
TeraPipe: Token-Level Pipeline Parallelism for Training
Large-Scale Language Models

Supplementary Material

A. Combine TeraPipe with Gradient Accumulation
TeraPipe and gradient accumulation (GA) are orthogonal and TeraPipe can further speed up over GA. To see this, we
visualize a 3-stage pipeline training with an input batch of 6 training sequences below, similar to Figure 2 in the main paper.

� � � � � � � � � � � �
� � �� � � � � � � � �

� � � � � � � � � � � �

� � �� �� �� �� � �
� � �� � � � �� � � �

� � � � � � � � � � � �

�D �E
�D �E

�D �E

�D �E
�D �E

�E
�E

�E

�D
�D

�D

�D �E �D

�D

�E
�E �D

�E �D�E
�D �E

�D �E

�D �E

�E �D
�E �D

�E �D

�E �D
�E �D

�E �D
�D �E

�D �E

�E
�D �E

�D �E�D

�D �E

�E �D
�E �D

�E �D
�D �E

�D �E �E �D
�E �D

�E �D

*38��
*38��
*38��

*38��
*38��
*38��

*38��
*38��
*38��

7LPH

)RUZDUG

%DFNZDUG

�D�

�E�

�F�

In (a), we show the case where each GPU is capable of storing the intermediate activations of at most 3 input sequences.
With scheduling algorithms like DAPPLE (Fan et al., 2020), GA indeed increases the pipeline efficiency. However in (b),
when each GPU can only support 2 input sequences (due to large model size), the forward pass of input sequence 3 cannot
start on GPU 1 until sequence 1 finishes the backward pass and release the memory of its intermediate activations. The
memory constraint limits the pipeline efficiency: only two GPUs can work at a time, and GA cannot solve the issue. In
(c), we follow the setting in (b) but enable TeraPipe to split a training sequence into two. TeraPipe improves the pipeline
efficiency compared to (b) thanks to more fine-grained pipelining: the three can work at the same time.

In our experiments, we have 48 pipeline stages but a single GPU is only capable to hold 2 input sequences due to its memory
capacity. Even with newer GPUs (e.g. 80GB A100, 5x memory compared to V100s in the paper), their memory capacity
is still not enough to fulfill the pipeline with 48 input sequences. Therefore, even with GA, TeraPipe is still expected to
significantly improve the training efficiency.

B. Implementation
We implement TeraPipe with PyTorch (Paszke et al., 2019) and NCCL (NCCL). We use Megatron-LM (Shoeybi et al.,
2019) as the library for operation partitioning and implement microbatch-based pipeline parallelism and data parallelism
by ourselves. The core of TeraPipe is implemented using 1714 lines of Python. We include the code in the supplementary
material and the code will be open-sourced.

C. Experiment Results
Here, we include the detailed numbers (mean and standard deviation of the latency) and the slicing schemes found by the DP
algorithms for all experiments in the main paper. Specifically, we list the details of Figure 5, 6, and 7 in Table 1, 2, and 3.

References
Fan, S., Rong, Y., Meng, C., Cao, Z., Wang, S., Zheng, Z., Wu, C., Long, G., Yang, J., Xia, L., et al. Dapple: A pipelined

data parallel approach for training large models. arXiv preprint arXiv:2007.01045, 2020.



TeraPipe: Token-Level Pipeline Parallelism for Training Large-Scale Language Models Supplementary Material

NCCL. The nvidia collective communication library (nccl). https://developer.nvidia.com/nccl, 2021.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.
Pytorch: An imperative style, high-performance deep learning library. arXiv preprint arXiv:1912.01703, 2019.

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J., and Catanzaro, B. Megatron-lm: Training multi-billion
parameter language models using gpu model parallelism. arXiv preprint arXiv:1909.08053, 2019.

Table 1. Detailed numbers and slicing schemes in main experiments (Figure 5 in the main paper).

Model Setting Algorithm Slicing Scheme Latency (s) TFlops (per GPU)

GPT3-1B

5, (1) w/o TeraPipe [(1, [2048])] * 16 1.517± 0.107 0.8841
w/ TeraPipe [(1, [776, 640 ,632])] * 16 1.254± 0.160 1.0695

5, (2) w/o TeraPipe [(1, [2048])] * 36 1.018± 0.065 2.9643
w/ TeraPipe [(1, [2048])] * 36 1.018± 0.065 2.9643

5, (3) w/o TeraPipe [(1, [2048])] * 72 0.913± 0.027 6.6105
w/ TeraPipe [(1, [2048])] * 72 0.913± 0.027 6.6105

GPT3-13B
5, (4) w/o TeraPipe [(1, [2048])] * 16 2.637± 0.055 3.0305

w/ TeraPipe [(1, [1024, 1024])] * 16 1.891± 0.084 4.2261

5, (5) w/o TeraPipe [(1, [2048])] * 32 1.863± 0.007 8.5792
w/ TeraPipe [(1, [704, 688, 656])] * 32 1.328± 0.037 12.0354

GPT3-44B

5, (6) w/o TeraPipe [(1, [2048])] * 2 13.319± 0.067 0.2148
w/ TeraPipe [(1, [64] * 26 + [56] * 6 + [48])] * 2 7.103± 0.243 0.4028

5, (7) w/o TeraPipe [(1, [2048])] * 4 4.311± 0.032 1.3274
w/ TeraPipe [(1, [368, 384, 384, 368, 256, 288])] * 4 2.771± 0.112 2.0652

5, (8) w/o TeraPipe [(1, [2048])] * 8 2.662± 0.001 4.2995
w/ TeraPipe [(1, [384, 384, 368, 320, 296, 296])] * 8 1.111± 0.002 10.3018

GPT3-175B
5, (9) w/o TeraPipe [(1, [2048])] * 2 9.990± 0.005 1.1300

w/ TeraPipe [(1, [120] * 4 + [112] * 6 + [104] * 8 + [64])] * 2 1.481± 0.002 7.6225

5, (10) w/o TeraPipe [(1, [2048])] * 2 5.822± 0.003 1.9390
w/ TeraPipe [(1, [128] * 16)] * 2 1.160± 0.001 9.7318

Table 2. Detailed numbers and slicing schemes in ablation studies on the effectiveness of the dynamic programming algorithm (Figure 6
in the main paper).

Model Setting Algorithm Slicing Scheme Latency (s) TFlops (per GPU)

GPT3-44B 6, (a)

#Slices=1 [(1, [2048])] * 8 2.662± 0.001 4.2995
#Slices=4 [(1, [512] * 4)] * 8 1.241± 0.003 9.2226
#Slices=8 [(1, [256] * 8)] * 8 1.255± 0.004 9.1197

#Slices=16 [(1, [128] * 16)] * 8 1.241± 0.003 9.2226
DP [(1, [384, 384, 368, 320, 296, 296])] * 8 1.111± 0.002 10.3018

GPT3-175B 6, (b)

#Slices=1 [(1, [2048])] * 2 9.990± 0.005 1.1300
#Slices=4 [(1, [512] * 4)] * 2 2.902± 0.003 3.8900
#Slices=8 [(1, [256] * 8)] * 2 1.892± 0.002 5.9667

#Slices=16 [(1, [128] * 16)] * 2 1.547± 0.01 7.2973
#Slices=32 [(1, [64] * 32)] * 2 1.593± 0.002 7.0866
#Slices=64 [(1, [32] * 64)] * 2 2.227± 0.002 5.0691

#Slices=128 [(1, [16] * 128)] * 2 3.252± 0.004 3.4714
DP [(1, [120] * 4 + [112] * 6 + [104] * 8 + [64])] * 2 1.481± 0.002 7.6225

https://developer.nvidia.com/nccl


TeraPipe: Token-Level Pipeline Parallelism for Training Large-Scale Language Models Supplementary Material

Table 3. Detailed numbers and slicing schemes in experiments with longer sequence lengths (Figure 7 in the main paper).

Model Input Sequence Length Algorithm Slicing Scheme Latency (s) TFlops (per GPU)

GPT3-13B

2048 w/o TeraPipe [(1, [2048])] * 32 1.863± 0.007 8.5792
w/ TeraPipe [(1, [704, 688, 656])] * 32 1.328± 0.037 12.0354

4096 w/o TeraPipe [(1, [4096])] * 8 2.526± 0.001 1.5819
w/ TeraPipe [(1, [552, 536, 528, 512, 504, 496, 488, 480])] * 8 0.913± 0.085 4.3765

6144 w/o TeraPipe [(1, [6144])] * 4 3.754± 0.006 0.5322
w/ TeraPipe [(1, [584, 568] + [512] * 6 + [496, 488, 472, 464])] * 4 0.756± 0.008 2.6427

8192 w/o TeraPipe [(1, [8192])] * 2 4.978± 0.004 0.2007
w/ TeraPipe [(1, [512] * 6 + [480] * 2 + [416] * 10)] * 2 0.636± 0.001 1.5707


