifteen datasets is shown in Table 6.

Datasets LocalPower (p = 4)
DR-SVD UDA WDAOPT Sign-fixing Vanilla

A9a 4.09e-03 (4.20e-4) 5.82e-03 (1.41e-3) 8.13e-02 (3.44e-2) 4.63e-02 (9.24e-3) 2.64e-02 (1.58e-2) 2.40e-02 (1.50e-2)
Abalone 3.16e-03 (2.89e-3) 3.85e-03 (2.54e-3) 3.03e-02 (5.70e-2) 3.20e-01 (2.30e-1) 1.03e-01 (9.38e-2) 1.03e-01 (9.18e-2)
Acoustic 1.83e-03 (4.40e-4) 2.03e-03 (3.90e-4) 2.38e-03 (8.5e-4) 1.54e-02 (6.59e-3) 7.76e-03 (2.64e-3) 6.67e-03 (2.42e-3)

Combined 6.01e-03 (1.59e-3) 5.57e-03 (1.05e-3) 2.47e-02 (3.40e-2) 5.19e-02 (6.23e-3) 4.63e-02 (2.97e-3) 4.16e-02 (2.76e-2)
Connect-4 1.27e-02 (4.52e-3) 1.81e-02 (3.79e-3) 1.70e-02 (4.35e-3) 1.61e-02 (2.96e-3) 1.65e-01 (3.48e-2) 1.56e-0 1(3.26e-2)
Covtype 7.38e-03 (6.50e-4) 6.23e-03 (4.70e-4) 1.28e-02 (1.88e-3) 1.82e-01 (8.73e-2) 6.09e-02 (9.70e-3) 5.60e-02 (9.41e-3)

MSD 9.90e-03 (1.21e-3) 9.62e-03 (5.20e-4) 1.44e-02 (1.58e-3) 3.01e-02 (9.64e-3) 1.55e-02 (1.39e-3) 1.92e-02 (1.14e-3)

Table 2. Error comparison of LocalPower with decay strategy under the same
setting of Table 1. See Table 7 for full results. In theory, LocalPower with
decay strategy achieves zero error.

Datasets LocalPower with p = 4 and the decay strategy
OPT Sign-fixing Vanilla

A9a 4.84e-03 (1.40e-02) 1.52e-03 (4.08e-03) 3.11e-04 (4.84e-04)
Abalone 3.50e-10 (4.10e-10) 4.14e-10 (4.00e-10) 6.12e-10 (6.77e-10)
Acoustic 1.40e-05 (2.16e-05) 1.92e-05 (3.72e-05) 2.28e-05 (4.91e-05)

Combined 3.68e-03 (5.63e-03) 7.74e-03 (1.70e-02) 2.99e-03 (3.88e-03)
Connect-4 4.90e-03 (8.47e-03) 3.58e-03 (4.35e-03) 3.09e-03 (3.16e-03)
Covtype 5.57e-04 (1.55e-03) 4.95e-05 (5.40e-05) 8.01e-05 (8.62e-05)

MSD 2.75e-05 (3.34e-05) 2.47e-05 (3.27e-05) 3.02e-05 (2.10e-05)

Table 3. The value of η under uniform partitions on
some datasets. It can be seen that for a fixed n, the
larger m, the larger η. Full results see Table 5.

Dataset m = 20 m = 40 m = 60

A9a 0.034 0.0563 0.0701
Abalone 0.1089 0.23 0.2458
Acoustic 0.0063 0.0107 0.0134

Combined 0.006 0.0089 0.0113
Connect-4 0.0376 0.054 0.0771
Covtype 0.0078 0.011 0.0159

MSD 0.0007 0.0009 0.0012

(a) The performance of LocalPower with different p on Covtype dataset (b) Stability on A9a dataset

Figure 2. (a) We illustrate the convergence of LocalPower with different F ’s and various p on Covtype dataset where A ∈ R581,012×54.
See Figure 5, 6 and 7 for full results. (b) The vanilla LocalPower sometimes fluctuates and even diverges (see Figure 7 for full results).
We can stabilize it in two ways: (i) use Ok or D instead or (ii) use the decay strategy.

Increase local sample size. In addition to OPT or the de-
cay strategy, we find that increasing local data size also
reduces the final error. Intuitively, if si is sufficiently large,
then Mi = 1

si
A>i Ai will be very close to M = 1

nA>A.
Actually, this is true if we construct each Ai by sampling
uniformly from the overall data A (see Lemma 2). There-
fore, to make η sufficiently small, we can increase local
data size. If the total number of rows n is fixed in advance,
increasing each si is equivalent to decreasing the number of
worker nodes m.

The term η = maxi∈[m] ‖Mi −M‖2/‖M‖2 is commonly
used to analyze matrix approximation problems. It aims

to ensure each Ai is a typical representative of the whole
dataset A. Prior work (Gittens & Mahoney, 2016; Woodruff,
2014; Wang et al., 2016) showed that uniform sampling
and the partition size in Lemma 2 suffice for that Mi

well approximates M. The proof is based on matrix Bern-
stein (Tropp, 2015). Therefore, under uniform sampling,
the smallness of η means sufficiently large local dataset size
(or equivalently a small number of worker nodes). This can
be also seen in Table 3.

One may doubt the motivation of each device anticipating
the cooperated eigenspace estimation due to the large local
dataset assumption. Here we focus on the empirical PCA
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(a) Decay strategy (b) Vary device number m (c) Error dependence on p and m

Figure 3. Some results on Covtype dataset. (a) A typical convergence curve of the decay strategy. See Figure 8, 9 and 10 for full results.
(b) The smaller m, the faster convergence as well as the smaller error. See Figure 11 and 12 for full results. (c) The error depends
positively on p and m. See Figure 13 for full results.

rather than the population PCA. This implies we inevitably
suffer a statistic error that will diminish if we have an infinite
number of total samples. As a result, ifm devices participate
in the training with comparable local data size, the statistical
error can be reduced by a factor of

√
m. See Appendix B

for more details.
Lemma 2 (Uniform sampling.). Let ε, δ ∈ (0, 1). Assume
the rows of Ai are sampled from the rows of A uniformly at
random. Assume each node has sufficiently many samples,
that is, for all i ∈ m,

si ≥
3µρ

ε2
log
(ρm
δ

)
,

where ρ = rank(A) and µ is the row coherence of A.8

With probability greater than 1− δ, we have

η = max
i∈[m]

‖Mi −M‖2/‖M‖2 ≤ ε.

Error dependence. The choice of IT determines the fre-
quency LocalPower communicates. We explore the use
of IT = {0, p, 2p, · · · , p} and the decay strategy in experi-
ments. When p = 1, LocalPower reduces to DPI. As a
result, both the residual errors Ψt and Ωt vanish. As shown
in Lemma 1, DPI converges to zero error. When p ≥ 2,
the error sin θk typically increases with p and is non-zero.
Corollary 1 depicts the relationship between the error and
problem-dependent parameters including n,m, p. The proof
is provided in Appendix A.5. It can be proved by Theorem 2
and Lemma 2.
Corollary 1. Under uniform sampling and assuming si =
Θ( nm ) and n is sufficiently large, , with probability 1- δ,
LocalPower with OPT has an asymptotic error satisfying

lim sup
t→∞

sin θk(ZT ,Uk) = O
(
hp

(√
m

n

))
,

8The row coherence of A is defined by µ(A) =
n
d
maxj ‖uj‖22 ∈ [1, n

d
] where uj comes from the column or-

thonormal bases of A.

where hp(x) is non-negative and increasing in (typically
both p and) x, and it satisfies h1(x) = 0 as well as 0 ≤
hp(x) ≤ Cx for some C. We hide constants σk, k, d, ρ, κ, δ
in the big-O notation and hp(·). However, with any decay
strategy in which p converges to 1 finally, LocalPower
achieves zero error asymptotically.

Corollary 1 says that when p goes to infinity, the error is
saturated and has a finite limit, because hp(·) is bounded.
The curve of error v.s. p and m in Figure 3(c) validates the
conclusion. Indeed, the extreme case of super large p means
LocalPower reduces to the one-shot method, which has
a non-zero optimization error typically. Corollary 1 also
reveals methods to reduce error. To that end, we can (i)
use the decay strategy (p ↓) to achieve arbitrary error or (ii)
reduce the number of devices (m ↓) or collect more data
points n ↑. Both methods work in experiments empirically.

Dependence on σk−σk+1. Our result depends on
σk−σk+1 even when r > k where r is the number of
columns used in subspace iteration. If we borrow the tool
of Balcan et al. (2016a) rather than that of Hardt & Price
(2014), we can improve the result to a slightly milder de-
pendency on σk−σq+1, where q is any intermediate integer
between k and r. In particular, the required iteration T will
decrease from Õ

(
σk

σk−σk+1

)
to Õ

(
σk

σk−σq+1

)
. It means

using additional columns fastens convergence. For a formal
statement, please refer to Appendix C.

Further extensions. Our proposed LocalPower is sim-
ple, effective and well-grounded. While we analyze it only
on the centralized setting, LocalPower can be extended
to broader settings, such as decentralized setting (Gang et al.,
2019) and streaming setting (Raja & Bajwa, 2020). To fur-
ther reduce the communication complexity, we can combine
LocalPower with sketching techniques (Boutsidis et al.,
2016; Balcan et al., 2016b). For example, we could sketch
each Y

(i)
t and communicate the compressed iterates to a
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central server in each iteration. We leave the extensions
to our future work. Besides, in typical federated learning
structures, real systems clients might not correspond to the
central server due to connection failure. It is also possible
to consider partial participation of clients and the optimal
way of client selection (Reisizadeh et al., 2020; Chen et al.,
2020). Guo et al. (2021) makes an attempt towards the
direction.

7. Conclusion
We have developed a communication-efficient distributed al-
gorithm named LocalPower to solve the truncated SVD.
Every worker machine performs multiple (say p) local
power iterations between two consecutive communications.
We have theoretically shown that LocalPower converges
p times faster (in terms of communication) than the baseline
distributed power iteration, if the residual error is uniformly
small. To reduce the residual error, we can (i) use OPT or
sign-fixing, (ii) make use of a decay strategy that halves p
gradually, and (iii) increase local data size. Both OPT and
sign-fixing are more stable, while sign-fixing additionally
is computationally efficient. The strategy is motivated by
an experimental phenomenon that large p often leads to a
quick initial drop of loss but a higher final error. The decay
strategy obtains zero error asymptotically in theory and has
better convergence performance in experiments. We have
conducted the thorough experiments to show the effective-
ness of LocalPower and all the theories are agree with
our empirical experiments.
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