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Abstract
This paper quantifies the uncertainty of prediction
risk for the min-norm least squares estimator in
high-dimensional linear regression models. We
establish the asymptotic normality of prediction
risk when both the sample size and the number of
features tend to infinity. Based on the newly estab-
lished central limit theorems (CLTs), we derive
the confidence intervals of the prediction risk un-
der various scenarios. Our results demonstrate the
sample-wise non-monotonicity of the prediction
risk and confirm “more data hurt” phenomenon.
Furthermore, the width of confidence intervals in-
dicates that over-parameterization would enlarge
the randomness of prediction performance.

1. Introduction
One major surprise of deep learning models is their accurate
predictive performance while achieving zero training error
(Zhang et al., 2016). This observation contradicts with the
common wisdom of bias-variance trade-off when model
complexity increases (Van der Vaart, 2000; Friedman et al.,
2001). The theory of over-parameterization is a rapidly
growing area, which makes attempts to explain the empir-
ical success of large scale models in deep learning. Quite
a few papers are trying to understand over-parameterized
models from generalization perspective, e.g. Advani & Saxe
(2017); Belkin et al. (2018; 2019a;b); Geiger et al. (2019);
Spigler et al. (2019); Bartlett et al. (2020); Muthukumar
et al. (2020).

As model capacity increases, the generalization error first
decreases and then increases, and decreases again. Such a
phenomenon has been summarized in the “double descent”
curve, i.e. Fig 1B. in Belkin et al. (2019a). It subsumes the
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classical bias-variance trade-off, a U-shape curve, and fur-
ther shows that the prediction error exhibits a second drop
when the model capacity exceeds the interpolation thresh-
old, which is the so-called over-parameterized settings. The
second drop has been broadly quantified for certain para-
metric and non-parametric models, including linear model,
nearest neighbours algorithm, random-feature model and
one-hidden-layer neural network (Hastie et al., 2019; Xing
et al., 2019; Mei & Montanari, 2019; Ba et al., 2019). How-
ever, the existing theoretical studies mostly focus on the
first-order limit of prediction risk. The randomness caused
by sampling remains unclear. On the other hand, the finite-
sample results, e.g. Dereziński et al. (2019), only consider
the expectation of the risk while ignoring the variance. In
summary, the current existing results can capture the global
trend of the prediction risk in terms of first-order limit and
expectation. However, there is no information provided on
the fluctuation or randomness around this limit. In the finite
sample situations, how far away the empirical prediction
risk is from its limit remains a mystery.

To fill this gap, this paper makes the first step toward the un-
certainty quantification for the prediction risk, especially in
the widely concerned over-parameterized settings. We con-
sider a linear regression task with n data points, p features
and develop CLTs for the prediction risk as n, p → +∞
and p/n → c ∈ (0,∞). The main goal of this paper is
to study the second-order asymptotic behaviors or CLTs
of two different types of conditional prediction risk for the
min-morn least squares estimator. One is RX,β(β̂,β) given
both the training data X and regression coefficient β while
the other is RX(β̂,β) given the training data X only. We
summarize our main results as follows:

(1) The regression coefficient is assumed to be either ran-
dom or nonrandom to cover more cases. Asymptotic
normality and limiting distributions of prediction risk
are proved and derived under various scenarios.

(2) Finite-sample distributions of the conditional predic-
tion risk given both the training data and regression co-
efficient are derived and characterized in Theorem 4.2
and 4.5. Under certain assumptions, the “more data
hurt” phenomenon can be confirmed by comparing the
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Figure 1. The heat map of asymptotic conditional density of the
prediction risk RX(β̂,β) when c varies from 0 to 5. The density
functions are plotted according to Theorem 4.2 for c < 1 and
Theorem 4.5 for c ≥ 1. We take p = 100, the signal strength
r2 = 3 and the noise level σ2 = 0.75.

Figure 2. Histogram for empirical distribution of prediction risk
RX,β(β̂,β), the black curves are corresponding to the theoretical
limiting distributions we derived. We take r2 = 3, σ2 = 0.75,
p = 100 and n = 150, 50, respectively.

confidence intervals built via the CLTs we established.

(3) Our results incorporate non-Gaussian observations.
For Gaussian data, the limiting mean and variance
in the CLTs have simpler forms, see Section 4.2 and
4.3 for more details.

Figure 1 presents part of our CLT results. The x-axes repre-
sent model complexity, i.e. the value c = p/n. For each c,
we draw the heat map of the asymptotic conditional density
function of the corresponding prediction risk given in Theo-
rems 4.2 and 4.5. In particular, one can find out that in the
over-parameterized regime (c > 1), the density of the pre-
diction risk does not concentrate on its first-order limit, but
fluctuates within a wide band around it. It indicates that the
randomness of the prediction risk is enlarged around its limit
when c becomes large. Figure 2 draws the empirical densi-
ties of the prediction risk when p = 100 and n = 150, 50,
respectively. Not only the empirical densities fit their the-
oretical counterparts perfectly, their different span further
demonstrates the growing variance in over-parameterized
cases, which confirms the findings in Figure 1 as well.

One application of our theoretical results is to explain the

“more data hurt” phenomenon. “More data hurt” describes
that training on more data may hurt the prediction perfor-
mance of the learned model, especially for some deep learn-
ing tasks (Nakkiran et al., 2019). This concept is closely
related to the second drop of the prediction risk in the “dou-
ble descent” curve, where the over-parameterized regime
(p ≥ n) is concerned. In this regime, once the sample size
increases (training on more data), the degree of overparame-
terization decreases and becomes closer to the interpolation
boundary p = n in Hastie et al. (2019). In this way, the first-
order limit of the prediction risk increases according to the

“double descent” curve and confirms the “more data hurt”
phenomenon. However, the behaviour of the empirical pre-
diction risk can not be fully represented by its first-order
limit only. There is a non-negligible discrepancy between
the finite sample prediction risk and its limit, especially
when the sample size or dimension is small. We take Fig-
ure 3 as an example to illustrate this. For a fixed dimension
p = 100, the first-order limits of prediction risk at sample
size n1 = 65, n2 = 75 and n3 = 85 are 2.09, 2.44 and 3.64
respectively (Hastie et al., 2019). “More data hurt” seems
true because, from the first-order asymptotics, larger sample
size corresponds to smaller model complexity and hence
larger prediction risk. However, if we look at the confidence
intervals for the prediction risk, which can be derived from
our second-order asymptotic results (see Theorem 4.5), the
95% confidence interval of the prediction risk at sample
size n1 = 65 is [1.62, 2.63], it overlaps with the 95% CI
[2.04, 2.97] at n2 = 75, while keeps a distance from the
95% CI [3.13, 4.57] at n3 = 85. Hence the increment of
risk from n1 = 65 to n2 = 75 is not statistically significant,
but the increment from n1 = 65 to n3 = 85 is. Therefore,
only knowing the first-order limit is not enough to illustrate
the “more data hurt” phenomenon. Fine-grained second-
order results are needed to fully characterize the discrepancy
between the empirical prediction risk and its limit. More
importantly, a confidence band for the prediction risk can
be constructed to evaluate its finite sample performance and
distinguish the statistical significance of “more data hurt”
phenomenon based on our newly established CLT results.

The rest of this paper is organized as follows. Section 2
contains some related work. Section 3 introduces in detail
our model settings and two different prediction risk. Sec-
tion 4 presents the main results on CLTs for the two types
of risk with some discussion. Section 5 conducts simulation
experiments to verify our main results. All the technical
proofs and lemmas are relegated to the Appendix in the
supplementary file.

2. Related work
First-Order Limit As our results are based on the linear
regression, we mainly focus on the literature of linear mod-
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Figure 3. Sample-wise non-monotonicity and the 95%-confidence
band (point-wise) of the prediction risk when sample size varies
from 1 to 99. We take r2 = 3, σ2 = 0.75 and p = 100. The
95% CI of the prediction risk for n1 = 65 overlaps with that for
n2 = 75, but is separated from the 95% CI for n3 = 85.

els. Hastie et al. (2019) gives the first-order limit of the
generalization error for linear regressions as n, p → +∞.
Dereziński et al. (2019) provides an exact non-asymptotic
expression for “double descent” of the min-norm least
squares estimator. Wu & Xu (2020) extends the first-order
limit of the prediction error of the generalized weighted
ridge estimator to a more general setting with anisotropic
features and signals. Montanari et al. (2019), Deng et al.
(2019) and Kini & Thrampoulidis (2020) investigate the
sharp asymptotic of binary classification tasks with the max-
margin and maximum likelihood solution. Emami et al.
(2020) and Gerbelot et al. (2020a) consider the “double de-
scent” in generalized linear models. The “double descent”
phenomenon is also observed on linear tasks with various
problems and assumptions, e.g. LeJeune et al. (2020); Ger-
belot et al. (2020b); Javanmard et al. (2020); Dar & Baraniuk
(2020); Xu & Hsu (2019); Dar et al. (2020).

Second-Order Fluctuation There are very few second-
order results in the literature. Shen & Bellec (2020) es-
tablishes the asymptotic normality for the derivatives of
random-feature model, but not the exact limiting distribu-
tion of the risk. We are the first to develop results on second-
order fluctuations of the prediction risk in linear regressions
and provide its corresponding confidence intervals in this
work.

More Data Hurt Loog et al. (2019) shows that various
standard learners can lead to sample-wise non-monotonicity.
Nakkiran et al. (2019) experimentally confirms the sample-
wise non-monotonicity of the test accuracy on deep neural
networks. This challenges the conventional understanding
in large sample asymptotics: if an estimate is consistent,
more data will make this estimate more stable and improves
its finite-sample performance. Nakkiran (2019) considers
adding one single data point to a linear regression task and
analyzes its marginal effect to the test risk. Dereziński
et al. (2019) gives an exact non-asymptotic risk of the min-
norm least squares estimator and confirms the sample-wise

non-monotonicity on mean square error. For adversarially
robust models, Min et al. (2020) proves that more data
may increase the gap between the generalization error of
adversarially-trained models and standard models. Chen
et al. (2020) shows that more training data causes the gener-
alization error to increase in the strong adversary regime.

Random Matrix Theory The primary tool for analyzing
the second-order fluctuations of prediction risk comes from
random matrix theory. In particular, Bai & Silverstein
(2004) refines the CLTs for linear spectral statistics of large
dimensional sample covariance matrix with general popu-
lation and the population is not necessarily to be Gaussian.
Similar CLTs are also developed for other random matrix en-
sembles, see Sinai & Soshnikov (1998); Bai & Yao (2005);
Zheng (2012). Other than the CLTs for linear spectral statis-
tics, Bai et al. (2007) and Pan & Zhou (2008) study the
asymptotic fluctuation of eigenvectors of sample covariance
matrices. Bai & Yao (2008) considers the fluctuation of
quadratic forms. All these technical tools and results are
adopted and fully utilized, especially those related to Stielt-
jes transform, which are closely connected to the prediction
risk studied in this paper.

3. Preliminaries
3.1. Problem, data and estimator

Suppose that the training data {(xi, yi) ∈ Rp × R, i =
1, 2, . . . , n} is generated independently from the model
(ground truth or teacher model):

yi = βTxi + εi, and (xi, εi) ∼ (Px, Pε). (1)

Here, Px is a distribution on Rp such that E(xi) = 0,
Cov(xi) = Σ, and Pε is a distribution on R such that
E(εi) = 0, Var(εi) = σ2. In particular, the coordinates of
xi are not necessarily independent, that is, Σ is not restricted
to be diagonal. To proceed further, we denote

X = (x1,x2, . . . ,xn)T, y = (y1, y2, . . . , yn)T.

The minimum `2 norm (min-norm) least squares estimator,
of y on X, is defined by

β̂ = arg min
β

‖y −Xβ‖2 = (XTX)+XTy, (2)

where (XTX)+ denotes the Moore-Penrose pseudoinverse
of XTX.

3.2. Bias, variance and risk

Similar to Hastie et al. (2019), we define two different types
of out-of-sample prediction risk. The first one is given by

RX(β̂,β) = E
[
(xT

0 β̂ − xT

0β)2
∣∣X]

= E
[
‖β̂ − β‖2Σ

∣∣X], (3)
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where x0 ∼ Px is a test point and is independent of the
training data, and the notation ‖β‖2Σ stands for βTΣβ.Here
β is assumed to be a random vector independent of x0. In
this definition, the expectation E stands for the conditional
expectation for x0, β̂ and β when X is given. According
to the bias-variance decomposition, we have RX(β̂,β) :=

BX(β̂,β) + VX(β̂,β), where

BX(β̂,β) = E
{
‖E(β̂|X)− β‖2Σ

∣∣X},
VX(β̂,β) = Tr{Cov(β̂|X)Σ}.

Plugging the model (1) into the min-norm estimator (2), the
bias and variance terms can be rewritten as

BX(β̂,β) = E
{
βTΠΣΠβ

∣∣X},
VX(β̂,β) =

σ2

n
Tr(Σ̂+Σ),

where Σ̂ = XTX/n is the (uncentered) sample covariance
matrix of X, and Π = Ip− Σ̂+Σ̂ is the projection onto the
null space of X.

The second type of out-of-sample prediction risk is defined
as

RX,β(β̂,β) = E
[
(xT

0 β̂ − xT

0β)2
∣∣X,β]

= E
[
‖β̂ − β‖2Σ

∣∣X,β], (4)

where

BX,β(β̂,β) = βTΠΣΠβ,

VX,β(β̂,β) = VX(β̂,β) =
σ2

n
Tr(Σ̂+Σ).

In this definition, the parameter β is assumed to be given.
The expectation E is the conditional expectation for x0 and
β̂ when X and β are given. This is consistent with the
commonly-used testing procedure, in which a trained model
is evaluated by the average loss on those unseen testing data.

4. Main Results
Before stating our main results, we briefly highlight the
challenges we faced in proving the “more data hurt” phe-
nomenon. First, the finite-sample behaviors of the predic-
tion risk is required. Hastie et al. (2019) gives the first-order
limits of both RX,β(β̂,β) and RX(β̂,β) as n, p → +∞
and p/n → c ∈ (0,+∞). However, to prove the “more
data hurt” phenomenon, we should fix p and investigate the
finite-sample risk with sample size n varies. This implies
that only knowing the first-order limit is not enough, the con-
vergence rate is also needed. To solve this problem, we have
derived the CLTs for both RX,β(β̂,β) and RX(β̂,β), re-
spectively, which characterize the second-order fluctuations

of the risk. Then we can figure out the finite-sample behav-
ior of the risk by computing the gap between the risk and
its limit. The confidence intervals of the risk can be further
obtained. Second, the parameter β also contributes random-
ness to the finite-sample risk, which further influences the
convergence rate. To analyze the contribution of β, we need
to make use of the technical tools and asymptotic results
for eigenvectors and quadratic forms developed in Bai et al.
(2007) and Bai & Yao (2008). Another interesting finding is
that, in the over-parameterized regime such that p > n, the
two types of out-of-sample prediction risk RX,β(β̂,β) and
RX(β̂,β) enjoy different convergence rates.

4.1. Assumptions and more notations

As follows are some notations used in this paper. The p× p
identity matrix is denoted by Ip. For a symmetric matrix
A ∈ Rp×p, we define its empirical spectral distribution
(ESD) as

FA(x) =
1

p

p∑
i=1

1{λi(A) ≤ x}

where 1{·} is the indicator function and λi(A), i =

1, 2, . . . p are the eigenvalues ofA. The notation d−→ stands
for the convergence in distribution. Zα/2 is the α/2 upper
quantile of the standard normal distribution, λmax(A) and
λmin(A) denote the largest and smallest eigenvalues ofA,
respectively.

Here we list all the assumptions for X, εi and β needed
under different scenarios:

(A) xj ∼ Px is of the form xj = Σ1/2zj , where zj is a
p-dimensional random vector with i.i.d. entries, hav-
ing zero mean, unit variance and finite 4-th moment
E(z4ij) = ν4, i = 1, · · · , p, j = 1, · · · , n. εi ∼ Pε
satisfies E(εi) = 0, Var(εi) = σ2 and is independent
of X.

(B1) Σ is a deterministic positive definite matrix, such that
0 < C0 ≤ λmin(Σ) ≤ λmax(Σ) ≤ C1 for all n, p
and some constants C0, C1. As p → ∞, we assume
that the empirical spectral distribution FΣ converges
weakly to a probability measure H.

(B2) Σ is an identity matrix, Σ = Ip.

(C1) β is a nonrandom constant vector, and ‖β‖22 = βTβ =
r2.

(C2) β ∼ Pβ is independent of X and follows multivariate
Gaussian distribution Np(0, r

2

p Ip).

Throughout this paper, we consider the limiting distributions
and the convergence rates of the out-of-sample prediction
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risk when n, p → ∞ such that p/n = cn → c ∈ (0,∞).
If c > 1, the sample size n is smaller than the number
of parameters p, we call this case “over-parameterized”.
Otherwise when c < 1, we call it “under-parameterized”.

It’s worth mentioning that in the under- parametrized case,
Hastie et al. (2019) requires the finite 4-th moment as in our
Assumption (A) as well. However, in the over-parametrized
case, Hastie et al. (2019) considers more general framework
allowing anisotropic features and hence requires higher mo-
ment conditions than ours. For isotropic features, our main
technical tools are inherited from the CLTs for linear spec-
tral statistics (Bai & Silverstein, 2004; Pan & Zhou, 2008),
for eigenvectors (Bai et al., 2007) and for quadratic forms
(Bai & Yao, 2008) of sample covariance matrices. The finite
4-th moment is sufficient for all these results.

4.2. Under-parametrized asymptotics

In this section, we focus on the risk of the min-norm es-
timator (2) in the under-parametrized regime. According
to Theorem 1 of Hastie et al. (2019), both RX,β(β̂,β) and
RX(β̂,β) converge to σ2c/(1− c) almost surely. The fol-
lowing Theorem 4.1 and 4.2 show that both RX(β̂,β) and
RX,β(β̂,β) converge to σ2c/(1−c) at the rate 1/p. Further-
more, the limiting distributions are derived by making use of
the CLTs for linear spectral statistics of large-dimensional
sample covariance matrices. To proceed further, we denote

Rcn =

{
cn

1−cnσ
2, if cn < 1,

(1− 1
cn

)r2 + 1
cn−1σ

2, if cn > 1,
(5)

which is the finite counterpart for the first-order limit of
RX(β̂,β) and RX,β(β̂,β) as n, p → ∞ such that p/n =
cn → c.

Theorem 4.1. Suppose that the training data is generated
from the model (1), and the assumptions (A) and (B1) hold.
Then the first type of out-of-sample prediction riskRX(β̂,β)
of the min-norm estimator (2) satisfies that, as n, p → ∞
such that p/n = cn → c < 1,

p
(
RX(β̂,β)−Rcn

)
d−→ N(µc, σ

2
c ), (6)

where

µc =
c2σ2

(c− 1)2
+
σ2c2(ν4 − 3)

1− c

σ2
c =

2c3σ4

(c− 1)4
+
c3σ4(ν4 − 3)

(1− c)2
.

Conclusively,

P (Lα,c ≤ RX(β̂,β) ≤ Uα,c)→ 1− α, (7)

where 1− α is the confidence level and

Lα,c =
cnσ

2

1− cn
+

1

p
(µc − Zα/2σc),

Uα,c =
cnσ

2

1− cn
+

1

p
(µc + Zα/2σc).

Under the assumptions of Theorem 4.1, we know that
BX(β̂,β) = BX,β(β̂,β) = 0 and

VX(β̂,β) = VX,β(β̂,β) =
σ2

n
Tr(Σ̂+Σ).

ThusRX(β̂,β) equals toRX,β(β̂,β) and the two risk share
the same asymptotic limit.

Theorem 4.2. Under the assumptions of Theorem 4.1, the
second type of out-of-sample prediction risk RX,β(β̂,β) of
the min-norm estimator (2) satisfies that, as n, p→∞ such
that p/n = cn → c < 1,

p
(
RX,β(β̂,β)−Rcn

) d−→ N(µc, σ
2
c ),

and

P (Lα,c ≤ RX,β(β̂,β) ≤ Uα,c)→ 1− α,

where µc, σ2
c , Lα,c and Uα,c are the same as those in Theo-

rem 4.1.

4.3. Over-parameterized asymptotics

In this section, we consider the min-norm estimator (2) in
the over-parameterized case c > 1. The bias term, either
BX(β̂,β) or BX,β(β̂,β), is generally nonzero. According
to Lemma 2 in Hastie et al. (2019), both BX(β̂,β) and
BX,β(β̂,β) converge to r2(1 − 1/c) as n, p → +∞ and
p/n→ c > 1. This implies that the bias term can influence
the asymptotic behavior of the prediction risk, including the
convergence rate. Hence to derive the CLT of the out-of-
sample prediction risk, we need to consider both the bias
and variance terms in (3) and (4).

In the following, we investigate the asymptotic properties
of the two prediction risk RX(β̂,β) and RX,β(β̂,β) under
various combinations of the assumptions (A), (B2) for X
and scenarios (C1), (C2) for both random and nonrandom
β. We start with the case when β is a constant vector.

Theorem 4.3. Suppose that the training data is generated
from the model (1), and the assumptions (A), (B2) and (C1)
hold. Then the first type of out-of-sample prediction risk
RX(β̂,β) of the min-norm estimator (2) satisfies that, as
n, p→∞ such that p/n = cn → c > 1,

√
p
{
RX(β̂,β)−Rcn

}
d−→ N(µc,1, σ

2
c,1), (8)
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where µc,1 = 0 and σ2
c,1 = 2(c−1)

c2 r4. A more practical
version is to replace µc,1 and σ2

c,1 with

µ̃c,1 =
1
√
p

{ cσ2

(1− c)2
+
σ2(ν4 − 3)

c− 1

}
σ̃2
c,1 =

2(c− 1)

c2
r4 +

1

p

{ 2c3σ4

(1− c)4
+
cσ4(ν4 − 3)

(c− 1)2

}
.

Conclusively,

P (Lα,c ≤ RX(β̂,β) ≤ Uα,c)→ 1− α, (9)

where 1− α is the confidence level and

Lα,c = (1− 1

cn
)r2 +

σ2

cn − 1
+

1
√
p

(µ̃c,1 − Zα/2σ̃c,1),

Uα,c = (1− 1

cn
)r2 +

σ2

cn − 1
+

1
√
p

(µ̃c,1 + Zα/2σ̃c,1).

Remark 4.1. Under the assumption (C1),

BX(β̂,β) = BX,β(β̂,β), RX(β̂,β) = RX,β(β̂,β).

Thus Theorem 4.3 still holds if we replace RX(β̂,β) with
RX,β(β̂,β).

Remark 4.2. Under Assumption (B2), the eigenvector of Σ̂
is asymptotically Haar distributed. Therefore, the bias term
BX(β̂,β) is only related to the length of β. However, in the
anisotropic settings with general Σ, the eigenvector of the
Σ̂ is no longer asymptotically Haar distributed. The limit-
ing behavior of BX(β̂,β) heavily relies on the interaction
between β and the eigenvectors of Σ̂. Therefore, we con-
jecture that there is no universal convergence rate for the
bias term BX(β̂,β) that can cover arbitrary non-random
β and anisotropic Σ in the over-parameterized case, not
to mention the prediction risk RX(β̂,β). A small simula-
tion experiment is conducted in Appendix to confirm our
conjecture on this point.

Next we consider the case when β is a random vector that
follows assumption (C2).

Theorem 4.4. Suppose that the training data is generated
from the model (1), and the assumptions (A), (B2) and (C2)
hold. Then as n, p→∞ such that p/n = cn → c > 1, the
first type of out-of-sample prediction risk RX(β̂,β) of the
min-norm estimator (2) satisfies,

p
{
RX(β̂,β)−Rcn

}
d−→ N(µc,2, σ

2
c,2),

where

µc,2 =
cσ2

(1− c)2
+
σ2(ν4 − 3)

c− 1
,

σ2
c,2 =

2c3σ4

(1− c)4
+
cσ4(ν4 − 3)

(c− 1)2
.

Hence we have

P (Lα,c ≤ RX(β̂,β) ≤ Uα,c)→ 1− α,

where

Lα,c =
σ2

cn − 1
+ (1− 1

cn
)r2 +

1

p
(µc,2 − Zα/2σc,2),

Uα,c =
σ2

cn − 1
+ (1− 1

cn
)r2 +

1

p
(µc,2 + Zα/2σc,2).

As for RX,β(β̂,β), we have the following theorem.

Theorem 4.5. Suppose that the training data is generated
from the model (1), and the assumptions (A), (B2) and (C2)
hold. Then, as n, p→∞ such that p/n = cn → c > 1, the
second type of out-of-sample prediction risk RX,β(β̂,β) of
the min-norm estimator (2) satisfies,

√
p
{
RX,β(β̂,β)−Rcn

}
d−→ N(µc,3, σ

2
c,3), (10)

where µc,3 = 0 and σ2
c,3 = 2(1 − 1

c )r4. A more practical
version is to replace µc,3 and σ2

c,3 with

µ̃c,3 =
1
√
p

{
cσ2

(1− c)2
+
σ2(ν4 − 3)

c− 1

}
,

σ̃2
c,3 = 2(1− 1

c
)r4 +

1

p

{
2c3σ4

(1− c)4
+
cσ4(ν4 − 3)

(c− 1)2

}
.

The corresponding (1− α)-confidence interval is given by

P (Lα,c ≤ RX,β(β̂,β) ≤ Uα,c)→ 1− α, (11)

with

Lα,c =
σ2

cn − 1
+ (1− 1

cn
)r2 +

1
√
p

(µ̃c,3 − Zα/2σ̃c,3),

Uα,c =
σ2

cn − 1
+ (1− 1

cn
)r2 +

1
√
p

(µ̃c,3 + Zα/2σ̃c,3).

Remark 4.3. Note that besides the leading constants in
(µc,3, σc,3), the version (µ̃c,3, σ̃c,3) also contains smaller
order terms, including terms of order O(1/

√
p) in µ̃c,3 and

terms of order O(1/p) in σ̃c,3. These smaller order terms
will vanish when p and n grow very large, but for finite
sample situations, these smaller order terms will provide
a finer approximation for the finite sample distribution of
RX,β(β̂,β). As shown in the following experiments, these
terms have indeed made non-negligible contributions to fit-
ting the empirical distribution of RX,β(β̂,β), which sheds
new lights for practitioners.

Remark 4.4. If we compare the results in Theorem 4.3
and 4.5, we will find out that RX(β̂,β) with constant β
and RX,β(β̂,β) with random β share the same first-order
limit and second-order error rate O(p−1/2). This is quite
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intuitive because both risk treat β as a constant. Their dif-
ferences are reflected in their limiting variances. Neverthe-
less, it’s very interesting to observe from Theorem 4.4 that,
RX(β̂,β) with random β under the over-parameterized
case has a smaller second-order error rate O(p−1). It
enjoys the same rate as the under-parametrized case in The-
orem 4.1. A possible explanation would be that averaging
over the randomness in β can partially offset the curse of
dimensionality so that RX(β̂,β) achieves the same error
rate for all p, n combinations.

4.4. Discussion

In this section, we first make a short conclusion of what
we have done theoretically in this paper and further discuss
some possible directions of extension.

We have systematically investigated the second-order fluc-
tuations of two types of prediction risk, RX(β̂,β) and
RX,β(β̂,β), for the high-dimensional least squares esti-
mator β̂. Theorem 4.1 and 4.4 are for RX(β̂,β) while
Theorem 4.2 and 4.5 are for RX,β(β̂,β). Both fixed and
random regression coefficients β are discussed following
the settings in Hastie et al. (2019). Asymptotic results are
categorized into the under-parameterized case (p < n) and
the over-parameterized case (p > n).

The first-order limits of the prediction risk in high-
dimensional linear models have already been well studied
in recent years, including general extensions to anisotropic
features and signals in Wu & Xu (2020). The “double de-
scent” risk curve is depicted as a function of the limiting
ratio lim p/n. However, there is still a non-negligible dis-
crepancy between the finite-sample prediction risk and its
first-order limit on the “double descent” curve. How large
is this discrepancy? How fast does the risk converge to its
limit? Our CLTs provide answers to such questions and give
a fine-grained characterization of the second-order fluctua-
tions of the prediction risk. Not only explicit forms of the
leading constants in the limiting means and variances are
shown in our main theorems, smaller order terms are also
derived to improve the empirical performance for practition-
ers.

It is also important to recognize the limitations of our re-
sults. First, the present paper only concerns linear regression
task since the linear regression task is simple but important
as well. For example, some recent works linearize neural
networks at the initialization and employ Neural Tangent
Kernels (Jacot et al., 2018) to approximate the training pro-
cedure of a strongly over-parameterized neural network by
solving a linear regression task, e.g. Du et al. (2018); Arora
et al. (2019); Lee et al. (2019). Though the setting consid-
ered in this paper is simple and limited, the problem has
not been fully understood so far in the literature. There-

fore, we are among the first to take the task and develop the
second-order fluctuation results for the prediction risk. Sec-
ond, we assume general covariance Σ and non-Gaussianity
for the under-parameterized case, which fits the most up-
dated and realistic settings in the literature, however, we
only investigate the isotropic settings while still allow for
non-Gaussianity under over-parameterization. We haven’t
extended it to the more general anisotropic settings yet. The
reasons are two-fold. On the one hand, according to Wu
& Xu (2020), the first-order limits depend on the Stieltjes
transforms of the unknown spectral distribution of Σ. Since
Σ is unknown, we cannot obtain any explicit characteriza-
tion of the first-order limits, not to mention the second-order
fluctuations. The CLTs would only be written as certain
complicated implicit functions of Σ and would be too ab-
stract to evaluate practically. More restrictions would be
imposed on Σ to guarantee the second-order convergence.
On the other hand, from the technical perspective, the tech-
niques required for anisotropic over-parameterized cases are
very different from the isotropic cases due to difference in
the bias-variance decomposition. The tools in random ma-
trix theory have not been fully developed yet for anisotropic
cases. Since we have considered various scenarios in this
paper, including random and nonrandom signals β for both
conditional and unconditional risk, it will take great efforts
and continuous work to extend all of them to the most gen-
eral settings, which would lead to many subsequent works
in the field of machine learning and random matrix theory
literature.

5. Experiments
In this section, we carry out simulation experiments to ex-
amine the CLTs and the corresponding confidence intervals
in Theorem 4.2 and Theorem 4.5. We generate data points
from the linear model (1) and directly compute the predic-
tion risk via the bias-variance decomposition in (4). To
make sure the assumption (A) holds, the generative distri-
bution Px is taken to be the standard normal distribution,
the centered gamma with shape 4.0 and scale 0.5, and the
normalized Student-t distribution with 6.0 degree of free-
dom. The noise distribution Pε is taken to be N(0, 1). In
the following, we present the gap between the finite-sample
distribution of the prediction risk and the corresponding
limiting distribution to check the CLTs and use the cover-
age to measure the effectiveness of the confidence intervals.
More simulation results are relegated to the Appendix due
to space limitations.

Example 1. This example examines the results in Theo-
rem 4.2. We define a standardized statistic:

Tn =
p

σc

(
RX,β(β̂,β)−Rcn

)
− µc
σc
.
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Figure 4. The histogram of Tn. The solid line is the density of the
standard normal distribution.

Figure 5. The cover rate of the confidence interval (7) as p creases.
The confidence level is 95%.

According to Theorem 4.2, Tn weakly converges to the
standard normal distribution as n, p→∞. In this example,
c = 1/2 and p = 50, 100, 200. The finite-sample distri-
bution of Tn is estimated by the histogram of Tn under
1000 repetitions. The results are presented in Figure 4. It
can be seen that the finite-sample distribution of Tn is very
consistent with the density function of the standard normal
distribution, especially when n, p become larger. When
α = 0.05, the coverage of the 95%-confidence interval is
reported in Figure 5. According to the mean and confidence
band of the cover rate, we can find that the empirical cover-
age converges to 95% as n, p→∞. All these experiments
verify the correctness of our theoretical results.

Example 2. This example verifies the results in Theo-
rem 4.5. Here we consider two standardized statistics:

Tn,0 =

√
p

σc,3

{
RX,β(β̂,β)−Rcn

}
− µc,3
σc,3

,

Tn,1 =

√
p

σ̃c,3

{
RX,β(β̂,β)−Rcn

}
− µ̃c,3
σ̃c,3

.

According to the CLT (10) and its practical version, both
Tn,0 and Tn,1 weakly converge to the standard normal dis-
tribution as n, p→ +∞. Compared to Tn,0, Tn,1 provides
a better approximation for the finite sample distribution

of RX,β(β̂,β) because it contains smaller order terms in
the asymptotic mean and variance. We take c = 2 and
p = 100, 200, 400. Similarly the finite-sample distributions
of Tn,0 and Tn,1 are presented by the histogram of Tn,0
and Tn,1 with 1000 repetitions. The results are presented in
Figure 6 and Figure 7. It can also be seen that the finite sam-
ple distributions of Tn,0 and Tn,1 both match the standard
normal distribution quite well, especially Tn,1 with more
precise characterization. When α = 0.05, the empirical
coverage of the 95%-confidence interval (11) are reported
in Figure 8.

Figure 6. The histogram of Tn,0. The solid line is the density of
the standard normal distribution.

Figure 7. The histogram of Tn,1. The solid line is the density of
the standard normal distribution.
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