
Online Unrelated Machine Load Balancing with Predictions Revisited

A. On Justification of Assumptions
Assumption 1 can be made with a loss of (1+ε)-factor in the
competitive ratio. If pi′,jpi,j

≥ m
ε for some j ∈ J, i, i′ ∈Mj ,

we can change pi′,j to∞. If the job j is assigned to i′ in the
optimum solution, we assign it to the machine i∗ with the
minimum pi∗,j instead. Thus, the processing time of j is
decreased by at least a factor of mε . We apply the operation
for all violations of the assumption. Then the makespan of a
machine i will be increased by at most (m−1)T

m/ε ≤ εT . This
holds since the total processing time of machines other than
i in the optimum solution is at most (m − 1)T . We also
remark the procedure that guarantees the assumption can
run online, as jobs are handled separately in the procedure.

Consider Assumption 2 for designing online rounding al-
gorithms. We show the assumption can be made by losing
a factor of 4 in the competitive ratio. Suppose when T is
known the algorithm has competitive ratio α.

We start from T = 0. The algorithm is broken into phases.
Within each phase, the T value does not change, and it is
at least mspn(x) for any x we see in the phase. Within
each phase, we run the α-competitive rounding algorithm
with the T value. Upon the arrival of a client j, we check
if mspn(x) exceeds T for the updated x. If yes we then
change T to 2 ·mspn(x) and start a new phase.

In each phase, the α-competitive rounding algorithm gives
an assignment of makespan at most αT . The values of T at
least double from phase to phase, and the value of T in the
last phase is at most 2mspn(x) for the final x. Therefore,
the makespan of the assignment produced by the online
rounding algorithm is at most α · 2 ·mspn(x) · (1 + 1

2 + 1
4 +

1
8 + · · ·) ≤ 4α ·mspn(x), resulting in an 4α-competitive
online rounding algorithm in the case when T is not known.

There is a small caveat on the failure probability when the
rounding algorithm is randomized. The proof works only if
the number of phases is polynomial in m, since the failure
probability is multiplied by the number of phases. This
holds when max(i,j)∈E pi,j

min(i,j)∈E pi,j
≤ 2poly(m), which is a mild con-

dition. Indeed, if max(i,j)∈E pi,j
min(i,j)∈E pi,j

� 2poly(m), then an ad-
versary can release super-polynomial number of instances
sequentially, so that the total makespan of all previous in-
stances is neglectable compared to the current one. Then the
failure probability has to scale by the number of instances.

B. Omitted Proofs
B.1. Proportional Allocation Scheme of Agrawal et al.

and Proof of Lemma 2.3

In this section, we first describe the proportional allocation
scheme of Agrawal et al. (2018) for the maximum through-
put problem in the P|restricted setting. As usual we are

given M,J, |M | = m and |J | = n. Every job j ∈ J has a
size pj ∈ R>0 and pi,j ∈ {pj ,∞} for every i, j. E, Mj’s
and Ji’s are defined as before. They considered a more
general setting where every machine i is given a makespan
budget Ti > 0. A valid fractional solution to the instance
is a vector x ∈ [0, 1]E such that

∑
i∈Mj

xi,j = 1 for every
j ∈ J . The fractional throughput of x is defined as

Thr(x) :=
∑
i∈M min

{
Ti,
∑
j∈Ji pjxi,j

}
.

So, the portion of the load on a machine i that exceeds Ti
is discarded and not considered in the throughput. (It does
not matter what fractional jobs we discard.) The optimum
fractional makespan is then the maximum of Thr(x) over
all valid fractional solutions x. We call the problem the
throughput maximization problem in the P|restricted set-
ting, to distinguish it from the load balancing problem we
are considering.

Given a weight vector w ∈ RM>0, recall that the fractional
solution x(w) ∈ [0, 1]E assigns every job j to the machines
Mj proportionally to their weights. The main result of
Agrawal et al. (2018) is that some weight vector w gives a
(1− δ)-optimum solution x(w) for any δ ∈ (0, 1):

Theorem B.1 (Agrawal et al. (2018)). Given a throughput
maximization problem in the P|restricted setting, and δ ∈
(0, 1), there exits a vector w ∈ RM>0 such that Thr(x(w)) is
at least 1− δ times the optimum fractional makespan.

Theorem B.1 is Theorem 1 of Agrawal et al. without con-
sidering the precision requirement of w; we handle the
precision issue inside the proof of Lemma 2.3, which is
repeated below.

Lemma 2.3. Given a load balancing instance in the
Q|restricted setting, for any ε ∈ (0, 1), there is a weight
vector w ∈ powersM1+ε,K for some K = O

(
m
ε log m

ε

)
such

that x(w) is a (1 + ε)3-approximate solution to (P-LP).

Proof. Recall that in our load balancing instance, every job
j ∈ J has a size pj and every machine i ∈M has a speed si,
and pi,j =

pj
si

for every (i, j) ∈ E. Let T be the optimum
value of (P-LP) for the instance.

To construct a throughput maximization instance in the
P|restricted setting, we set Ti = Tsi, which is total size
of jobs that can be processed on machine i in time T . The
pj values in the instance are the same as that in the load
balancing instance. Since (P-LP) has a fractional solution of
makespan at most T , the throughput maximization instance
has a fractional solution with throughput

∑
j∈J pj .

Let smax = maxi∈M si and smin = mini∈M si. We set
δ = ε·smin

m·smax
and apply Theorem 2.4. Then, we have a vector

w ∈ RM>0 such that Thr(x(w)) ≥ (1 − δ)∑j∈J pj . So at
most δ

∑
j∈J pj total size of fractional jobs are discarded.

Online Unrelated Machine Load Balancing with Predictions Revisited

Let yj be the fraction of the job j that is discarded. Then,
we have

∑
j∈J yjpj ≤ δ

∑
j∈J pj .

We then go back the original load balancing instance in
the Q|restricted setting. Without considering the discarded
fractional jobs, all machines have makespan at most T . Even
if all these fractional jobs are scheduled in the slowest ma-
chine before discarded, the total time for processing them
will be at most

δ
∑
j∈J pj
smin

=
ε
∑
j∈J pj

msmax
≤ εT , where the

last inequality holds since
∑
j∈J pj ≤ mTsmax. Therefore,

x(w) has makespan at most (1 + ε)T .

Finally, we make the aspect ratio of w small using the fol-
lowing procedure. We sort all the jobs according to their w
values from the smallest to the biggest. Whenever we see
two adjacent jobs j1, j2 in the ordering with wj2

wj1
> m2

ε2 , we
scale down the w values of all jobs after j1 in the sequence
by the same factor so that wj2wj1

becomes m2

ε2 . So, after the

operation, the aspect ratio of w becomes at most
(
m2

ε2

)m−1

.

Due to the procedure, some x(w)
i,j values increase. However,

they will never be increased to more than 1
1+m2/ε2 <

ε2

m2 ;

this holds since if some x(w)
i,j is increased, then after the

procedure, there must be some other job i′ ∈ Mj with
wi′ ≥ m2

ε2 wi. The total time of running all jobs in their
respective fastest permissible machines is at most mT . Run-
ning ε2

m2 fraction of all jobs in Ji on a machine i takes time
at most ε2

m2 ·mT · mε = εT , where the factor of mε comes
from Assumption 1. Therefore, the procedure increases
the makespan by at most εT . So, for the new w, x(w) has
makespan at most (1 + 2ε)T .

Then we round each wi value down to its nearest integer
power of 1 + ε. This will increase the makespan of any
machine by at most a multiplicative factor of (1 + ε). There-
fore, our final w has coordinates in powersK with K =⌊
log1+ε(m

2/ε2)m−1
⌋

= O
(
m
ε log m

ε

)
. The makespan of

x(w) is at most (1 + ε)3T .

B.2. Omitted Proofs in Sections 3 and 4

Lemma 3.1. For every t ∈ [n], we have Φt ≤ Φt−1.

Proof. Assume we are at the beginning of some time t ∈ [n]
in the algorithm. Now suppose at time t, instead of assigning
job t deterministically as in the algorithm, we randomly
assign t to a machine, such that the probability that t is
assigned to i is xi,t. We upper bound E[Φt] by Φt−1:

E[Φt]

=
∑

i∈M
E


exp


aLi,t

T
+ (ea − 1)

(
1− 1

T

t∑

j=1

xi,jpi,j

)





=
∑

i∈M
exp


aLi,t−1

T
+ (ea − 1)

(
1− 1

T

t∑

j=1

xi,jpi,j

)



·
(
xi,te

api,t
T + 1− xi,t

)

≤
∑

i∈M
exp


aLi,t−1

T
+ (ea − 1)

(
1− 1

T

t∑

j=1

xi,jpi,j

)



· exp
(

(ea − 1)
xi,tpi,t
T

)

=
∑

i∈M
exp


aLi,t−1

T
+ (ea − 1)

(
1− 1

T

t−1∑

j=1

xi,jpi,j

)



= Φt−1.

The first equation used is just by the definition of Φt and
linearity of expectation. For the second equation, notice
that for every i ∈ M , we have Li,t = Li,t−1 + pi,t with
probability xi,t and Li,t = Li,t−1 with probability 1− xi,t.
To see the inequality, we define θ to be pi,t

T with probability
xi,j and 0 with probability 1 − xi,j . Since exp(a · θ) is a
convex function on θ, and θ is a random variable over [0, 1],
we have(

xi,je
api,j
T + 1− xi,j

)
= E[exp(a · θ)]

≤ (1− E[θ]) · 1 + E[θ] · ea = 1 + (ea − 1)E[θ]

= 1 + (ea − 1)
xi,tpi,t
T

≤ exp
(

(ea − 1)
xi,tpi,t
T

)
.

The last equality used the definition of Φt−1.

We have proved E[Φt] ≤ Φt−1. In our actual deterministic
algorithm, we assign t to the machine i that minimizes Φt.
So Φt ≤ Φt−1.

Lemma 4.1. With probability at least 1− 1
4m , ∀i ∈M , the

total load of small jobs assigned to i is at most 8T .

Proof. For every i ∈ M, j ∈ J small
i , let x̃i,j ∈ {0, 1} indi-

cate whether j is assigned to i or not in the assignment we
constructed. Focus on each i ∈M and we shall apply Cher-
noff bound (Theorem E.1) to the sum

∑
j∈Jsmall

i

ρpi,j
T x̃i,j .

For any small job j ∈ J small
i , pi,j ≤ T

ρ and thus we al-
ways have ρpi,j

T x̃i,j ∈ [0, 1]. The expectation of the sum is
µ := 2

∑
j∈Jsmall

i

ρpi,j
T xi,j ≤ 2ρ by (P4). Applying Cher-

noff bound with U = 2ρ and δ = 3 gives us

Pr


 ∑

j∈Jsmall
i

ρpi,j
T

x̃i,j > 8ρ


 < e−32·2ρ/5 ≤ 1

4m2
.

The event in the bracket is precisely
∑
j∈Jsmall

i
pi,j x̃i,j >

8T . The lemma follows by applying the union bound over
all machines i.

Online Unrelated Machine Load Balancing with Predictions Revisited

Lemma 4.2. With probability at least 1 − 1
4m , for every

i ∈M , we have
∑
j∈Jbig

i
pi,jx

′
i,j ≤ 5T .

Proof. Focus on each i ∈M . Let J ′ = {j ∈ Jbig
i : xi,j <

1/ρ}. Notice that for every j ∈ J ′ we have E[x′i,j] = xi,j
and ρpi,j

T x′i,j ∈ [0, 1]. Moreover, the random variables
{x′i,j}j∈J′ are independent. So, we can apply Chernoff
bound (Theorem E.1) to the sum

∑
j∈J′

ρpi,j
T x′i,j . Its ex-

pectation is µ :=
∑
j∈J′

ρpi,j
T xi,j ≤ ρ by (P4). Applying

the bound with U = ρ and δ = 4 gives us

Pr


∑

j∈J′

ρpi,j
T

x′i,j >
∑

j∈J′

ρpi,j
T

xi,j + 4ρ


 < e−

42ρ
6

≤ 1

4m2
.

Focus on the inequality in the bracket above. Multiply-
ing both sides by T/ρ and adding

∑
j∈Jbig

i \J′
x′i,jpi,j =∑

j∈Jbig
i \J′

xi,jpi,j to both sides, the inequality becomes

∑

j∈Jbig
i

x′i,jpi,j >
∑

j∈Jbig
i

xi,jpi,j + 4T.

The inequality is implied by
∑
j∈Jbig

i
x′i,jpi,j > 5T . Thus,

Pr
[∑

j∈Jbig
i
x′i,jpi,j > 5T

]
< 1

4m2 . The lemma holds by
the union bound over all machines i ∈M .

Lemma 4.3. For every i ∈ M , we have Pr[i ∈
Mmarked] ≤ 1

700ρ12 .

Proof. Let x̃i,j indicate whether we are trying to assign
j to i or not in Algorithm 1. If i is marked, then∑
j∈Jbig

i

x̃i,jpi,j
T > 15 log logm

log log logm . Note that pi,j ≤ T , 0 ≤
x′i,j ≤ 1 and E

[∑
j∈Jbig

i

pi,j x̃i,j
T

]
≤ 3

∑
j∈Jbig

i

pi,jx
′
i,j

T ≤
15 by Lemma 4.2. Applying Chernoff bound (Theorem E.1)
to the sum

∑
j∈Jbig

i

pi,j x̃i,j
T with δ = log logm

log log logm − 1 and
U = 15, we have that

Pr[i ∈Mmarked] <

(
eδ

(1 + δ)1+δ

)U
≤
(

e

1 + δ

)(1+δ)U

=

(
e log log logm

log logm

) 15 log logm
log log logm

<
1

700ρ12
.

This finishes the proof.

Claim 4.4. In G′, every job j ∈ Jbig has degree at most
ρ/2 + 1, and every machine i ∈M has degree at most 5ρ2.
G′2[M] has maximum degree at most 5ρ3/2, G′4[M] has
maximum degree at most 25ρ6/4, and G′8[M] has maxi-
mum degree at most 625ρ12/16.

Proof. The first half of the first sentence follows from that
x′i,j ≥ 1/ρ for every (i, j) ∈ E′ and (7). The second half
of the sentence follows from Lemma 4.2, and the fact that
every (i, j) ∈ E′ has pi,j ≥ T

ρ and x′i,j ≥ 1
ρ .

Then every machine i has at most 5ρ2(ρ/2+1−1) = 5ρ3/2
neighbors in G′2[M]. Notice that G′4[M] = (G′2[M ′])2.
ThusG′4[M] has degree at most 5ρ3/2+5ρ3/2×(5ρ3/2−
1) = 25ρ6/4. Similarly, G′8[M] has maximum degree at
most (25ρ6/4)2 = 625ρ12/16.

Lemma 4.6. The machines in any connected component of
G′[M ∪ J failed] are in a same connected component of H .

Proof. Suppose i and i′ are in a same connected com-
ponent in G′[M ∪ J failed]. Then there is a path (i0 =
i, j1, i1, j2, i2, · · · , jo, io = i′) in G′[M ∪ J failed]. Notice
that every job in J failed is adjacent to a marked machine. So,
there is a marked machine κa adjacent to ja for every a ∈
[o]. For every a ∈ [o−1], (κa, κa+1) ∈ G′4[Mmarked] or it
is a self-loop, since κa-ja-ia-ja+1-κa+1 is a path of length
4 in G′. So, κ1 and κo are connected in G′4[Mmarked].
Also both (i, κ1) and (i′, κo) are in G′2 (if they are not
self-loops). By the definition of H , i and i′ are in the same
connected component of H .

Lemma 4.7. The marked machines in any connected
component of H are in a same connected component of
G′4[Mmarked].

Proof. Notice that H is obtained from G′4[Mmarked] by
adding unmarked machines and edges between marked
and unmarked machines in G′2. This operation does not
merging any two connected components of G′4[Mmarked]:
Suppose we have three machines i ∈ M \ Mmarked,
i′, i′′ ∈ Mmarked such that (i, i′), (i, i′′) ∈ G′2[M], then
(i′, i′′) ∈ G′4[Mmarked]. That is, i′ and i′′ were already in
the same connected component in G′4[Mmarked].

Lemma 4.8. If some connected component of G′[M ∪
J failed] contains ρ(5ρ3/2 + 1)2 machines, then some
connected component of G′4[Mmarked] has size at least
ρ(5ρ3/2 + 1).

Proof. If the condition holds, then by Lemma 4.6, some
connected component of H will have ρ(5ρ3/2 + 1)2 ma-
chines. In the connected component, there are no edges
between unmarked machines. So, the number of marked ma-
chines in the connected component is at least ρ(5ρ

3/2+1)2

5ρ3/2+1 =

ρ(5ρ3/2 + 1) by Claim 4.4 about the degree of G′2[M].
Then the lemma follows from Lemma 4.7.

Lemma 4.9. Suppose we have a set M∗ of at least
ρ(5ρ3/2 + 1) machines such that G′4[M∗] is connected.
Then there is an interesting set M ′ ⊆M∗ of size at least ρ.

Online Unrelated Machine Load Balancing with Predictions Revisited

Proof. Indeed, let M ′ be any maximal independent set of
G′2[M∗]. First, the size of M ′ is at least |M∗|

5ρ3/2+1 ≥ ρ since
every machine i ∈ M∗ has at most 5ρ3/2 neighbors in
G′2[M∗] by Claim 4.4. It remains to show that G′8[M ′] is
connected. Assume towards the contradiction that this is not
the case. Then M ′ can be partitioned into two non-empty
sets M ′1 and M ′2 such that there are no edges between M ′1

and M ′2 in G′8.

We focus on the graph G′4[M∗], which, by the condition of
the lemma, is connected. For every edge (i, i′) in G′4[M∗],
we define its length to be the minimum number of edges in a
path connecting i and i′ inG′. Notice that the length of (i, i′)
is either 2 or 4. Then we focus on the shortest path between
M ′1 and M ′2 in G′4[M∗]. The length of the shortest path is
at least 10. Assume the path connects i1 ∈M ′1 to i2 ∈M ′2.
If the first edge on the path has length 4, then the second
machine on the path could have been added to M ′. If the
last edge on the path has length 4, then the second-to-last
machine on the path could have been added to M ′. By the
maximality of M ′, they can not happen. So, both the first
and last edges of the path have length 2. Then the path
contains at least 4 edges. Therefore, the middle machine on
the path could be added to M ′, leading to a contradiction.
Thus, G′8[M ′] is connected.

Lemma 4.10. With probability at least 1− 1
4m , every inter-

esting set M ′ of size ρ contains an unmarked machine.

Proof. Focus on the graph G′8[M], and let d denote the
maximum degree of the graph and thus d ≤ 625ρ12/16 by
Claim 4.4.

We show that there are at most
(

2(ρ−1)
ρ−1

)
m(d − 1)ρ−1 ≤

22ρ · mdρ = m · (4d)ρ different subsets M ′ ⊆ M with
|M ′| = ρ and G′8[M ′] being connected. To see this, we
can use a spanning tree of G′8[M ′] to represent such a
M ′. To describe the spanning tree, we construct a traveling-
salesman tour that starts from an arbitrary vertex in M ′,
and contains each edge in the spanning tree exactly twice.
Each edge in the tour is an either a backward edge or a
forward edge, and there are at most

(
2(ρ−1)
ρ−1

)
possibilities

for splitting the 2(ρ − 1) edges into ρ − 1 forward edges
and ρ − 1 backward edges. Thus to describe the tour, we
specify the starting vertex, the split, and the actual forward
edges. There are m possibilities for the starting vertex, and
at most d− 1 possibilities for each of the forward edge. The
bound then follows. It implies that the number of interesting
subsets M ′ of size ρ is at most m · (4d)ρ.

For every interesting subsetM ′ ⊆M of size ρ, the probabil-

ity that all vertices in M ′ are marked is at most
(

1
700ρ12

)ρ

due to Lemma 4.3 and that machines in M ′ ⊆ M do not
share neighbors in G′. Using union bound we obtain the fol-

lowing. With probability at least 1−m·(4d)ρ ·
(

1
700ρ12

)ρ
≥

1 −m · (4·625ρ12

16·700ρ12)ρ = 1 −m ·
(

25
112

)ρ ≥ 1 − 1
4m , every

interesting M ′ of size ρ contain at least one unmarked ma-
chine.

C. Online Algorithm for Unrelated Machine
Load Balancing with Prediction

In this section, we first prove Corollary 2.5 about the pre-
diction for the unrelated machine load balancing problem.
Then we show how to handle the errors in the prediction.
The corollary is repeated below:

Corollary 2.5. Given an unrelated machine load balancing
instance, there are β,w ∈ powersM1+ε,K for some K =

O
(
m
ε log m

ε

)
such that x(β,w) is (1 + ε)4-approximate to

(P-LP).

C.1. Proof of Corollary 2.5

For convenience we call the given unrelated machine load
balance instance I . Let K = O

(
m
ε log m

ε

)
that satisfies the

requirements in both Lemma 2.3 and Theorem 2.4.

Let β ∈ powersM1+ε,K , αj = mini∈Mj
pi,jβi,∀j and x be

the objects satisfying the property of Theorem 2.4. We de-
fine a load balancing instance I ′ in the Q|restricted setting
as follows. We set p′j = αj for every j ∈ J , and s′i = βi for

every i ∈M . We set p′i,j =
p′j
s′i

=
αj
βi

if pi,jβi ≤ (1 + ε)αj ,
and p′i,j = ∞ otherwise. Then the instance I ′ is defined
by (p′i,j)i∈M,j∈J . Let E′ = {(i, j) ∈ E : pi,j 6= ∞}
and M ′j = {i : (i, j) ∈ E′},∀j ∈ J . Then x|E′ is
a valid solution to (P-LP) for I ′. As p′i,j 6= ∞ implies

p′i,j =
αj
βi
∈
[
pi,j
1+ε , pi,j

]
, the value of x to (P-LP) w.r.t I ′ is

at most T ∗.

So we can apply Lemma 2.3 to the instance I ′. There
is a vector w ∈ powersM1+ε,K such that x(w) has value at
most (1 + ε)3T ∗ to (P-LP) w.r.t I ′. Notice that x(w) is
defined w.r.t I ′. That is, for every (i, j) ∈ E′, we have
x

(w)
i,j = wi∑

i′∈M′
j
wi′

. As E′ ⊆ E and for every (i, j) ∈
E′, we have pi,j ≤ (1 + ε)pi,j , x(w) has value at most
(1 + ε)(1 + ε)3T ∗ = (1 + ε)4T ∗ to (P-LP) w.r.t the original
instance I, when extended to the domain E by adding 0’s.
This is precisely the x(β,w) in Corollary 2.5.

C.2. Handle Errors in the Prediction

When we are given the (β,w) in Corollary 2.5, then our
algorithm can construct the fractional solution x(β,w) online,
which can be passed to the O

(
log logm

log log logm

)
-competitive

randomized rounding algorithm.

Online Unrelated Machine Load Balancing with Predictions Revisited

If the prediction has an error, then intuitively we can make
the competitive ratio deteriorate smoothly as the error grows.
Since our prediction contains two vectors β and w, it is
natural to measure the error of each vector separately. Re-
call that K = O

(
m
ε log m

ε

)
is the number satisfying the

requirements of both Lemma 2.3 and Theorem 2.4. Let
β∗, w∗ ∈ powersM1+ε,K be the perfect β,w satisfying the
statement in Lemma 2.3.

There are two issues to address. First, how do we measure
the error of a dual (weight) vector? For convenience we
focus on the weight vector part. We could simply define the
error of a prediction w as the multiplicative difference be-
tween w and w∗, which is maxi∈M

wi
w∗i

maxi∈M
w∗i
wi

. This
is indeed the metric used by Lattanzi et al. (2020). However
the metric has a drawback: If there are two very different
vectors which both satisfy the statement of Theorem 2.4,
then one of them will have large error, depending on which
vector we choose as w∗. The issue becomes more severe in
our case as the coordinates in w are in powers1+ε,K , which
has an exponential multiplicative gap between the maximum
and minimum number.

We believe a more natural metric to use is the quality of
the vector w, since this directly determines how good w
is. Moreover, the definition does not depend on the choice
of the truth vector w∗. Moreover it is consistent with the
goals of many machine learning tasks. For example, in
PAC learning, we measure the quality of a hypothesis by
the fraction of errors it produces, rather than the difference
between its parameters and the true ones.

With this guildline, we define ρ-good dual vectors and η-
good weight vectors as follows:

Definition C.1. Assume we are given an unrelated machine
load balancing instance. We say a vector β ∈ powers(1 +
ε,K)M is a ρ-good dual vector for some ρ ≥ 1, if there
exists an optimum solution x ∈ [0, 1]E to (P-LP) such that
xi,j > 0 implies pi,jβi ≤ ρmini′∈Mj pi′,jβj .

Thus, Theorem 2.4 says there is a (1 + ε)-good dual vector
β.

Similarly, we define what is a η-good weight vector:

Definition C.2. Given a load-balancing instance in the
Q|restricted setting, we say a vector w ∈ powersM1+ε,K

is an η-good weight vector for some η ≥ 1, if x(w) is an
η-approximate solution to (P-LP).

So, Lemma 2.3 guarantees the existence of a (1 + ε)3-good
weight vector w.

We remark that an η-good weight vector may not be η-
multiplicative factor distance away from any 1-good weight
vector. For example consider the identical machine case
where all jobs can be assigned to all machines. Then the

uniform vector w∗ = (1, 1 · · · , 1) is 1-good. The vector
w with

(
1− 1

η

)
m coordinates being 1, and the other m

η

coordinates being (1 + ε)K is η-good. But the vector w is
exponentially far away from w∗ in terms of the multiplica-
tive distance. As a result, the O(log η) dependence in the
result in Lattanzi et al. does not hold for our new metric.
Instead, we only obtain a dependence of O(η).

The second issue comes from the two-step nature of our
prediction. The instance in the Q|restricted setting we
obtained from the reduction depends on T and the β vector
in the prediction. So, the definition of the goodness of the
weight vector w should be w.r.t this instance, instead of the
instance when we have β = β∗.

With the two issues addressed, we can now argue about the
dependence of the competitive ratio on the error parameters.
Let I be the given load balancing instance in the unrelated
machine setting and the prediction we have is (β,w). Then,
we assume the dual vector β ∈ powersM1+ε,K is ρ-good w.r.t
I for some ρ ≥ 1. We define the instance I ′ in Q|restricted
setting as before, but using ρ to replace 1 + ε. Let αj =
mini∈Mj

pi,jβi for every j ∈ J . Let M ′j = {i ∈ Mj :
pi,jβi ≤ ραj}. We set p′j = αj for every j ∈ J , and

s′i = βi for every i ∈ M . We set p′i,j =
p′j
s′i

=
αj
βi

if
i ∈ M ′j , and p′i,j =∞ otherwise. The instance I ′ defined
by (p′i,j)i∈M,j∈J is clearly an instance in the Q|restricted
setting.

The optimum value of (P-LP) w.r.t I is at most T ∗. By the
ρ-goodness of β, there is a solution x to (P-LP) of value at
most T ∗ w.r.t I so that xi,j > 0 for some i ∈ Mj implies

αj ≤ pi,jβi ≤ ραj , which is p′i,j =
αj
βi
∈
[
pi,j
ρ , pi,j

]
.

Therefore,

(i) The value of x to (P-LP) w.r.t I ′ is at most T ∗ (when
restricted to the allowed pairs (i, j) in I ′).

(ii) Any solution to (P-LP) w.r.t I ′ of value at most T ′

is has value at most ρT ′ w.r.t I (after we extend the
domain to E).

Now we assume the weight vector w ∈ powersM1+ε,K given
in the prediction is η-good w.r.t I ′, for some η ≥ 1. Given
this w, the fractional solution x(w) (defined w.r.t I ′) has
value at most ηT ∗. Thus, x(w) has value at most ρηT ∗ to
(P-LP) w.r.t I. Also, by Assumption 3, all the pairs (i, j) ∈
E has pi,j ≤ T ∗. So we have mspnI(x(w)) ≤ ρηT ∗, where
the subscript I indicates the instance we are considering
is the original instance I. Then our online algorithm in
Section 4 can construct an assignment with makespan at
most O

(
ρη log logm
log log logm

)
· T ∗ with high probability.

We remark that the algorithms can guarantee the worst case
competitive ratio of O(logm): Once the makespan of our
schedule is about to exceed (logm)T ∗, we simply switch

Online Unrelated Machine Load Balancing with Predictions Revisited

to the O(logm)-competitive online algorithm that does not
use the prediction.

We need to know the values of ρ to define the instance I ′
(we do not need to know the value of η). The assumption can
be removed if we can query an oracle about a weight vector
in an adaptive way. We only give a high-level sketch on how
we can do this. Initially, we ask the oracle to give a dual-
vector β, whose goodness w.r.t I is not known. We break
the algorithm into phases, where each phase corresponds
to a guessed goodness parameter ρ of the vector β, where
initially we have ρ = 1 + ε. At the beginning of a phase, we
define I ′ as above by assuming β is ρ-good w.r.t I . Then we
ask the oracle to give a weight vector w for this instance I ′.
Within each phase, we run the online algorithm as described
above. Once we find that the current β is not ρ-good w.r.t
instance I (this can be checked efficiently), we double ρ
and start a new phase. Suppose the β at the beginning is
ρ-good, and all weight vectors w returned by the oracle are
always η-good, then it is not hard to show that the algorithm
is O(ρη log logm

log log logm)-competitive.

D. Learnability of Prediction
In this section, we first describe the model introduced by
Lavastida et al. (2020) on the learnability of a prediction.
Then we show that under the model our prediction (β,w)
can be learned.

For the sake of convenience, we define pj := (pi,j)i∈M and
P ∈ (0,∞]M×J to denote the matrix (pi,j)i∈M,j∈J . Then
the whole instance is completely defined by P. There is a
distribution Dj of pj’s, for every j ∈ J . Let D =

∏
j∈J Dj

be the product distribution of all Dj’s. We assume the
instance P we need to solve is selected randomly from
D; that is, for each j ∈ J , pj is chosen randomly and
independently from Dj . For notational convenience, we
assume the distribution D is discrete.

Let T (P) be the optimum fractional makespan for the in-
stance P. That is T (P) is the smallest mspnP(x) over
all fractional assignment x, where mspnP(x) is mspn(x)
when the underlying instance is P. Let T := EP∼D T (P)
be the average of T (P) over all instances from D. As in
Lavastida et al., we make the following mild assumption:

Assumption 4. For every i ∈M, j ∈ J , for every pj in the
support of Dj , we have pi,j ≤ T

γ or pi,j =∞, for some big

enough γ = Θ(logm
ε2).

Since the fractional assignment x(β,w) depends on the in-
stance P, we shall use x(P,β,w) to denote the x(β,w) when
the instance is P.

The main theorem regarding the learnability of the pair
(β,w) is the following:

Theorem D.1. There is a learning algorithm that sam-
ples O

(
m

logm log m
ε

)
independent instances from D, and

outputs two vectors β,w ∈ powers(1 + ε,K) for some
K = Θ

(
m
ε log m

ε

)
such that the following event happens

with probability at least 1 − 1
Km . x(P,β,w) has makespan

at most (1 + O(ε))T with high probability over instances
P ∼ D.

Throughout the section, we let K = Θ
(
m
ε log m

ε

)
be large

enough. The analysis contains two parts. First, we show that
there is a good pair (β∗, w∗), by considering the “average
instance” of the distribution. Second, there is a learning
algorithm that outputs an approximately optimum (β,w)
with poly(m, 1

ε) number of samples. The analysis is similar
to that of PAC learning, where we use concentration and
union bounds to show that w.h.p, for every potential pair
(β,w), the quality of a pair (β,w) over a random instance,
is approximately preserved by its quality over the sampled
instances.

As we argued, the value x(P,β,w)
i,j only depends on pj , β and

w. That is, it is independent of pj′ ’s for any other job j′. For
an instance P = (pj)j∈J , β,w ∈ powersM1+ε,K , we define

FP(β,w, i) :=
∑
j∈J x

(P,β,w)
i,j pi,j to be the fractional load

of machine i in the solution x(P,β,w), where we assume
0×∞ = 0. Let FP(β,w) := maxi∈M FP(β,w, i) be the
value of the solution to (P-LP).

In order to show the existence of a good pair (β∗, w∗), we
shall consider a combination of all instances in the distribu-
tion D. We make the following definition.

Definition D.2. For L processing time matrices
P(1),P(2), · · · ,P(L), we define P(1) ⊕P(2) ⊕ · · · ⊕P(L)

to be the following instance defined by the nL jobs. For
every ` ∈ [L] and j ∈ J , we have a the job j(`) with
processing times defined by p

(`)
j , the column of the matrix

of P(`) correspondent to j.

So, the instance P(1) ⊕ P(2) ⊕ · · · ⊕ P(L) is defined by
the (m× Ln)-size matrix obtained by concatenating the L
matrices of size m× n.

The following observation is immediate, since we can take
the concatenation of L optimum fractional solutions for the
L instances:

Observation D.3. T (P(1) ⊕ P(2) ⊕ · · · ⊕ P(L)) ≤
T (P(1)) + T (P(2)) + · · ·+ T (P(L)).

Now with the observation, we can prove the following
lemma, by considering the combination of all instances
in D, scaled by their respective probabilities.

Lemma D.4. There exist β∗, w∗ ∈ powers(1 + ε,K)M ,

Online Unrelated Machine Load Balancing with Predictions Revisited

such that for every i ∈M , we have

E
P∼D

FP(β∗, w∗, i) ≤ (1 + ε)4T.

Proof. Consider the instance P :=
⊕

P∈D PrD[P] · P,
where PrD[P] is the probability mass of P in D, and
PrD[P] · P is the matrix P multiplied by PrD[P]. So,
the instance is obtained by concatenating all instances in the
distribution D, scaled by their respective probability masses.

Applying Observation D.3, we have

T
(
P
)
≤
∑

P

Pr
D

[P] · T (P) = E
P∼D

[T (P)] = T.

We can then apply Corollary 2.5 to the combined instance
to show that there exists some β∗, w∗ such that for every
i ∈M , we have

∑

j

x
(P,β∗,w∗)
i,j pi,j ≤ (1 + ε)4T (P) = (1 + ε)4T,

where j is over all jobs in P. Notice that x(P,β∗,w∗)
i,j for a job

j only depends on the processing time vector for the job j,
which is included in the instance P ∈ D that j belongs to.
Therefore, the left side of the above inequality is exactly
∑

P

∑

j∈J
x

(P,β∗,w∗)
i,j Pr

D
[P]pi,j = E

P∼D

∑

j∈J
x

(P,β∗,w∗)
i,j pi,j

= E
P∼D

FP(β∗, w∗, i).

This finishes the proof of the lemma.

Since we need to apply Chernoff bound multiple times, it is
convenient to introduce the following notation:

Definition D.5. For any real numbers A,B, ε, C ≥ 0, we
use A ≈ε,C B to denote |A−B| ≤ ε ·max{B,C}.
Lemma D.6. For any β,w ∈ powersM1+ε,K , with high prob-
ability over P ∼ D, we have

∀i ∈M : FP(β,w, i) ≈ε,T E
P∼D

FP(β,w, i).

Proof. FP(β,w, i) is the sum of n independent random
numbers taking values in [0, Tγ], one for each j ∈ J . Notice

that γ = Θ(logm
ε2) is sufficiently large. We apply Cher-

noff bound (Theorem E.1) over the summation correspon-
dent to γ

T FP(β,w, i). Let µ := EP∼D
[
γ
T FP(β,w, i)

]
,

U = max{µ, γ} and δ = ε. Then applying the bound

gives us that with probability at most 2e−
δ2U
3 ≤ 2e−

ε2γ
3 ≤

2e−Θ(logm), we have γ
T FP(β,w, i)−µ ∈ [−δU, δU]. This

is equivalent to

γ

T
FP(β,w, i) ≈ε,γ µ.

Scaling by T
γ , the formula becomes

FP(β,w, i) ≈ε,T E
P∼D

FP(β,w, i).

The lemma holds from that γ is big enough and the union
bound over all i ∈M .

Now we can describe the learning algorithm. We sam-
ple H = O

(
m

logm log m
ε

)
instances P1,P2, · · · ,PH in-

dependently and randomly from D, where H is large
enough. We output the (β,w) with the smallest
maxi∈M 1

H

∑H
h=1 FPh(β,w, i).

Lemma D.7. With probability at least 1 − 1
Km , the fol-

lowing event happens. For every pair β,w ∈ powers(1 +
ε,K)M and i ∈M , we have

1

H

H∑

h=1

FPh(β,w, i) ≈ε,T E
P∼D

FP(β,w, i).

Proof. The term γ
T

∑H
h=1 FPh(β,w, i) is the sum of nH

independent random variables in the range [0, 1]. Its ex-
pectation is µ := Hγ

T EP∼D FP(β,w, i). We then apply
Chernoff bound the sum with U = max{µ,Hγ} and δ = ε.

With probability at moat 2e−
ε2U
3 ≤ 2e−

ε2Hγ
3 , we have

γ

T

H∑

h=1

FPh(β,w, i) ≈ε,Hγ µ.

Scaling by a factor of T
Hγ , the above formula becomes

1

H

H∑

h=1

FPh(β,w, i) ≈ε,T E
P∼D

FP(β,w, i).

To make the probability to be at most 1
m(K+1)3m , it suf-

fices to set H = O(m logK)
γε2 = O

(
m

logm log m
ε

)
. Applying

union bound over all β,w ∈ powersM1+ε,K and i ∈ M
finishes the proof.

Now assume the event in Lemma D.7 happens. Then by
Lemma D.4, we have maxi∈M 1

H

∑H
h=1 FPh(β∗, w∗, i) ≤

(1 + ε)5T . Then the algorithm will output a pair (β,w)

satisfying maxi∈M 1
H

∑H
h=1 FPh(β,w, i) ≤ (1 + ε)5T .

Therefore, we have for every i ∈M , EP∼D FP(β,w, i) ≤
(1+ε)5

1−ε T = (1 +O(ε))T .

Then we apply Lemma D.6 to this (β,w). We have that
with high probability over P ∼ D, for every i ∈ M , the
following holds:

FP(β,w, i) ≤ E
P∼D

FP(β,w, i)

+ εmax{T, E
P∼D

FP(β,w, i)}

≤ (1 +O(ε))T.

Online Unrelated Machine Load Balancing with Predictions Revisited

That is precisely FP(β,w) ≤ (1 + O(ε))T . This finishes
the proof of Theorem D.1.

E. Concentration Bounds
Theorem E.1 (Variant of Chernoff Bound). Let
X1, X2, · · · , Xn be independent random variables
taking values in [0, 1]. Let X =

∑n
i=1Xi, µ = E[X] and

U ≥ µ. For every δ > 0, we have

Pr [X > (1 + δ)U] ≤ Pr [X > µ+ δU]

<

(
eδ

(1 + δ)1+δ

)U
≤ e− δ

2U
2+δ ,

and

Pr [X < µ− δU] < e−
δ2U
2 .

