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Abstract
Steerable CNN imposes the prior knowledge of
transformation invariance or equivariance in the
network architecture to enhance the the network
robustness on geometry transformation of data
and reduce overfitting. It has been an intuitive
and widely used technique to construct a steerable
filter by augmenting a filter with its transformed
copies in the past decades, which is named as fil-
ter transform in this paper. Recently, the problem
of steerable CNN has been studied from aspect
of group representation theory, which reveals the
function space structure of a steerable kernel func-
tion. However, it is not yet clear on how this
theory is related to the filter transform technique.
In this paper, we show that kernel constructed
by filter transform can also be interpreted in the
group representation theory. This interpretation
help complete the puzzle of steerable CNN the-
ory and provides a novel and simple approach to
implement steerable convolution operators. Ex-
periments are executed on multiple datasets to
verify the feasibility of the proposed approach.

1. Introduction
Beyond the well-known property of equivariance under
translation, there has been substantial recent interest in CNN
architectures that are equivariant with respect to other trans-
formation groups, e.g. reflection and rotation. Applications
of such architectures range over scenarios where object ori-
entation might variate, including OCR, aerial image process-
ing, 3D point cloud processing, medical image processing,
texture analysis and etc.

1.1. Related Works

Previous works on constructing equivariant CNN can be
coarsely categorized as two aspects. The first aspect de-
signs special steerable filters so that the convolutional out-
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put is hard-baked to transform accordingly when the input
reflects or rotates. A plenty of works develop this idea
by filter rotation, including hand-crafted filters (Oyallon &
Mallat, 2015) and learned filters (Laptev et al., 2016; Zhou
et al., 2017; Cheng et al., 2018; Marcos et al., 2017). TI-
Pooling (Laptev et al., 2016) produce invariant output as
input rotates. ORN (Zhou et al., 2017) and RotDCF (Cheng
et al., 2018) produces output which circularly shifted as
input rotates. Since each dimension of such permutable
output corresponds to a uniformly discrete rotation angle,
RotEqNet (Marcos et al., 2017) propose to extract rotation
angle from the permutable features. Another approach to
construct steerable filters is to linearly combine a set of
steerable bases. These bases can be solved in in the form
of filter patches (Cohen & Welling, 2014; 2016), harmonic
bases (Worrall et al., 2017; Weiler & Cesa, 2019), and dif-
ferential operators (Shen et al., 2020). Weiler & Cesa (2019)
comprehensively summarize works on steerable bases using
polar Fourier basis.

The second aspect exploits specific transforms to act on
input. Spatial Transformer Network (STN) is a well-known
representative, which predicts an affine matrix to transform
its input to the canonical form. Tai et al. (2019) inherits
this idea to design equivariant network. Another choice of
transform is to the polar coordinate system (Henriques &
Vedaldi, 2017; Esteves et al., 2018). Since 2D rotation in
Cartesian coordinate system corresponds to 2D translation
in polar coordinate system, rotation equivariance can be
achieved by conventional translation equivariant CNN.

1.2. Contributions

The approach proposed in this paper falls into the first cate-
gory and is closely related to Weiler & Cesa (2019). Weiler
& Cesa (2019) exhaustively proves that all steerable convo-
lutional operator could be denoted as the combination of a
specific set of polar Fourier bases. However, it is not clear
yet how this interpretation is related with the widely used
filter transform technique. In this paper, we aim to estab-
lish the missing connection between the group representa-
tion based analysis for steerable filters and filter transform
scheme. To this end, we propose a new approach (FILTRA)
to use filter transform to establish steerability between fea-
tures in different group representation in cyclic group CN
and dihedral group DN . The contribution of FILTRA can
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be summarized in two aspects:

• Theory. FILTRA completes the missing link between
the group representation based analysis for steerable
filters and the filter transform technique. Since the
latter technique is more widely known and used in
the computer vision community, we believe this the-
ory achievement will contribute to the application of
steerable filters in computer vision research.

• Practice. We propose a novel approach to implement
steerable convolutional operators which is equivalent
to Weiler & Cesa (2019) but much simpler. For re-
searchers who are not interested in the mathematical
derivation, the boxed equations in this paper are the
take-away tips which can be directly used to construct
kernels in their CNN. As listed in the appendix, a min-
imal self-contained implementation only requires 60
lines of PyTorch code to realize all the functionality
covered in this paper. The complete implementation
will also be released as open source. Based on the
proposed theory, we are able to analyze several con-
ventional well-known filter transform approaches in a
unified interpretation and show that FILTRA is a more
general realization of the filter transform technique.

We verify the feasibility of FILTRA for the classification
and regression tasks on different datasets.

2. Preliminaries
We make use of several NumPy or SciPy functions in
equations including roll1, flipud2 and circulant3.
We omit the variable in bracket sometimes by writing
κ∗∗ = κ∗∗(g) and K∗∗ = K∗∗(φ).

2.1. Steerable CNN

We recapitulate the basic concepts of steerable CNN which
will be frequently used in this paper. For detailed intro-
duction, readers can refer to Weiler & Cesa (2019) for a
comprehensive information. We mainly consider the 2D im-
age case and denote x ∈ R2 as a pixel coordinate. We use
vector field f(x) ∈ RC to denote a general multi-channel
image, where C is the number of channels. Typical exam-
ples of f(x) include RGB image f(x) ∈ R3 and gradient
image f(x) ∈ R2. Consider a group G of transformations
and an element g ∈ G. Examples of G include rotation,
translation and flip. A vector field f(x) follows the below
rules when undergoing the act π(g) of a group element g:

π(g) · f = ρ(g)f(g−1x), (1)

1https://numpy.org/doc
2https://numpy.org/doc
3https://docs.scipy.org/doc/

f(x) π(g) · f = ρ(g)f(g−1x)

g

g

ρ ≡ 1

ρ = ψ1

Figure 1. Examples of images (feature maps) with different group
representation ρ. Both images undergo 90deg rotation. The upper
row is an RGB image whose 3-channel colors remain the same
when the image is rotated. The lower row is a gradient image
whose two channel value should be rotated in the same way when
the gradient image is rotated.

where ρ(g) is a group representation related to vector field
f . Fig. 1 shows an example of different types of ρ for
RGB images and gradient images under a rotation transform
element g. The group representation of RGB is ρ(g) ≡ 1
while for gradient image ρ(g) is a 2D rotation matrix which
also rotates vector f(x) by g.

In the scenario of convolutional neural network, a convo-
lution operator f 7→ κ · f is considered as steerable if it
satisfies

κ · [π1(g)f ] = π2(g)[κ · f ], (2)

i.e. the output vector field transforms equivariantly under g
when the input is transformed by g.

2.2. Reflection Group, Cyclic Group and Dihedral
Group

We consider steerable filters on reflection group ({±1}, ∗),
cyclic group CN and dihedral group DN = ({±1}, ∗)nCN .
To unify the notations in derivation, we interpret CN =
({1}, ∗) n CN and ({±1}, ∗) = ({±1}, ∗) n C1 = D1 so
that a element in these three groups can always be denoted
as a pair g = (i0, i1), whose range is Z2 × Z1 for reflection
group, Z1 × ZN for cyclic group and Z2 × ZN for dihedral
group. Each element in CN corresponds to rotation angle
θi1 = 2i1π

N .

2.3. Group Representation

A linear representation ρ of a group G on a vector space
Rn is a group homomorphism from G to the general linear
group GL(n), denoted as

ρ : G 7→ GL(n)

s.t. ρ(gg′) = ρ(g)ρ(g′), ∀g, g′ ∈ G.
(3)
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We consider three types of linear representation in this pa-
per, i.e. trivial representation, regular representation and
irreducible representation (irrep). Readers can refer to Serre
(1977) for further background for these concepts.

The trivial representation of a group element is always
ρtri(g) ≡ 1. The regular representation of a finite group
G acts on a vector space R|G| by permuting its axis. There-
fore, for a rotation element g = (0, i1) ∈ CN or DN , we
get

ρCN
reg (g) = P (i1), ρDN

reg (g) =

[
P (i1) 0

0 P (i1)

]
,

where P (i1) = roll(IN , i1, 0).

(4)

For a reflected element g = (1, i1) ∈ DN , we get

ρDN
reg (g) =

[
0 B(i1)

B(i1) 0

]
,

where B(i1) = flipud(P (−i1 − 1)).

(5)

By selecting suitable change of basis of the vector space,
a representation can be converted to a equivalent repre-
sentation, which is the direct sum of several independent
representations on the a series of orthogonal subspace. A
representation is called irreducible representation if no non-
trivial decomposition exists. This conversion is denoted
as

ρ(g) = Q
[⊕

(i0,i1)∈I ψi(g)
]
Q−1, (6)

where I is an index set specifying the irreducible represen-
tations ψi and Q is the change of basis.

2.4. Filter Transform

In this paper we use the term filter transform to refer the
technique to create a steerable filter by augmenting a conven-
tional convolutional filter by its transformed copies. Gener-
ally the transform can be from reflection, cyclic or dihedral
groups. Most previous works on filter transform studies
the case of cyclic group. We denote the basic form of this
rotated filter as K:

K(φ) =
[
κ0 κ1 · · · κN−1

]>
,

κn(φ) = κ(φ− θn), (7)

which is commonly used in previous works, e.g. TI-Pooling
(Laptev et al., 2016), ORN (Zhou et al., 2017), RotEqNet
(Marcos et al., 2017) and RotDCF (Cheng et al., 2018).
Based on the group representation theory, it is not difficult
to note that the input to K is trivial representation and the
output is regular representation. If the input image is rotated
by θ1, the concolved output features will circularly permute
one step.

2.5. Decomposing Regular Representation

We decompose the regular representation into a set of irreps.
Define the following base irrep

ψj,k(i0, i1) = Ψk(i1) · F (i0),

Ψk(i1) =


1

k = 0 or
k = N

2 , N is even[
c[kθi1 ] −s[kθi1 ]

s[kθi1 ] c[kθi1 ]

]
otherwise

,

F (i0) =


((−1)j)i0

k = 0 or
k = N

2 , N is even[
1 0

0 (−1)i0

]
((−1)j)i0 otherwise

.

(8)

where j, k are referred as the reflection and rotation fre-
quency of the irrep. Concretely, if the action g re-
flects/rotates an object once, ψj,k(g) will reflects/rotates
in vector space j/k times. We also define the following
discrete cosine transform basis

V =
[
β0 β1 · · · βbN2 c

]
,

βk =


1N k = 0[
c[kθ0] · · · c[kθN−1]

]>
k = N

2 , N is even[
c[kθ0] · · · c[kθN−1]
s[kθ0] · · · s[kθN−1]

]>
otherwise

.

(9)

The following decomposition for ρCN
reg (0, i1) holds

ρCN
reg (g) = V DCNV >,

DCN =
⊕

0≤k≤bN2 c

ψ0,k(0, i1). (10)

The decomposition for ρDN
reg (i0, i1) holds in a bit more com-

plicated form, i.e.

ρDN
reg (i0, i1) = WDDNW>,

W =

[
V V
V −V

]
,

DDN =
⊕

0≤j≤1,0≤k≤bN2 c

ψj,k(i0, i1),

(11)

and each column of W is refered by βj,k =[
β>k (−1)jβ>k

]>
. See Fig. 2 for a visualization of this

decomposition.

Remark 1. V is actually a form of the discrete cosine trans-
form matrix. (10) and (11) reveals that regular represen-
tation and irreducible representation is related by discrete
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ρCN
reg (g)

=g = (0, 1)

V DCN (g) V >

ρDN
reg (g)

=g = (0, 1)

W DDN (g) W>

ρDN
reg (g)

=g = (1, 1)

W DDN (g) W>

Figure 2. Illustrations of (10) under C6 and (11) under D6. Red,
light yellow and green denotes negative, 0 and positive matrix val-
ues, respectively. Note that each column in V and W corresponds
to a discrete cosine transform basis.

cosine transform matrix. (10) corresponds to the fact that
a circulant matrix can be diagonalized by discrete Fourier
transform matrix and (11) can be verified by straight for-
ward computation.

We also mention a property of βk that is easy to verify and
will be useful in our derivation.

ψ0,k(0, i1)β>k = β>k P (i1),

ψ1,k(0, i1)β>k = β>k P (i1),
(12a)

ψ0,k(1, i1)β>k = β>k B(i1),

ψ1,k(1, i1)β>k = −β>k B(i1),
(12b)

where ψ0,k(i0, i1) rotates column vectors of β>k as if they
are circularly shifted.

2.6. Harmonic Filters

Weiler et al. (2018) proposes the condition of a filter kernel
κ to be equivariant under the action g ∈ G.

Lemma 1. The map f 7→ κ · f is equivariant under G if
and only if for all g ∈ G,

κ(gx) = ρout(g)κ(x)ρin(g)
−1
. (13)

Weiler & Cesa (2019) proves that such filters can be denoted
by a series of harmonic bases b(φ), i.e.

κ(r, φ) =
∑
b∈K

ωb(r)b(φ), (14)

where ωb(r) is the per radial weights and K is a set of
harmonic bases as dervied in the appendix of Weiler & Cesa

(2019). For example, consider ρin = ψi,m and ρout = ψj,n
in DN ,

Kψj,m←ψi,n =
{
bµ,γ,s(φ = ψ(µφ)ξ(s)

∣∣µ = m− sn,
s ∈ {±1}

}
.

(15)

3. Main Results
(13) and (14) provide a general approach to verify and con-
struct steerable CNN with different representations. In this
section, we relate these theories with filter transform and
show how to use filter transform to construct steerable filters
with input/output of different representations.

For readers who are not interested in group theory and math-
ematical derivation of the theory connection, we highlight
the key equations to construct steerable filters in boxes. It
should not be difficult to implement steerable filters directly
from these equations using any modern deep learning frame-
work. Fig. 3 shows illustration for these equations.

In our derivation, we mainly consider the angular coordinate
of polar coordinate functions κ(r, φ) and write them κ(φ).
We will also frequently make use of the following property:

κ(φ−θ0) = κ(φ+θ0), κ(φ−θi) = κ(φ+θN−i). (16)

3.1. From Trivial Representation to Regular
Representation

Rotation Group CN Consider the the rotating filter K in
(7) and its reflected version K:

K(φ) =
[
κ0 κ1 · · · κN−1

]>
,

κn(φ) = κ(θn − φ).
(17)

The output of convolution with kernel K or K naturally
permutes as the input rotates in CN . This intuitively corre-
sponds to property of a steerable filter transforming from
trivial representation to regular representation. In this paper,
we use K and K as the basic filters to construct different
types of steerable filters in CN and DN . We verify the ob-
servation of the above steerability by substituting K into the
LHS of Lemma 1 with g = (0, 1) and write:

K(φ+ θ1) =
[
κ(φ+ θ1) κ0 · · · κN−2

]>
(18a)

=
[
κN−1 κ0 · · · κN−2

]>
(18b)

= ρCN
reg (0, 1)Kρtri(0, 1)

−1
. (18c)

The above equation can be similarly verified for other
g = (0, i1) and also on K. Thus WLOG we select the
steerable filter which transforms trivial representation to
regular representation on CN as

KCN
0→reg = K. (19)
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Dihedral Group DN The steerable filter that transforms
trivial representation to regular representation on DN can
be constructed as

KDN
0→reg(φ) =

[
K> K

>
]>

, (20)

which corresponds to enumerating each DN element and act
on the kernel κ. For g = (0, i1), KDN

0→reg can be verified to
follow (13) in the same way as (18a), i.e. KDN

0→reg(φ+ θ) =

ρDN
reg (g)KDN

0→regρtri(g)
−1.

For reflected action, when g = (1, 1), we write:

K(−φ+ θ1) =
[
κ(−φ+ θ1) κ(−φ− θ0)

κ(−φ− θ1) · · · κ(−φ− θN−2)
]>

=
[
κ1 κ0 κN−1 · · · κ2

]>
= B(1)K.

(21)

Similarly, we can show for g = (1, i1),

K(−φ+ θi1) = B(i1)K,

K(−φ+ θi1) = B(i1)K.
(22)

Thus we verify (13) for the reflected actions g = (1, i1)
by summarizing the above as KDN

0→reg(−φ + θi1) =

ρDN
reg (g)KDN

0→regρtri(g)
−1.

3.2. From Irrep to Regular Representation

Rotation Group CN Consider a CN irrep ψ0,k(g) with
frequency (0, k). We show that the following kernel

KCN

k→reg = diag(K)βk, (23)

transforms from ψ0,k(g) to regular representation for the
action g = (0, i1). The derivation of correctness can be
found in the appendix.

Dihedral Group DN Consider a DN irrep ψj,k(i0, i1)
with frequency (j, k). We show that the following kernel:

KDN

j,k→reg =
[
KCN

k→reg
>

(−1)j · KCN

k→reg

>]>
(24)

transforms from ψj,k(i0, i1) to regular representation for
the action g = (i0, i1) ∈ DN .

3.3. From Regular Representation to Regular
Representation

Regular representation possesses a nice property that it can
be averaged, pooled or activated channel-wise without vi-
olating steerability (Weiler & Cesa, 2019). Thus it is con-
venient to used regular representation for the intermediate

features of a steerable CNN. We show in this subsection
that the following kernels can be use to construct a steerable
kernel whose input and output features are both in regular
representation.

Rotation Group CN

KCN
reg→reg =

[
KCN
0→reg · · ·K

CN

bN2 c→reg

]
V −1. (25)

Dihedral Group DN

KDN
reg→reg =

[
KDN
0,0→reg · · ·K

DN

0,bN2 c→reg

KDN
1,0→reg · · ·K

DN

1,bN2 c→reg

]
W−1.

(26)

The above two kernels can be verified to transform regular
representation to regular representation in similar way and
we show the derivation for the CN case (26) as an example
in the appendix.

3.4. Reversed Transform of Representations

It is obvious to find that for (13), if ρin, ρout are orthogonal
matrices, i.e. ρ−1in = ρ>in , ρ

−1
out = ρ>out, the transpose of (13)

naturally proves the equivariance of κ> under a reversed
representation transform direction, i.e. from ρout to ρin.
Thus we can easily obtain equivariance kernel from regular
representation to trivial/irreducible representation by simply
transposing (19), (20), (23) and (24).

3.5. Conventional Rotating Filters

We comprehensively study the approach to use filter rota-
tion to form steerable convolutional kernels with regular
representation features as input or output. Conventional
filter rotation based networks exploit some basic forms in-
troduced in this section. TI-Pooling (Laptev et al., 2016)
exploits kernel KCN to transform trivial to regular repre-
sentation, executes orientation pooling to convert regular
to trivial representation and loses orientation information.
RotDCF and ORN exploits a kernel of form

KCN

ORN = circulant(K). (27)

It is easy to verify that KCN

ORN also follows Lemma 1 to be
a steerable filter. However, compared to KCN

reg→reg, KCN

ORN
consumes same filter storage but has less weight capacity
(N v.s. NbN2 c). RotEqNet constructs 2D vector field which
could rotate as its input rotates but regards the 2D vector
field as independent trivial representation in convolution. As
shown in this paper, it preserves better steerability to regards
the vector field as irrep representation with frequency 1.
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KCN
0→reg = K K

diag(K)β0
k −diag(K)β0

k

diag(K)β1
k −diag(K)β1

k

KDN
0→reg

KCN

k→reg

KDN

j,k→reg

Figure 3. Visualization of FILTRA filter examples. Based on a same weight kernel K, we generate filters KCN
0→reg, KDN

0→reg, KCN
k→reg and

KDN
j,k→reg. In this example we set j = 1, k = 1, N = 8. The two-columns of matrix βk is splitted as β0

k and β1
k for visualization. Red,

light yellow and green denotes negative, 0 and positive values, respectively. Please view this figure in color.

3.6. Numerical Accuracy for Discrete Kernels

Note that when implementing discrete convolution, the
equality of (18a) does not perfectly hold. For example,
consider κn(φ) = κ(φ − θn), κn(θn) = κ(0) holds for a
continuous κ. However, for discrete κ, κn(φ) is a rotated
interpolation of κ(φ) and this equality does not precisely
hold in general. However, in our implementation this is not
specifically handled since the overall performance does not
drop too much.

There exist some exceptions where the equality can be
achieved for discrete κ. One example is when κn(φ) is
a 90◦ rotation of κ and it can be precisely constructed from
κ. Another example is when κn is a 45◦ rotation interpo-
lated by nearest pixel from a κ of size 3× 3.

3.7. Relation with Continuous Rotation

Consider (10), obviously ρCN
reg (0, i1) is a continuous func-

tion of i1. If i1 is a real number in (i, i + 1), we can ob-
serve that ρCN

reg (0, i1) will smoothly interpolates between
ρCN

reg (0, i) and ρCN
reg (0, i+ 1). This interpolation is not linear.

However, in practice we found that for N ≤ 4 this interpo-
lation approximately captures the continuity of rotation well
in the outputted regular represented features.

3.8. Steerable CNN with Multiple Layers

A conventional CNN is usually composed convolution, pool-
ing, nonlinearity and fully-connected layers. To achieve
equivariance for the overall network, it is desired that all
the component layers are steerable. As analyzed in the
appendix of Weiler & Cesa (2019), channel-wise nonlinear-

ity and channel-wise pooling preserves the steerability on
feature maps with regular representation. fully-connected
layers is a special case of convolution with 1 × 1 kernels
and thus can be easily realized by steerable convolution.

4. Experiments
The proposed equivariant convolution, refered as FILTRA,
can be interpreted as an alternative formulation for the har-
monic based (Weiler & Cesa, 2019) implementation of steer-
able convolution. In this section we show the pros and cons
of each implementation by experiments. We make use of
the framework E2CNN (Weiler & Cesa, 2019) for our ex-
periments as it provides the general interface and operations
for steerable CNN network. Experiments are executed on
the MNIST, KMNIST (Clanuwat et al., 2018), FashionM-
NIST (Xiao et al., 2017), EMNIST (Cohen et al., 2017) and
CIFAR10 datasets.

We compare FILTRA against two convolution opera-
tions, i.e. the representative harmonic based convolution
R2Conv (Weiler & Cesa, 2019) from E2CNN and the con-
ventional vanilla convolution. All MNIST-like datasets are
experimented on a same feature extraction backbone as de-
scribed in Table 1a, with convolution operator realized by
the three experimented approaches. CIFAR10 is experi-
mented with WideResNet (Zagoruyko & Komodakis, 2016)
in the setting similar to (Weiler & Cesa, 2019). C8 and
D8 steerable networks are used in the experiments. For all
experiments, we randomly rotate or reflect according to the
experiment settings. The settings and evaluation results are
listed in Table 2. Different from Weiler et al. (2018), we
force the three convolution kernels to output same number
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Table 1. Network structure in experiments

(a) The backbone network structure used in our experiments is composed by
convolution, ReLU and pooling layers. The convolution layers are realized
by FILTRA, R2Conv and conventional convolution respectively while the
rest layers remain the same. Three realizations have the same number of
output channels in each layer but organize the channels to be follow regular
representation for FILTRA and R2Conv. k: kernel size. s: stride. δt: filter
generation time in ms.

layer k s output δt (FIL) δt (R2)
conv+relu 5 1 128 (reg) 0.12 0.17
conv+relu 5 1 192 (reg) 0.13 0.13
pool 3 2 256 (reg) - -
conv+relu 5 1 256 (reg) 0.13 0.13
conv+relu 5 1 384 (reg) 0.23 0.23
pool 3 2 384 (reg) - -
conv+relu 5 1 512 (reg) 0.32 0.48
conv+relu 5 1 768 (reg) 0.62 0.91
pool 3 2 768 (reg) - -

(b) The classification head network structure used in
our experiments uses a Grouping Pooling (Weiler &
Cesa, 2019) to generate transform invariant features.

layer k s output
GroupPool − 1 24 (reg)
fc+relu − − 16 (reg)
fc − − 10 (tri)

(c) The regression head network structure used in our
experiments uses a PointwiseAdaptiveMaxPool (PA-
MaxPool) (Weiler & Cesa, 2019) to summarize feature
in regular representation.

layer k s output
PAMaxPool − − 24 (reg)
conv+relu 1 1 16 (reg)
conv 1 1 2 (irrep)

of channels. For example, compared to vanilla convolution,
the number of free weights for a C8 FILTRA is reduced to
1/8 and for a D8 is reduced to 1/16. The filters for all the
approaches will thus have exactly same shape at the deploy
stage.

Experiments are executed on GTX 2070. The training pro-
cedure of FILTRA and R2Conv can both be implemented
as a vanilla convolution plus a filter generation step. For C8

case the runtime of both approaches is similar and for D8

case FILTRA is slightly faster. We show runtime of D8 case
in Table 1a at training stage. R2Conv additionally requires
a initialization of about 2 min. Both of the approaches
consume the same inference time as of vanilla convolution.

Our implementation of FILTRA is released on Github4.

4.1. Classification Task

The most typical experiment used in previous works on
conventional steerable CNN is the classification task. We
follow this convention and compare the classification per-
formance of the experimented three approaches in Table 2.
FILTRA show comparable performance to R2Conv and
slightly improves accuracy for OCR-like (*MNIST) tasks
where high frequency texture is limited. On CIFAR10, the
performance of FILTRA is minorly disadvantageous. The
explanation comes in the interpolation artifacts mentioned
in Subsect. 3.6. As the interpolation of high frequency
components deviates more, this harms the performance on
CIFAR10 with high frequency texture.
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4.2. Regression Task

Besides the typical classification task, we find that the prop-
erty of steerability is naturally advantageous for many re-
gression tasks whose input might rotate or reflect. In this
paper, we evaluate the regression performance with an ex-
ample task to predict the character direction. Similar tasks
are commonly used in OCR techniques. When the character
rotates, the predicted direction should rotate with the same
rotating frequency. This means the predicted 2D direction
vector is following a irrep ψ0,1 for CN . We reuse the back-
bone in Table 1a to extract features and use a regression head
in Table 1c to predict a unit 2D vector denoting the direction.
The network is trained with MSE loss. Note that the images
should be masked by a disk to avoid the network to overfit
the direction from rotated black boundary. Different ap-
proaches are evaluated by the mean included angle between
the predicted and groundtruth directions as shown in Table 2.
FILTRA with C8 steerability performs best when trained on
data augmented over SO(2). We owe this to the fact that
FILTRA weight is naturally organized by the discrete grid
layout. Each element of discrete weight matrix contribute
to one more DoF of the filters. In contrast, R2Conv uses
filters parameterized with a polar coordinate. The DoF of
the filters is slightly reduced due to the discretization.

5. Conclusions
In this paper, we establish the connection between the recent
steerable CNN structure based on group representation the-
ory and the conventional transformed filters. To this end, we
propose an approach to construct steerable convolution fil-
ters, which transform between features in trivial, irreducible
and regular representations. We verify the feasibility of FIL-
TRA for the classification and regression tasks on several
datasets.

github.com/prclibo/filtra
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Table 2. Performance on MNIST and CIFAR10. S: randomly augmented over SO(2). O: randomly augmented over O(2). wrn:
WideResNet. Zagoruyko & Komodakis (2016).

Tasks Classification (acc) Regression (angle err deg)
mnist kmnist fmnist emnist cifar10 mnist kmnist fmnist emnist

Aug S O S O S O S O wrn wrn S O S O S O S O
Net eqiv C8 D8 C8 D8 C8 D8 C8 D8 C8 D8 C8 D8 C8 D8 C8 D8 C8 D8

FILTRA 98.9 98.1 97.1 97.0 90.5 90.8 77.1 80.5 93.4 92.8 3.3 5.4 3.2 3.6 2.6 2.8 29.8 24.9
R2Conv 98.8 98.1 97.3 96.8 90.5 90.8 76.7 80.1 93.6 92.7 4.8 8.9 3.4 4.5 2.9 3.7 34.5 29.2
Conv 98.5 98.0 96.4 95.2 89.3 88.3 72.6 80.1 93.2 - 6.6 10.6 4.8 6.4 3.1 3.6 37.4 25.5
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