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The Supplementary materials contain the proofs of Theo-
rems 4.1–4.5 and some additional simulation experiments.

1. Proof of Theorem 4.1 and Theorem 4.2
Let X = ZΣ1/2. According to the Bai-Yin theorem (Bai
& Yin, 2008), the smallest eigenvalue of ZTZ/n is almost
surely larger than (1−

√
c)2/2 for sufficiently large n. Thus

λmin(
1

n
XTX) ≥ c0λmin(

1

n
ZTZ) ≥ c0

2
(1−

√
c)2,

which implies that the matrix XTX/n is almost surely in-
vertible for large n. By Section 3.2,

BX(β̂,β) = BX,β(β̂,β) = 0

VX(β̂,β) = VX,β(β̂,β).

The first equality holds since Π = 0. Thus the asymptotic
of RX(β̂,β) is same to that of RX,β(β̂,β). For simplicity,
we focus on RX(β̂,β) in the following. Notice that

VX(β̂,β) =
σ2

n
Tr(Σ̂−1Σ)

=
σ2

n
Tr
(
Σ−1/2

(ZTZ

n

)−1
Σ−1/2Σ

)
=

σ2

n

p∑
i=1

1

si
=
σ2p

n

ˆ
1

s
dFZ(s)

where si’s are eigenvalues of ZTZ/n. FZ is the spectral
measure of ZTZ/n. According to the convergence of em-
pirical spectral distributions of sample covariance matri-
ces FZ established in Yin (1986), as n, p → ∞ such that
p/n = cn → c ∈ (0,∞), FZ(x) weakly converges to the
standard Marcenko-Pastur law Fc(x) and

VX(β̂,β)→ σ2c

ˆ
1

s
dFc(s) = σ2 c

1− c
.
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Here the standard Marcenko-Pastur law Fc(x) has a density
function

pc(x) =

{
1

2πcx

√
(b− x)(x− a), if a ≤ x ≤ b,

0, o.w.,

where a = (1−
√
c)2, b = (1 +

√
c)2 and pc(x) has a point

mass 1− 1
c at the origin if c > 1. Hence

RX(β̂,β)− σ2 cn
1− cn

=
σ2p

n

ˆ
1

s
dFZ(s)− σ2cn

ˆ
1

s
dFcn(s)

= σ2cn

ˆ
1

s

(
dFZ(s)− dFcn(s)

)
.

According to Theorem 1.1 of Bai & Silverstein (2004),

p
(
RX(β̂,β)− σ2 cn

1− cn

)
d−→ N(µc, σ

2
c ), (1)

where

µc = −σ
2c

2πi

˛
C

1

z

cm(z)3(1 +m(z))−3

{1− cm(z)2(1 +m(z))−2}2
dz (2)

−σ
2c(ν4 − 3)

2πi

˛
C

1

z

cm(z)3(1 +m(z))−3

1− cm(z)2(1 +m(z))−2
dz,

σ2
c = −σ

4c2

2π2

˛
C1

˛
C2

1

z1z2

1

(m(z1)−m(z2))2
(3)

× d

dz1
m(z1)

d

dz2
m(z2)dz1dz2

−σ
4c3(ν4 − 3)

4π2

˛
C1

˛
C2

1

z1z2

1

(1 +m(z1))2

× 1

(1 +m(z2))2
dm(z1)dm(z2).

Here the contours in (2) and (3) are closed and taken in
the positive direction in the complex plane, enclosing the
support of F c,H . The Stieltjes transform m(z) satisfies the
equation

z = − 1

m
+

c

1 +m
.

To further simplify the integrations in µc and σc, let z =
1 +
√
c(rξ + 1

rξ ) + c and perform change of variables, then
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we have

m(z) = − 1

1 +
√
crξ

,

dz =
√
c(r − 1

rξ2
)dξ,

dm =

√
cr

(1 +
√
crξ)2

dξ

and when ξ moves along the unit circle |ξ| = 1 on the
complex plane, z will orbit around the center point 1 + c
along an ellipse which enclosing the support of F c,H . Thus

µc = −σ
2c

2πi

˛
|ξ|=1

cm3(1 +m)

z {(1 +m)2 − cm2}2

×
√
c(r − 1

rξ2
)dξ

=
σ2c

2πi

˛
|ξ|=1

1

r(
√
c+ rξ)(1 +

√
crξ)

× 1

(ξ − 1
r )(ξ + 1

r )
dξ

+
σ2c(ν4 − 3)

2πi

˛
|ξ|=1

1

rξ2(
√
c+ rξ)

× 1

(1 +
√
crξ)

dξ

=
σ2c2

(c− 1)2
+
σ2c2(ν4 − 3)

1− c
.

As for σ2
c , note that

1

2πi

˛
C1

1

z1(m1 −m2)2
dm1

=
1

2πi

˛
|ξ1|=1

1

1 +
√
c(r1ξ1 + 1

r1ξ1
) + c

×
√
c r1

(m2 + 1
1+
√
cr1ξ1

)2(1 +
√
cr1ξ1)2

dξ1

=
1

2πi

˛
|ξ1|=1

√
c r1ξ1

(ξ1 +
√
c

r1
)(r1ξ1

√
c+ 1)

× 1

((r1ξ1
√
c+ 1)m2 + 1)

2 dξ1

=
c

(c− 1) ((c− 1)m2 − 1)
2 ,

therefore

−σ
4c2

2π2

‹
1

z1z2(m1 −m2)2
dm1dm2

=
2σ4c2

2πi

˛
|ξ2|=1

c

z2(c− 1) {(c− 1)m2 − 1}2
dm2

=
2σ4c2

2πi

˛
|ξ2|=1

√
c r22ξ2

(c− 1)(1 +
√
c r2ξ2)(

√
c+ r2ξ2)3

dξ2

=
2c3σ4

(c− 1)4
.

Meanwhile,

1

2πi

˛
C1

1

z1

1

(1 +m(z1))2
dm(z1)

=
1

2πi

˛
|ξ|=1

1√
cξ(1 +

√
crξ)(

√
c+ rξ)

dξ

=
1

c− 1
,

hence

−σ
4c3(ν4 − 3)

4π2

( ˛
C1

1

z1

1

(1 +m(z1))2
dm(z1)

)2
= σ4c3(ν4 − 3)× 1

(1− c)2
.

Then we have,

σ2
c =

2c3σ4

(c− 1)4
+
σ4c3(ν4 − 3)

(1− c)2
.

Let

Tn =
p

σc

(
RX(β̂,β)− σ2 cn

1− cn
− µc

p

)
.

According to (1), we have

P (Lα,c ≤ RX,β(β̂,β) ≤ Uα,c)
= P (−Zα/2 ≤ Tn ≤ Zα/2)

→ 1− α,

where

Lα,c = σ2 cn
1− cn

+
1

p
(µc − Zα/2σc),

Uα,c = σ2 cn
1− cn

+
1

p
(µc + Zα/2σc).

�

2. Proof of Theorem 4.3
Notice that

BX(β̂,β) = βT(Ip − Σ̂+Σ̂)β

= lim
z→0+

βT
(
Ip − (Σ̂ + zIp)

−1Σ̂
)
β

= lim
z→0+

zβT(Σ̂ + zIp)
−1β.
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Since β is a constant vector, we can make use of the re-
sults in Theorem 3 in Bai et al. (2007) and Theorem 1.3 in
Pan & Zhou (2008) regarding eigenvectors. Their works
investigate the sample covariance matrix

Ap = T 1/2
p XT

pXpT
1/2
p /n,

where Tp is an p× p nonnegative definite Hermitian matrix
with a square root T 1/2

p and Xp is an n×p matrix with i.i.d.
entries (xij)n×p. Let UpΛpU

T
p denote the spectral decom-

position of Ap where Λp = diag(λ1, · · · , λp) and Up is a
unitary matrix consisting of the orthonormal eigenvectors of
Ap. Assume that xp is an arbitrary nonrandom unit vector
and y = (y1, y2, · · · , yp)T = UT

p xp, two empirical distri-
bution functions based on eigenvectors and eigenvalues are
defined as

F
Ap

1 (x) =

p∑
i=1

|yi|21(λi ≤ x),

FAp(x) =
1

p

p∑
i=1

1(λi ≤ x).

Then for a bounded continuous function g(x), we have

p∑
j=1

|yj |2g(λj)−
1

p

p∑
j=1

g(λj)

=

ˆ
g(x)dF

Ap

1 (x)−
ˆ
g(x)dFAp(x).

The results in Bai et al. (2007) and Pan & Zhou (2008) are
summarized in the following lemma.

Lemma 2.1. (Theorem 3 (Bai et al., 2007) and Theorem
1.3 (Pan & Zhou, 2008)) Suppose that

(1) xij’s are i.i.d. satisfying E(xij) = 0, E(|xij |2) = 1
and E(|xij |4) <∞;

(2) xp ∈ Cp, ‖xp‖ = 1, limn,p→∞ p/n = c ∈ (0,∞);

(3) Tp is nonrandom Hermitian non-negative definite with
with its spectral norm bounded in p, with Hp =

FTp
d−→ H a proper distribution function and xT

p (Tp−
zIp)

−1xp → mFH (z), where mFH (z) denotes the
Stieltjes transform of H(t);

(4) g1, · · · , gk are analytic functions on an open region of
the complex plain which contains the real interval[

lim inf
p

λmin(Tp)1(0,1)(c)(1−
√
c)2,

lim sup
p

λmax(Tp)1(0,1)(c)(1 +
√
c)2
]
;

(5) as n, p→∞,

sup
z

√
n
∥∥∥xT

p

(
mF cn,Hp (z)Tp − Ip

)−1
xp

−
ˆ

1

1 + tmF cn,Hp (z)
dHn(t)

∥∥∥→ 0.

Define Gp(x) =
√
n(F

Ap

1 (x)−FAp(x)), then the random
vectors (ˆ

g1(x)dGp(x), · · · ,
ˆ
gk(x)dGp(x)

)
forms a tight sequence and converges weakly to a Gaussian
vector xg1 , · · · , xgk with mean zero and covariance function

Cov(xg1 , xg2) = − 1

2π2

ˆ
C1

ˆ
C2
g1(z1)g2(z2)

× (z2m2 − z1m1)2

c2z1z2(z2 − z1)(m2 −m1)
dz1dz2.

The contours C1, C2 are disjoint, both contained in the ana-
lytic region for the functions (g1, · · · , gk) and enclose the
support of F cn,Hp for all large p.

(6) If H(x) satisfies
ˆ

dH(t)

(1 + tm(z1))(1 + tm(z2))

=

ˆ
dH(t)

1 + tm(z1)

ˆ
dH(t)

1 + tm(z2)
,

then the covariance function can be further simplified to

Cov(xg1 , xg2)

=
2

c

(ˆ
g1(x)g2(x)dF c,H(x)

−
ˆ
g1(x)dF c,H(x)

ˆ
g2(x)dF c,H(x)

)
.

Recall that BX(β̂,β) = limz→0+ zβ
T(Σ̂ + zIp)

−1β. Let
g(x) = 1/(x+ z) and xp = β/r. Then we have

ˆ
g(x)dGn(x)

=
√
n
( 1

r2
βT(Σ̂ + zIp)

−1β −
ˆ
g(x)dFcn(x)

)
,

where Fcn(x) is the standard Marcenko-Pastur law with
parameter cn. It is not difficult to check that under As-
sumptions (A1), (B1) and (C1), all the conditions (1)-(6) in
Lemma 2.1 are satisfied.

To proceed further, denote a = (1−
√
c)2, b = (1 +

√
c)2.

If c is replaced by cn, a and b are denoted by an and bn
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respectively. By some algebraic calculations, we have

ˆ
g(x)dFcn(x)

= (1− 1

cn
) · 1

z

+

ˆ bn

an

1

x+ z
· 1

2πcnx

√
(bn − x)(x− an)dx

= (1− 1

cn
) · 1

z

−
−1 + cn + z −

√
c2n + 2cn(z − 1) + (1 + z)2

2cnz
,

and

Var(xg)

=
2

c

(ˆ
{g(x)}2dFc(x)−

{ ˆ
g(x)dFc(x)

}2)
=

2

c

{
(1− 1

c
) · 1

z2

+

ˆ b

a

1

(x+ z)2
· 1

2πcx

√
(b− x)(x− a)dx

}
−2

c

{
(1− 1

c
) · 1

z

+

ˆ b

a

1

x+ z
· 1

2πcx

√
(b− x)(x− a)dx

}2

.

Therefore,

lim
z→0+

z

ˆ
g(x)dFcn(x) = 1− 1

cn
,

lim
z→0+

z2Var(xg) =
2(c− 1)

c3
.

Furthermore, as n, p→∞, p/n = cn → c > 1,

√
n
(
BX(β̂,β)− (1− 1

cn
)r2
)

d−→ N
(

0,
2(c− 1)

c3
r4
)
.

This can be rewritten as

√
p
(
BX(β̂,β)− (1− 1

cn
)r2
)

d−→ N
(

0,
2(c− 1)

c2
r4
)
.

Next we deal with the variance term VX(β̂,β). According
to the Assumption (B1), the variance term is

VX(β̂,β) =
σ2

n
Tr{Σ̂+} =

σ2

n

n∑
i=1

1

si
,

where si, i = 1, . . . , n are the nonzero eigenvalues of
XTX/n. Let {ti, i = 1, . . . n} denote the non-zero eigen-

values of XXT/p, then we have

VX(β̂,β) =
σ2

p

n∑
i=1

1

ti

=
σ2n

p

ˆ
1

t
dFXXT/p(t)

→ σ2

c− 1
.

By interchanging the role of p and n, from the result in
Theorem 4.1, as n, p → ∞, p/n = cn → c > 1, we have
that the term

n∑
i=1

1

ti
− n

1− c′n
weakly converges to a normal distribution:

N
( c′

(c′ − 1)2
+
c′(ν4 − 3)

1− c′
,

2c′

(c′ − 1)4
+
c′(ν4 − 3)

(1− c′)2
)
,

where c′n = n/p = 1/cn, c′ = 1/c. This result can be
rewritten as

n∑
i=1

1

ti
− p

cn − 1

d−→ N
( c

(1− c)2
+

(ν4 − 3)

c− 1
,

2c3

(1− c)4
+
c(ν4 − 3)

(c− 1)2

)
.

Hence the CLT of VX(β̂,β) is given by

p
(
VX(β̂,β)− σ2

cn − 1

)
d−→ N

( cσ2

(1− c)2
+
σ2(ν4 − 3)

c− 1
,

2c3σ4

(1− c)4
+
cσ4(ν4 − 3)

(c− 1)2

)
.

Notice that Cov
(
BX(β̂,β), VX(β̂,β)

)
= 0. Accord-

ing to the consistency rate and the limiting distribution of
BX(β̂,β) and VX(β̂,β), we know that the bias BX(β̂,β)

is the leading term of RX(β̂,β). This implies that

√
p
{
RX(β̂,β)−(1− 1

cn
)‖β‖22−

σ2

cn − 1

}
d−→ N

(
0, σ2

c,1

)
,

where σ2
c,1 = 2(c−1)r4/c2. A practical version of this CLT

is given by

√
p
{
RX(β̂,β)−(1− 1

cn
)‖β‖22−

σ2

cn − 1

}
d−→ N

(
µ̃c,1, σ̃

2
c,1

)
,

where

µ̃c,1 =
1
√
p

{ cσ2

(1− c)2
+
σ2(ν4 − 3)

c− 1

}
,

σ̃2
c,1 =

2(c− 1)

c2
r4 +

1

p

{ 2c3σ4

(1− c)4
+
cσ4(ν4 − 3)

(c− 1)2

}
.
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3. Proof of Theorem 4.4
First we consider the bias term BX(β̂,β). By Assumption
(A1), (B1), and (C2),

BX(β̂,β) = E[βTΠΣΠβ|X] = E[βTΠβ|X]

= Tr
{

(Ip − Σ̂+Σ̂)E(ββT|X)
}

=
r2

p
Tr{Ip − Σ̂+Σ̂} = r2(1− n/p).

Alternatively, we can rewrite the bias as

BX(β̂,β) = lim
z→0+

E[βT(Ip − (Σ̂ + zIp)
−1Σ̂

)
β|X]

= lim
z→0+

E[zβT(Σ̂ + zIp)
−1β|X]

= lim
z→0+

z
r2

p
Tr(Σ̂ + zIp)

−1.

Define that fn(z) = z r
2

p Tr(Σ̂ + zIp)
−1. Notice that

|fn(z)| and |f ′n(z)| are bounded above. By the Arzela-
Ascoli theorem, we deduce that fn(z) converges uniformly
to its limit. Under Assumption (C2), by the Moore-Osgood
theorem, almost surely,

lim
n,p→∞

BX(β̂,β)

= lim
z→0+

lim
n,p→∞

z
r2

p
Tr(Σ̂ + zIp)

−1

= lim
z→0+

lim
n,p→∞

z
r2

p
Tr

(
1

n
XXT + zIn

)−1
,

In fact,

lim
n,p→∞

BX(β̂,β) = r2 lim
z→0+

lim
n,p→∞

zmn(−z),

where mn(z) is the Stieltjes transform of empirical spec-
tral distribution of Σ̂ = XTX/n. According to Theorem
2.1 in (Zheng et al., 2015) and Lemma 1.1 in (Bai & Sil-
verstein, 2004), the truncated version of p(mn(z)−m(z))
converges weakly to a two-dimensional Gaussian process
M(·) satisfying

E[M(z)] =
cm3(1 +m)

{(1 +m)2 − cm2}2

+
c(ν4 − 3)m3

(1 +m) {(1 +m)2 − cm2}
,

and

Cov
(
M(z1),M(z2)

)
= 2

{ m′(z1)m′(z2)

(m(z1)−m(z2))2
− 1

(z1 − z2)2

}
+

c(ν4 − 3)m′(z1)m′(z2)

(1 +m(z1))2(1 +m(z2))2
,

where m = m(z) represents the Stieltjes transform of lim-
iting spectral distribution of companion matrix XXT/n
satisfying the equation

z = − 1

m
+

c

1 +m
, m(z) = −1− c

z
+ cm(z).

When p > n, we can actually solve m(z) equation and
obtain that

m(z) =
−1 + c− z +

√
−4z + (1− c+ z)2

2z
,

m(z) =
1− c− z +

√
−4z + (1− c+ z)2

2cz
.

Therefore, by some algebraic calculations, we have

lim
n,p→∞

BX(β̂,β)

= lim
n,p→∞

r2 lim
z→0+

zmn(−z)

= r2 lim
z→0+

{
zm(−z) + z(1− 1

c
)
1

z

}
= lim

n,p→∞
r2 lim

z→0+
z
n

p
mn(z)

= r2
1

c
lim
z→0+

zm(−z)

= r2(1− 1

c
).

Moreover,

Var
(
M(z)

)
= lim

z1→z2=z
Cov

(
M(z1),M(z2)

)
=

2m′(z)m′′′(z)− 3(m′′(z))2

6(m′(z))2

+
c(ν4 − 3)(m′(z))2

(1 +m(z))4
.

By substituting of the explicit form of m(z), we can easily
derive that

lim
z→0+

zE[M(−z)] = 0, lim
z→0+

z2Var(M(−z)) = 0,

which means that the second-order limit of BX(β̂,β) is
still r2(1 − 1/c). All in all, BX(β̂,β) is identical with a
constant r2(1− 1/c) in distribution.

On the other hand, by Assumption (B1),

VX(β̂,β) =
σ2

n
Tr{Σ̂+} =

σ2

n

n∑
i=1

1

si
,

where si, i = 1, . . . , n are the nonzero eigenvalues of
XTX/n. Similar to the proof of Theorem 4.3, the CLT
of VX(β̂,β) is given by

p
(
VX(β̂,β)− σ2

cn − 1

)
d−→ N

( cσ2

(1− c)2
+
σ2(ν4 − 3)

c− 1
,

2c3σ4

(1− c)4
+
cσ4(ν4 − 3)

(c− 1)2

)
.
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Combining the results of BX(β̂,β) and VX(β̂,β), we have

p
{
RX(β̂,β)− r2(1− 1

cn
)− σ2

cn − 1

}
d−→ N(µc,2, σ

2
c,2),

where

µc,2 =
cσ2

(1− c)2
+
σ2(ν4 − 3)

c− 1
,

σ2
c,2 =

2c3σ4

(1− c)4
+
cσ4(ν4 − 3)

(c− 1)2
.

4. Proof of Theorem 4.5
Note that under Assumption (B1) and (C2), BX,β(β̂,β) =

βTΠβ = βT(Ip − Σ̂+Σ̂)β. If we directly consider
βT(Ip − Σ̂+Σ̂)β, we can make use of the asymptotic re-
sults for quadratic forms, see Theorem 7.2 in Bai & Yao
(2008), which is stated as follows.

Lemma 4.1. (Theorem 7.2 in Bai & Yao (2008)) Let
{An = [aij(n)]} be a sequence of n×n real symmetric ma-
trices, {xi}i∈N be a sequence of i.i.d. K dimensional real
random vectors, with E(xi) = 0, E(xix

T
i ) = (γij)K×K

and E[‖xi‖4] <∞. Denote

xi = (x`i)K×1, X(`) = (x`1, · · · , x`n)T,

` = 1, · · · ,K, i = 1, · · · , n,

assume the following limits exist

ω = lim
n→∞

1

n

n∑
i=1

a2ii(n), θ = lim
n→∞

1

n
TrA2

n.

Define a K-dimensional random vectors,

zn = (zn,`)K×1,

where, for 1 ≤ ` ≤ K,

zn,` =
1√
n

(
X(`)TAnX(`)− γ`` Tr{An}

)
.

Then zn converges weakly to a zero-mean Gaussian vector
with covariance matrix D = D1 + D2, where for any
1 ≤ `, `′ ≤ K,

[D1]``′ = ω
(
E(x2`1x

2
`′1)− γ``γ`′`′

)
,

and
[D2]``′ = (θ − ω)(γ``′γ`′` + γ2``′)

According to the results in Lemma 4.1, let An = Π =
Ip − Σ̂+Σ̂, then we have, as p→∞,

√
p
{
βTΠβ − r2

p
Tr(Π)

}
d−→ N(0, d2 = d21 + d22),

where

ω = lim
p→∞

1

p

p∑
i=1

Π2
ii, θ = lim

p→∞

1

p
Tr(Π2) = 1− 1

c
,

and

d21 = ω
{
E(x2`1x

2
`1)− γ2``

}
= ω

(p2
r4

E(β4
i )− 1

)
r4,

d22 = (θ − ω)(γ2`` + γ2``) = 2(θ − ω)r4.

Since in the proof of Theorem 4.3, we have already shown
that

r2

p
Tr(Π) = r2(1− n

p
).

In particular, if β follows multivariate Gaussian distribution,
i.e. β ∼ Np(0, r

2

p Ip), then as p→∞,

√
p
{
BX,β(β̂,β)− r2(1− n

p
)
}

d−→ N
(

0, 2(1− 1

c
)r4
)
.

Moreover, VX,β(β̂,β) = VX(β̂,β), we have already
proved in Theorem 4.3 that

p(VX,β(β̂,β)− σ2

cn − 1
)

d−→ N
( cσ2

(1− c)2
+
σ2(ν4 − 3)

c− 1
,

2c3σ4

(1− c)4
+
cσ4(ν4 − 3)

(c− 1)2

)
.

Note that Cov(BX,β(β̂,β), VX,β(β̂,β)) = 0. Accord-
ing to the consistency rate of BX,β(β̂,β) and VX,β(β̂,β),
we know that the bias BX(β̂,β) is the leading term of
RX,β(β̂,β). This implies that

√
p
{
RX,β(β̂,β)− r2(1− 1

cn
)− σ2

cn − 1

}
d−→ N(0, σ2

c,3),

where σ2
c,3 = 2r4(1− 1/c). A practical version of this CLT

is given by

√
p
{
RX,β(β̂,β)−r2(1− 1

cn
)− σ2

cn − 1

}
d−→ N(µ̃c,3, σ̃

2
c,3),

where

µ̃c,3 =
1
√
p

{ cσ2

(1− c)2
+
σ2(ν4 − 3)

c− 1

}
,

σ̃2
c,3 = 2(1− 1

c
)r4 +

1

p

{ 2c3σ4

(1− c)4
+
cσ4(ν4 − 3)

(c− 1)2

}
.

5. More experiments
5.1. More results of Example 1

In this example, we consider the anisotropic case that the
covariance matrix Σ is not an identity matrix. We checks
Theorem 4.1 and define a statistic

Tn =
p

σc

(
RX(β̂,β)− σ2 cn

1− cn

)
− µc
σc
.
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According to Theorem 4.1, Tn weakly converges to the
standard normal distribution as n, p→∞. In this example,
we take c = 1/2 and p = 50, 100, 200. To make sure the
assumption (A) holds, the generative distribution Px is taken
to be the standard normal distribution, the centered gamma
with shape 4.0 and scale 0.5, and the normalized Student-t
distribution with 6.0 degree of freedom. The covariance
matrix Σ is taken to be

Σ = 0.7Ip + 0.31p1
T

p .

The finite-sample distribution of Tn is estimated by the
histogram of Tn under 1000 repetitions. The results are
presented in Figure 1. One can find that the finite-sample
distribution of Tn tends to the standard normal distribution
as n, p→ +∞. When α = 0.05, the empirical cover rates
of the 95%-confidence interval are reported in Figure 2.

Figure 1. The histogram of Tn. The solid line is the density of the
standard normal distribution.

Figure 2. The cover rate of the confidence interval as p creases.
The confidence level is 95%.

5.2. Example 3

This example checks Theorem 4.3. To proceed further, we
denote two statistics:

Tn,2 =

√
p

σc,1

{
RX(β̂,β)− (1− 1

cn
)r2 − σ2

cn − 1

}
− µc,1
σc,1

,

Tn,3 =

√
p

σ̃c,1

{
RX(β̂,β)− (1− 1

cn
)r2 − σ2

cn − 1

}
− µ̃c,1
σ̃c,1

.

According to the central limit theorem (8) and its practical
version, both Tn,2 and Tn,3 weakly converge to the standard
normal distribution as n, p→ +∞. We take c = 2 and p =
100, 200, 400. The finite-sample distributions of Tn,2 and
Tn,3 are estimated by the histogram of Tn,2 and Tn,3 under
1000 repetitions. The results are presented at Figure 3 and
Figure 4. One can see that the finite-sample distributions of
Tn,2 and Tn,3 are close to the standard normal distribution,
and the finite-sample performance of Tn,3 is better than that
of Tn,2. When α = 0.05, the empirical cover rates of the
95%-confidence interval (9) are reported in Figure 5.

Figure 3. The histogram of Tn,2. The solid line is the density of
the standard normal distribution.

5.3. An anisotropic example for Remark 4.2

In the over-parameterized case, the bias term BX(β̂,β) =

βTΠΣΠβ is non-zero while the variance term VX(β̂,β)
remains the same as under-parameterized case. Therefore in
this section, we conduct a small simulation to examine the
fluctuation of the bias BX for both isotropic and anisotropic
Σ in the over-parameterized case with non-random β satis-
fying Assumption (C1). In particular, in the following we
set r = 1.

We consider both localized and delocalized β such that

1. Localized case: β1 = (1, 0, · · · , 0);
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Figure 4. The histogram of Tn,3. The solid line is the density of
the standard normal distribution.

Figure 5. The coverage of confidence interval (9) as p increases.
The confidence level is 95%.

2. Delocalized case: β2 = 1√
p (1, · · · , 1);

and both the isotropic and anisotropic Σ

3. Identity case: Σ1 = Ip;

4. Compound symmetric case: Σ2 = 0.5Ip + 0.51p1
T
p .

Then we fix p/n = 2 and let p vary from 10 to 300, we
present in Figure 6 the empirical variance of

√
p ∗BX and

p ∗BX under various combinations of Σ and β with 1000
replications.

From the plot on the top left panel in Figure 6, we can see
that the variance of

√
p ∗ BX for both β1 and β2 remain

constant as p grows, which indicates that the convergence
rate of BX is 1/

√
p under the isotropic case regardless of

localized or delocalized β. As for the anisotropic case on
the top right corner, the variance of

√
p ∗BX stabilizes for

β1, while decays for β2, which indicates that convergence
rate of BX under (Σ2,β2) and (Σ2,β1) are different.

This simulation result further confirms our conjecture that
in the over-parameterized case, there is no universal CLT for

Figure 6. The upper panels are the empirical variances of
√
p∗BX,

the lower panels are for p ∗BX.

the prediction risk RX(β̂,β) under the anisotropic setting
for non-random β.
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