
A Second look at Exponential and Cosine Step Sizes:
Simplicity, Adaptivity, and Performance

Xiaoyu Li ∗ 1 Zhenxun Zhuang ∗ 2 Francesco Orabona 1 2 3

Abstract

Stochastic Gradient Descent (SGD) is a popu-
lar tool in training large-scale machine learning
models. Its performance, however, is highly vari-
able, depending crucially on the choice of the
step sizes. Accordingly, a variety of strategies
for tuning the step sizes have been proposed,
ranging from coordinate-wise approaches (a.k.a.
“adaptive” step sizes) to sophisticated heuristics to
change the step size in each iteration. In this paper,
we study two step size schedules whose power has
been repeatedly confirmed in practice: the expo-
nential and the cosine step sizes. For the first time,
we provide theoretical support for them proving
convergence rates for smooth non-convex func-
tions, with and without the Polyak-Łojasiewicz
(PL) condition. Moreover, we show the surprising
property that these two strategies are adaptive to
the noise level in the stochastic gradients of PL
functions. That is, contrary to polynomial step
sizes, they achieve almost optimal performance
without needing to know the noise level nor tun-
ing their hyperparameters based on it. Finally, we
conduct a fair and comprehensive empirical eval-
uation of real-world datasets with deep learning
architectures. Results show that, even if only re-
quiring at most two hyperparameters to tune, these
two strategies best or match the performance of
various finely-tuned state-of-the-art strategies.

1. Introduction
In the last 10 years, non-convex machine learning formu-
lations have received more and more attention as they can

*Equal contribution 1Division of System Engineering, Boston
University, Boston, MA, US 2Department of Computer Science,
Boston University, Boston, MA, US 3Department of Electrical
& Computer Engineering, Boston University, Boston, MA, US.
Correspondence to: Xiaoyu Li <xiaoyuli@bu.edu>, Zhenxun
Zhuang <zxzhuang@bu.edu>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

typically better scale with the complexity of the predic-
tors and the amount of training data compared with convex
ones. One such example is the deep neural networks. Over
the years, various algorithms have been proposed and em-
ployed to optimize non-convex machine learning problems,
among which Stochastic Gradient Descent (SGD) (Robbins
& Monro, 1951) has become the most important ingredient
in Machine Learning pipelines. Practitioners prefer it over
more sophisticated methods for its simplicity and speed.
Yet, this generality comes with a cost: SGD is far from
the robustness of, e.g., second-order methods that require
little to no tweaking of knobs to work. In particular, the
step size is still the most important parameter to tune in the
SGD algorithm, carrying the actual weight of making SGD
adaptive to different situations.

The importance of step sizes in SGD is testified by the
numerous proposed strategies to tune step sizes (e.g., Duchi
et al., 2010; McMahan & Streeter, 2010; Tieleman & Hinton,
2012; Zeiler, 2012; Kingma & Ba, 2015). However, for most
of them, there is little or no theory that can really explain
their empirical success. Moreover, SGD with appropriate
step sizes is already optimal in all the possible situations, so
it is unclear what kind of advantage we might show.

An interesting viewpoint is to go beyond worst-case analyses
and show that these learning rates provide SGD with some
form of adaptivity to the characteristics of the function.
More specifically, an algorithm is considered adaptive (or
universal) if it has the best theoretical performance w.r.t. to a
quantity X without the need to know it (Nesterov, 2015). So,
for example, it is possible to design optimization algorithms
adaptive to scale (Orabona & Pál, 2015; Orabona & Pál,
2018), smoothness (Levy et al., 2018), noise (Levy et al.,
2018; Li & Orabona, 2019), and strong convexity (Cutkosky
& Orabona, 2018). On the other hand, as noted in Orabona
(2019), it is remarkable that even if most of the proposed
step size strategies for SGD are called “adaptive”, for most
of them their analyses do not show any provable advantage
over plain SGD nor any form of adaptation to the intrinsic
characteristics of the non-convex function.

In this paper, we look at the two simple to use and
empirically successful step size decay strategies, the ex-
ponential and the cosine step size (with and without



A Second look at Exponential and Cosine Step Sizes

restarts) (Loshchilov & Hutter, 2017; He et al., 2019). The
exponential step size is simply an exponential decaying step
size. It is less discussed in the optimization literature and
it is also unclear who proposed it first, even if it has been
known to practitioners for a long time and already included
in many deep learning software libraries (e.g., Abadi et al.,
2015; Paszke et al., 2019). The cosine step size, which an-
neals the step size following a cosine function, has exhibited
great power in practice but it does not have any theoretical
justification.

For both these step size decay strategies, we prove for the
first time a convergence guarantee. Moreover, we show that
they have (unsuspected!) adaptation properties. Moreover,
we also empirically test them showing that they have the
best empirical performance among various state-of-the-art
strategies. Finally, our proofs reveal the hidden similarity
between these two step sizes.

Specifically, the contributions of this paper are:

• In the case when the function satisfies the PL condi-
tion (Polyak, 1963; Łojasiewicz, 1963; Karimi et al.,
2016), both exponential step size and cosine step size
strategies automatically adapt to the level of noise of
the stochastic gradients.

• Without the PL condition, we show that SGD with
either exponential step sizes or cosine step sizes has
an (almost) optimal convergence rate for smooth non-
convex functions.

• We also conduct an empirical evaluation on deep learn-
ing architectures: Exponential and cosine step sizes
have essentially matching or better empirical perfor-
mance than polynomial step decay, stagewise step de-
cay, Adam (Kingma & Ba, 2015), and stochastic line
search (Vaswani et al., 2019b), while requiring at most
two hyperparameters.

The rest of the paper is organized as follows: We first dis-
cuss the relevant literature (Section 2). In Section 3, we
introduce the notation, setting, and precise assumptions.
Then, in Section 4 we describe in detail the step sizes and
the theoretical guarantees. We show our empirical results
in Section 5. Finally, we conclude with a discussion of the
results and future work.

2. Related Work
Adaptation in non-convex optimization Adaptation is a
general concept and an algorithm can be adaptive to any
characteristic of the optimization problem. The idea is for-
malized in (Nesterov, 2015) with the equivalent name of
universality, but it goes back at least to the “self-confident”
strategies in online convex optimization (Auer et al., 2002).

Indeed, the famous AdaGrad algorithm (McMahan &
Streeter, 2010; Duchi et al., 2010) uses exactly that method
to design an algorithm adaptive to the gradients. Nowadays,
“adaptive step size” tend to denote coordinate-wise ones,
with no guarantee of adaptation to any particular property.
There is an abundance of adaptive optimization algorithm in
the convex setting (e.g., McMahan & Streeter, 2010; Duchi
et al., 2010; Kingma & Ba, 2015; Reddi et al., 2018), while
only a few in the more challenging non-convex setting (e.g.,
Chen et al., 2018). The first analysis to show adaptivity to
noise of non-convex SGD with appropriate step sizes is in
Li & Orabona (2019) and later in Ward et al. (2019; 2020)
under stronger assumptions. Then, Li & Orabona (2020)
studied the adaptivity to noise of AdaGrad plus momentum,
with a high probability analysis.

Exponential step size To the best of our knowledge, the
exponential step size has been incorporated in Tensor-
flow (Abadi et al., 2015) and PyTorch (Paszke et al., 2019),
yet no convergence guarantee have ever been proved for
it. The closest strategy is the stagewise step decay, which
corresponds to the discrete version of the exponential step
size we analyze. The stagewise step decay uses a piece-wise
constant step size strategy, where the step size is cut by a
factor in each “stage”. This strategy is known with many
different names: “stagewise step size” (Yuan et al., 2019),
“step decay schedule” (Ge et al., 2019), “geometrically de-
caying schedule” (Davis et al., 2021), and “geometric step
decay” (Davis et al., 2019). In this paper, we will call it
stagewise step decay. The stagewise step decay approach
was first introduced in (Goffin, 1977) and used in many
convex optimization problem (e.g., Hazan & Kale, 2011;
Aybat et al., 2019; Kulunchakov & Mairal, 2019; Ge et al.,
2019). Interestingly, Ge et al. (2019) also shows promising
empirical results on non-convex functions, but instead of us-
ing their proposed decay strategy, they use an exponentially
decaying schedule, like the one we analyze here. The only
use of the stagewise step decay for non-convex functions
we know are for sharp functions (Davis et al., 2019) and
weakly-quasi-convex functions (Yuan et al., 2019). How-
ever, they do not show any adaptation property and they
still do not consider the exponential step size but its discrete
version. As far as we know, we prove the first theoretical
guarantee for the exponential step size.

Cosine step decay Cosine step decay was originally pre-
sented in Loshchilov & Hutter (2017) with two tunable
parameters. Later, He et al. (2019) proposed a simplified
version of it with one parameter. However, there is no theory
for this strategy though it is popularly used in the practical
world (Liu et al., 2018; Zhang et al., 2019b; Lawen et al.,
2019; Zhang et al., 2019a; Ginsburg et al., 2019; Cubuk
et al., 2019; Zhao et al., 2020; You et al., 2020; Chen et al.,
2020; Grill et al., 2020). As far as we know, we prove the
first theoretical guarantee for the cosine step decay and the



A Second look at Exponential and Cosine Step Sizes

first ones to hypothesize and prove the adaptation properties
of the cosine decay step size.

SGD on non-convex smooth functions The first paper to
analyze SGD on smooth functions with generic step sizes
is Ghadimi & Lan (2013). Their analysis show that the
optimal step size strategy strongly depends on the level of
noise, but they do not offer any automatic strategy to adapt
to it.

SGD with the PL condition The PL condition was pro-
posed by Polyak (1963) and Łojasiewicz (1963). It is the
weakest assumption we know to prove linear rates on non-
convex functions. For SGD, Karimi et al. (2016) proved
the rate of O

(
1/µ2T

)
for polynomial step sizes assuming

Lipschitz and smooth functions, where µ is the PL constant.
Note that the Lipschitz assumption hides the dependency
of convergence and step sizes from the noise. It turns out
that the Lipschitz assumption is not necessary to achieve
the same rate, see Theorem 5 in the Appendix. Considering
functions with finite-sum structure, Reddi et al. (2016), Lei
et al. (2017) and Li et al. (2020) proved improved rates for
variance reduction methods. The convergence rate that we
show for the exponential step size is new in the literature
on minimization of PL functions. Independently and the
same time1 with us, Khaled & Richtárik (2020) obtained the
same convergence result in the PL condition for SGD with
a stepsize that is constant in the first half and then decreases
polynomially.

3. Problem Set-up
Notation We denote vectors by bold letters, e.g., x ∈ Rd.
We denote by E[·] the expectation with respect to the under-
lying probability space and by Et[·] the conditional expecta-
tion with respect to the past. Any norm in this work is the
`2 norm.

Setting and Assumptions We consider the unconstrained
optimization problem minx∈Rd f(x), where f(x) : Rd →
R is a function bounded from below and we denote its
infimum by f?. Note that we do not require f to be convex
nor to have a finite-sum structure.

We focus on SGD, where, after an initialization of the first
iterate as any x1 ∈ Rd, in each round t = 1, 2, . . . , T we
receive gt, an unbiased estimate of the gradient of f at point
xt, i.e., Etgt = ∇f(xt). We update xt with a step size ηt,
i.e., xt+1 = xt − ηtgt.

We assume that

(A1) f is L-smooth, i.e., f is differentiable and its gra-
dient ∇f(·) is L-Lipschitz, namely: ∀x,y ∈ Rd,

1The first version of Khaled & Richtárik (2020) was released on
Feb. 9th 2020 on ArXiv while our very first version was available
online on Feb. 12th 2020 on ArXiv as well.

‖∇f(x) − ∇f(y)‖ ≤ L‖x − y‖. This implies for
∀x,y ∈ Rd (Nesterov, 2004, Lemma 1.2.3)

|f(y)− f(x)− 〈∇f(x),y − x〉| ≤ L

2
‖y − x‖2 . (1)

(A2) f satisfies the µ-PL condition, that is, for some µ > 0,
1
2‖∇f(x)‖2 ≥ µ (f(x)− f?) , ∀x.

(A3) For t = 1, 2, . . . , T , we assume Et[‖gt −∇f(xt)‖2] ≤
a‖∇f(xt)‖2 + b, where a, b ≥ 0.

Discussion on the assumptions It is worth stressing that
non-convex functions are not characterized by a particular
property, but rather from the lack of a specific property:
convexity. In this sense, trying to carry out any meaning-
ful analyses on the entire class of non-convex functions is
hopeless. So, the assumptions we use balance the trade-off
of approximately model many interesting machine learning
problems while allowing to restrict the class of non-convex
functions on particular subsets where we can underline in-
teresting behaviours.

More in detail, the smoothness assumption (A1) is consid-
ered “weak” and ubiquitous in analyses of optimization algo-
rithms in the non-convex setting. In many neural networks,
it is only approximately true because ReLUs activation func-
tions are non-smooth. However, if the number of training
points is large enough, it is a good approximation of the loss
landscape.

On the other hand, the PL condition (A2) is often consid-
ered a “strong” condition. However, it was formally proved
to hold locally in deep neural networks in Allen-Zhu et al.
(2019). Furthermore, Kleinberg et al. (2018) empirically
observed that the loss surface of neural networks has good
one-point convexity properties, and thus locally satisfies the
PL condition. Of course, in our theorems we only need
it to hold along the optimization path and not over the en-
tire space, as also pointed out in Karimi et al. (2016). So,
while being strong, it actually models the cases we are in-
terested in. Moreover, dictionary learning (Arora et al.,
2015), phase retrieval (Chen & Candes, 2015), and matrix
completion (Sun & Luo, 2016), all satisfy the one-point
convexity locally (Zhu, 2018), and in turn they all satisfy
the PL condition locally.

Our assumption on the noise (A3) is strictly weaker than the
common assumption of assuming a bounded variance, i.e.,
Et[‖gt −∇f(xt)‖2] ≤ σ2. Indeed, our assumption recovers
the bounded variance case with a = 0 while also allowing
for the variance to grow unboundedly far from the optimum
when a > 0. This is indeed the case when the optimal
solution has low training error and the stochastic gradients
are generated by mini-batches. This relaxed assumption on
the noise was first used by Bertsekas & Tsitsiklis (1996) in
the analysis of the asymptotic convergence of SGD.



A Second look at Exponential and Cosine Step Sizes

Exponential and Cosine Step Size We will use the follow-
ing definition for the exponential step size

ηt = η0 · αt (2)

and for cosine step sizes

ηt =
η0
2

(
1 + cos

tπ

T

)
, (3)

where η0 = (L(1 + a))−1. For the exponential step sizes,
we use α = (β/T )

1/T ≤ 1, a and L are defined in (A1, A3),
and β ≥ 1.

4. Convergence and Adaptivity of Cosine and
Exponential Step Sizes

Here, we present the guarantees of the exponential step size
and the cosine step size and their adaptivity property.

4.1. Noise and Step Sizes

For the stochastic optimization of smooth functions, the
noise plays a crucial role in setting the optimal step sizes:
To achieve the best performance, we need two completely
different step size decay schemes in the noisy and noise-
less case. In particular, if the PL condition holds, in the
noise-free case a constant step size is used to get a linear
rate (i.e., exponential convergence), while in the noisy case
the best rate O(1/T ) is given by time-varying step sizes
O(1/(µt)) (Karimi et al., 2016). Similarly, without the PL
condition, we still need a constant step size in the noise-free
case for the optimal rate whereas a O(1/

√
t) step size is

required in the noisy case (Ghadimi & Lan, 2013). Using
a constant step size in noisy cases is of course possible,
but the best guarantee we know is converging towards a
neighborhood of the critical point or the optimum, instead
of the exact convergence let alone the adaptivity to the noise,
as shown in Theorem 2.1 of (Ghadimi & Lan, 2013) and
Theorem 4 of (Karimi et al., 2016). Moreover, if the noise
decreases over the course of the optimization, we should
change the step size as well. Unfortunately, noise levels are
rarely known or measured. On the other hand, an optimiza-
tion algorithm adaptive to noise would always get the best
performance without changing its hyperparameters.

In the following, we will show that exponential and cosine
step sizes achieve exactly this adaptation to noise. It is
worth reminding the reader that any polynomial decay of
the step size does not give us this adaptation. So, let’s gain
some intuition on why this should happen with these two
step sizes. In the early stage of the optimization process, we
can expect that the disturbance due to the noise is relatively
small compared to how far we are from the optimal solution.
Accordingly, at this phase, a near-constant step size should
be used. More precisely, the proofs shows that to achieve

a linear rate we need
∑T
t=1 ηt = Ω(T ) or even

∑T
t=1 ηt =

Ω(T/ lnT ). This is exactly what happens with (2) and (3).
On the other hand, when the iterate is close to the optimal
solution, we have to decrease the step size to fight with the
effects of the noise. In this stage, the exponential step size
goes to 0 as O (1/T ), which is the optimal step size used
in the noisy case. Meanwhile, the last ith cosine step size
is ηT−i = η0

2 (1 − cos iπT ) = η0 sin2 iπ
2T , which amounts

O(1/T 2) when i is much smaller than T .

Hence, the analysis shows that (2) and (3) are surprisingly
similar, smoothly varying from the near-constant behavior
at the start and decreasing with a similar pattern towards the
end, and both will be adaptive to the noise level. Next, we
formalize these intuitions in convergence rates.

4.2. Convergence Guarantees

We now prove the convergence guarantees for these two
step sizes. First, we consider the case where the function is
smooth and satisfies the PL condition.

Theorem 1 (SGD with exponential step size). Assume (A1,
A2, A3). For a given T ≥ max{3, β} and η0 = (L(1 +
a))−1, with step size (2), SGD guarantees

Ef(xT+1)− f? ≤ 5LC(β)

e2µ2

ln2 T
β

T
b

+ C(β) exp

(
−0.69µ

L+ a

(
T

ln T
β

))
· (f(x1)− f?),

where C(β) , exp ((2µβ)/(L(1 + a) lnT/β)).

Choice of β Note that if β = L(1 + a)/µ, we get

Ef(xT+1)− f?

≤ O

(
exp

(
− µ

L+ a

(
T

ln µT
L

))
+
b ln2 µT

L

µ2T

)
.

In words, this means that we are basically free to choose β,
but will pay an exponential factor in the mismatch between
β and L

µ , which is basically the condition number for PL
functions. This has to be expected because it also happens in
the easier case of stochastic optimization of strongly convex
functions (Bach & Moulines, 2011).

Theorem 2 (SGD with cosine step size). Assume (A1, A2,
A3). For a given T and η0 = (L(1 + a))−1, with step size
(3), SGD guarantees

Ef(xt+1)− f? ≤ exp

(
− µ(T − 1)

2L(1 + a)

)
(f(x1)− f?)

+
π4b

32(1 + a)T 4

((
8T 2

µ

)4/3

+

(
6T 2

µ

) 5
3

)
.



A Second look at Exponential and Cosine Step Sizes

Adaptivity to Noise From the above theorems, we can see
that both the exponential step size and the cosine step size
have a provable advantage over polynomial ones: adaptivity
to the noise. Indeed, when b = 0, namely there is only noise
relative to the distance from the optimum, they both guar-
antee a linear rate. Meanwhile, if there is noise, using the
same step size without any tuning, the exponential step size
recovers the rate of O

(
1/(µ2T )

)
while the cosine step size

achieves the rate of O(1/(µ
5
3T

2
3 )) (up to poly-logarithmic

terms). In contrast, polynomial step sizes would require two
different settings—decaying vs constant—in the noisy vs
no-noise situation (Karimi et al., 2016). It is worth stressing
that the rate in Theorem 1 is one of the first results in the
literature on stochastic optimization of smooth PL functions
(Khaled & Richtárik, 2020).

Optimality of the bounds As far as we know, it is unknown
if the rate we obtain for the optimization of non-convex
smooth functions under the PL condition is optimal or not.
However, up to poly-logarithmic terms, Theorem 1 matches
at the same time the best-known rates for the noisy and
deterministic cases (Karimi et al., 2016) (see also Theorem 5
in the Appendix). We would remind the reader that this rate
is not comparable with the one for strongly convex functions
which is O(1/(µT )). Meanwhile, cosine step size achieves
a rate slightly worse in T (but better in µ) under the same
assumptions.

Cosine Step Size with Restarts The original cosine step-
size was proposed with a restarting strategy, yet it has been
commonly used without restarting and achieves good re-
sults (e.g., Loshchilov & Hutter, 2017; Gastaldi, 2017; Zoph
et al., 2018; He et al., 2019; Cubuk et al., 2019; Liu et al.,
2018; Zhao et al., 2020; You et al., 2020; Chen et al., 2020;
Grill et al., 2020). Indeed, the previous theorem has con-
firmed that the cosine stepsize alone is well worth studying
theoretically. Yet for completeness, we cover the analysis in
a restart scheme for SGD with cosine stepsize in the PL con-
dition in Appendix A.2. We obtain the same convergence
rate µ and T as that in the case of no restarts under the PL
condition.

Convergence without the PL condition The PL condition
tells us that all stationary points are optimal points (Karimi
et al., 2016), which is not always true for the parameter
space in deep learning (Jin et al., 2017). However, this
condition might still hold locally, for a considerable area
around the local minimum. Indeed, as we said, this is exactly
what was proven for deep neural networks (Allen-Zhu et al.,
2019). The previous theorems tell us that once we reach the
area where the geometry of the objective function satisfies
the PL condition, we can get to the optimal point with an
almost linear rate, depending on the noise. Nevertheless,
we still have to be able to reach that region. Hence, in the
following, we discuss the case where the PL condition is

not satisfied and show for both step sizes that they are still
able to move to a critical point at the optimal speed.
Theorem 3. Assume (A1), (A3) and c > 1. SGD with step
sizes (2) with η0 = (cL(1 + a))−1 guarantees

E‖∇f(x̃T )‖2 ≤
3Lc(a+ 1) ln T

β

T − β
· (f(x1)− f?)

+
bT

c(a+ 1)(T − β)
,

where x̃T is a random iterate drawn from x1, . . . ,xT with
P[x̃T = xt] = ηt∑T

i=1 ηi
.

Theorem 4. Assume (A1), (A3) and c > 1. SGD with step
sizes (3) with η0 = (cL(1 + a))−1 guarantees

E‖∇f(x̃T )‖2 ≤ 4Lc(a+ 1)

T − 1
· (f(x1)− f?)

+
21bT

4π4cL(a+ 1)(T − 1)
,

where x̃T is a random iterate drawn from x1, . . . ,xT with
P[x̃T = xt] = ηt∑T

i=1 ηi
.

If b 6= 0 in (A3), setting c ∝
√
T and β = O(1) would

give the Õ(1/
√
T ) rate2 and O(1/

√
T ) for the exponential

and cosine step size respectively. Note that the optimal rate
in this setting is O(1/

√
T ). On the other hand, if b = 0,

setting c = O(1) and β = O(1) yields a Õ(1/T ) rate and
O(1/T ) for the exponential and cosine step size respectively.
It is worth noting that the condition b = 0 holds in many
practical scenarios (Vaswani et al., 2019a). Note that both
guarantees are optimal up to poly-logarithmic terms (Arje-
vani et al., 2019).

In the following, we present the main elements of the proofs
of these theorems, leaving the technical details in the Ap-
pendix. The proofs also show the mathematical similarities
between these two step sizes.

Proofs of the Theorems Given that the space is limited,
we defer the proofs of Theorem 3 and Theorem 4 to the
Appendix.

We first introduce some technical lemmas whose proofs are
in the Appendix.
Lemma 1. Assume (A1), (A3), and ηt ≤ 1

L(1+a) . SGD
guarantees

Ef(xt+1)− Ef(xt) ≤ −
ηt
2
E‖∇f(xt)‖2 +

Lη2t b

2
. (4)

Lemma 2. Assume Xk, Ak, Bk ≥ 0, k = 1, ..., and
Xk+1 ≤ AkXk +Bk, then we have

Xk+1 ≤
k∏
i=1

AiX1 +

k∑
i=1

k∏
j=i+1

AjBi .

2The Õ notations hides poly-logarithmic terms.



A Second look at Exponential and Cosine Step Sizes

Lemma 3. For ∀T ≥ 1, we have
∑T
t=1 cos tπT = −1.

Lemma 4. For T ≥ 3, α ≥ 0.69 and αT+1

(1−α) ≤
2β
ln T

β

.

Lemma 5. 1− x ≤ ln
(
1
x

)
,∀x > 0.

Lemma 6. Let a, b ≥ 0. Then

T∑
t=0

exp(−bt)ta ≤ 2 exp(−a)
(a
b

)a
+

Γ(a+ 1)

ba+1
.

We can now prove both Theorem 1 and Theorem 2.

Proof of Theorem 1 and Theorem 2. Denote Ef(xt) − f?
by ∆t. From Lemma 1 and the PL condition, we get

∆t+1 ≤ (1− µηt)∆t +
L

2
η2t b

2 .

By Lemma 2 and 1− x ≤ exp(−x), we have

∆T+1 ≤
T∏
t=1

(1− µηt)∆1 +
L

2

T∑
t=1

T∏
i=t+1

(1− µηi)η2t b

≤ exp

(
−µ

T∑
t=1

ηt

)
∆1 +

Lb

2

T∑
t=1

exp

(
−µ

T∑
i=t+1

ηi

)
η2t .

We then show that both the exponential step size and the
cosine step size satisfy

∑T
t=1 ηt = Ω(T ), which guarantees

a linear rate in the noiseless case.

For the cosine step size (3), we observe that

T∑
t=1

ηt =
η0T

2
+
η0
2

T∑
t=1

cos
tπ

T
=
η0(T − 1)

2
,

where in the last equality we used Lemma 3.

Also, for the exponential step size (2), we can show

T∑
t=1

ηt = η0
α− αT+1

1− α
≥ η0α

1− α
− 2η0β

ln T
β

≥ T · 0.69η0

ln T
β

− 2η0β

ln T
β

,

where we used Lemma 4 in the first inequality and Lemma 5
in the second inequality.

Next, we upper bound
∑T
t=1 exp

(
−µ
∑T
i=t+1 ηi

)
η2t for

these two kinds of step sizes respectively.

For the exponential step size, by Lemma 4, we obtain

T∑
t=1

exp

(
−µ

T∑
i=t+1

ηi

)
η2t

= η20

T∑
t=1

exp

(
−µη0

αt+1 − αT+1

1− α

)
α2t

≤ η20C(β)

T∑
t=1

exp

(
−µη0α

t+1

1− α

)
α2t

≤ η20C(β)

T∑
t=1

(
e

2

µαt+1

L(1 + a)(1− α)

)−2
α2t

≤ 4L2(1 + a)2

e2µ2

T∑
t=1

1

α2
ln2

(
1

α

)
≤

10L2(1 + a)2 ln2 T
β

e2µ2T
,

where in the second inequality we used exp(−x) ≤(
γ
ex

)γ
,∀x > 0, γ > 0.

For the cosine step size, using the fact that sinx ≥ 2
πx for

0 ≤ x ≤ π
2 , we can lower bound

∑T
i=t+1 ηi by

T∑
i=t+1

ηi =
η0
2

T∑
i=t+1

(
1 + cos

iπ

T

)

=
η0
2

T−t−1∑
i=0

sin2 iπ

2T
≥ η0

2T 2

T−t−1∑
i=0

i2

≥ η0(T − t− 1)3

6T 2
.

Then, we proceed

T∑
t=1

exp

(
−µ

T∑
i=t+1

ηi

)
η2t

≤ η20
4

T∑
t=1

(
1 + cos

tπ

T

)2

exp

(
−µη0(T − t− 1)3

6T 2

)

=
η20
4

T−1∑
t=1

(
1− cos

tπ

T

)2

exp

(
−η0µ(t− 1)3

6T 2

)

= η20

T−1∑
t=1

sin4 tπ

2T
exp

(
−η0µ(t− 1)3

6T 2

)

≤ η20π
4

16T 4

T−1∑
t=0

t4 exp

(
−η0µt

3

6T 2

)

≤ η0π
4

16T 4

(
2 exp

(
−4

3

)(
8T 2

µ

)4/3

+

(
6T 2

µ

) 5
3

)
,

where in the third line we used cos(π − x) = − cos(x), in
the forth line we used 1− cos(2x) = 2 sin2(x), and in the
last inequality we applied Lemma 6.

Putting things together, we get the stated bounds.



A Second look at Exponential and Cosine Step Sizes

Figure 1. Training loss (top plots) and test accuracy (bottom plots) curves on employing different step size schedules to do image
classification using a simple CNN for FashionMNIST (left), a 20-layer ResNet for CIFAR-10 (middle), and a 100-layer DenseNet on
CIFAR-100 (right). (The shading of each curve represents the 95% confidence interval computed across five independent runs from
random initial starting points.)

5. Empirical Results
The empirical performance of the cosine step size is already
well-known in the applied world and does not require
additional validation. However, both the exponential
and the cosine step size are often missing as baselines
in recent empirical evaluations. Hence, the main aim of
this section is to provide a comparison of the exponential
and cosine step sizes to other popular state-of-the-art
step sizes methods. All experiments are done in Py-
Torch (Paszke et al., 2019) and the codes can be found
at https://github.com/zhenxun-zhuang/
SGD-Exponential-Cosine-Stepsize.

We performed experiments using deep neural networks to
do image classification tasks on various datasets with dif-
ferent network architectures. Additionally, Appendix A.3.3
features an experiment on a Natural Language Processing
(NLP) task, where the exponential and cosine step size
strategies obtain better results than Adam (Kingma & Ba,
2015), the de-facto optimization method in NLP. Finally, in
Appendix A.3.1, we include a synthetic experiment where
those assumptions we need in analysis hold and show in
detail the noise adaptation of both step sizes as predicted by
the theory.

All models and experiments were carefully chosen to be
easily reproducible.

Datasets We consider the image classification task on Fash-

ionMNIST and CIFAR-10/100 datasets. For all datasets, we
select 10% training images as the validation set. Data aug-
mentation and normalization are described in the Appendix.

Models For FashionMNIST, we use a CNN model consist-
ing of two alternating stages of 5× 5 convolutional filters
and 2×2 max-pooling followed by one fully connected layer
of 1024 units. To reduce overfitting, 50% dropout noise is
used during training. For the CIFAR-10 dataset, we employ
the 20-layer Residual Network model (He et al., 2016); and
for CIFAR-100, we utilize the DenseNet-BC model (Huang
et al., 2017) with 100 layers and a growth rate of 12. The
loss is cross-entropy. The codes for implementing the latter
two models can be found here3 and here4 respectively.

Training During the validation stage, we tune each method
using the grid search (full details in the Appendix) to se-
lect the hyperparameters that work best according to their
respective performance on the validation set. At the testing
stage, the best performing hyperparameters from the valida-
tion stage are employed to train the model over all training
images. The testing stage is repeated with random seeds for
5 times to eliminate the influence of stochasticity.

We use Nesterov momentum (Nesterov, 1983) of 0.9 without
3https://github.com/akamaster/pytorch_

resnet_cifar10
4https://github.com/bearpaw/

pytorch-classification

https://github.com/zhenxun-zhuang/SGD-Exponential-Cosine-Stepsize
https://github.com/zhenxun-zhuang/SGD-Exponential-Cosine-Stepsize
https://github.com/akamaster/pytorch_resnet_cifar10
https://github.com/akamaster/pytorch_resnet_cifar10
https://github.com/bearpaw/pytorch-classification
https://github.com/bearpaw/pytorch-classification


A Second look at Exponential and Cosine Step Sizes

Figure 2. Training loss (top plots) and test accuracy (bottom plots) curves comparing the exponential and cosine step sizes with stagewise
step decay for image classification using a simple CNN for FashionMNIST (left), a 20-layer ResNet for CIFAR-10 (middle), and a
100-layer DenseNet on CIFAR-100 (right). (The shading of each curve represents the 95% confidence interval computed across five
independent runs from random initial starting points.)

dampening (if having this option), weight-decay of 0.0001
(FashionMNIST and CIFAR-10) and 0.0005 (CIFAR100),
and use a batch size of 128. Regarding the employment
of Nesterov momentum, we follow the setting of Ge et al.
(2019). The use of momentum is essential to have a fair
and realistic comparison in that the majority of practitioners
would use it when using SGD.

Optimization methods We consider SGD with the follow-
ing step size decay schedules:

ηt = η0 · αt; ηt = η0(1 + α
√
t)−1;

ηt = η0(1 + αt)−1; ηt = η0/2 (1 + cos (tπ/T )) ,
(5)

where t is the iteration number (instead of the number of
epochs). We also compare with Adam (Kingma & Ba, 2015),
SGD+Armijo (Vaswani et al., 2019b), PyTorch’s ReduceL-
ROnPlateau scheduler5 and stagewise step decay. In the
following, we will call the place of decreasing the step
size in stagewise step decay a milestone. (As a side note,
since we use Nesterov momentum in all SGD variants, the
stagewise step decay basically covers the performance of
multistage accelerated algorithms (e.g., Aybat et al., 2019).)

Results and discussions The exact loss and accuracy values
are reported in Table 1. To avoid overcrowding the figures,
we compare the algorithms in groups of baselines. The

5https://pytorch.org/docs/stable/optim.
html

comparison of performance between step size schemes listed
in (5), Adam, and SGD+Armijo are shown in Figure 1. As
can be seen, the only two methods that perform well on all
3 datasets are cosine and exponential step size. In particular,
cosine step size performs the best across datasets both in
training loss and test accuracy, with the exponential step
size following closely.

On the other hand, as we noted above, stagewise step decay
is a very popular decay schedule in deep learning. Thus,
our second group of baselines in Figure 2 is composed by
the stagewise step decay, ReduceLROnPlateau, and SGD
with constant stepsize. The results show that exponential
and cosine step sizes can still match or exceed the best of
them with a fraction of their needed time to find the best
hyperparameters. Indeed, we need 4 hyperparameters for
two milestones, 3 for one milestone, and at least 4 for Re-
duceLROnPlateau. In contrast, the cosine step size requires
only 1 hyperparameter and the exponential one needs 2.

Note that we do not pretend that our benchmark of the
stagewise step decay is exhaustive. Indeed, there are
many unexplored (potentially infinite!) possible hyper-
parameter settings. For example, it is reasonable to
expect that adding even more milestones at the appro-
priate times could lead to better performance. How-
ever, this would result in a linear growth of the num-
ber of hyperparameters leading to an exponential in-
crease in the number of possible location combinations.

https://pytorch.org/docs/stable/optim.html
https://pytorch.org/docs/stable/optim.html


A Second look at Exponential and Cosine Step Sizes

Table 1. Average final training loss and test accuracy achieved by each method when optimizing respective models on each dataset. The ±
shows 95% confidence intervals of the mean loss/accuracy value over 5 runs starting from different random seeds.

Methods FashionMNIST CIFAR10 CIFAR100
Training loss Test accuracy Training loss Test accuracy Training loss Test accuracy

SGD Constant Step Size 0.0068± 0.0023 0.9297± 0.0033 0.2226± 0.0169 0.8674± 0.0048 1.1467± 0.1437 0.5896± 0.0404
O(1/t) Step Size 0.0013± 0.0004 0.9297± 0.0021 0.0331± 0.0028 0.8894± 0.0040 0.3489± 0.0263 0.6874± 0.0076

O(1/
√
t) Step Size 0.0016± 0.0005 0.9262± 0.0014 0.0672± 0.0086 0.8814± 0.0034 0.8147± 0.0717 0.6336± 0.0169

Adam 0.0203± 0.0021 0.9168± 0.0023 0.1161± 0.0111 0.8823± 0.0041 0.6513± 0.0154 0.6478± 0.0054
SGD+Armijo 0.0003± 0.0000 0.9284± 0.0016 0.0185± 0.0043 0.8973± 0.0071 0.1063± 0.0153 0.6768± 0.0044

ReduceLROnPlateau 0.0031± 0.0009 0.9294± 0.0015 0.0867± 0.0230 0.9033± 0.0049 0.0927± 0.0085 0.7435± 0.0076
Stagewise - 1 Milestone 0.0007± 0.0002 0.9294± 0.0018 0.0269± 0.0017 0.9062± 0.0020 0.2673± 0.0084 0.7459± 0.0030
Stagewise - 2 Milestones 0.0023± 0.0005 0.9283± 0.0024 0.0322± 0.0008 0.9174± 0.0020 0.1783± 0.0030 0.7487± 0.0025

Exponential Step Size 0.0006± 0.0001 0.9290± 0.0009 0.0098± 0.0010 0.9188± 0.0033 0.0714± 0.0041 0.7398± 0.0037
Cosine Step Size 0.0004± 0.0000 0.9285± 0.0019 0.0106± 0.0008 0.9199± 0.0029 0.0949± 0.0053 0.7497± 0.0044

Figure 3. Plot showing that decreasing
the step size too soon would lead to over-
fitting (ResNet20 on CIFAR10).

This in turn causes
the rapid growth
of tuning time in
selecting a good
set of milestones
in practice. Worse
still, even the
intuition that one
should decrease
the step size once
the test loss curve
stops decreasing
is not always
correct. Indeed,
we observed in
experiments (see Figure 3) that doing this will, after the
initial drop of the curve in response to the step size decrease,
make the test loss curve gradually go up again.

6. Conclusion
We have analyzed theoretically and empirically the expo-
nential and cosine step size, two successful step size decay
schedules for the stochastic optimization of non-convex
functions. We have shown that, up to poly-logarithmic
terms, both step sizes guarantee convergence with the best-
known rates for smooth non-convex functions. Moreover,
in the case of functions satisfying the PL condition, we
have also proved that they are both adaptive to the level of
noise. Furthermore, we have validated our theoretical find-
ings on both synthetic and real-world tasks, showing that
these two step sizes consistently match or outperform other
strategies, while at the same time requiring only 1 (cosine) /
2 (exponential) hyperparameters to tune.

In future work, we plan to extend our theoretical results. For
example, high probability bounds are easy to be obtained
from our results.

Acknowledgements
This material is based upon work supported by the National
Science Foundation under grants no. 1925930 “Collabo-

rative Research: TRIPODS Institute for Optimization and
Learning”, no. 1908111 “AF: Small: Collaborative Re-
search: New Representations for Learning Algorithms and
Secure Computation”, and no. 2022446 “Foundations of
Data Science Institute”.

References
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,

Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard,
M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Lev-
enberg, J., Mané, D., Monga, R., Moore, S., Murray, D.,
Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever,
I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan,
V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M.,
Wicke, M., Yu, Y., and Zheng, X. TensorFlow: Large-
scale machine learning on heterogeneous systems, 2015.

Allen-Zhu, Z., Li, Y., and Song, Z. A convergence theory for
deep learning via over-parameterization. In International
Conference on Machine Learning, pp. 242–252. PMLR,
2019.

Arjevani, Y., Carmon, Y., Duchi, J. C., Foster, D. J.,
Srebro, N., and Woodworth, B. Lower bounds for
non-convex stochastic optimization. arXiv preprint
arXiv:1912.02365, 2019.

Arora, S., Ge, R., Ma, T., and Moitra, A. Simple, efficient,
and neural algorithms for sparse coding. In P, G., Hazan,
E., and Kale, S. (eds.), Proc. of The 28th Conference
on Learning Theory, volume 40 of Proc. of Machine
Learning Research, pp. 113–149, Paris, France, 03–06
Jul 2015. PMLR.

Auer, P., Cesa-Bianchi, N., and Gentile, C. Adaptive and
self-confident on-line learning algorithms. J. Comput.
Syst. Sci., 64(1):48–75, 2002.

Aybat, N. S., Fallah, A., Gurbuzbalaban, M., and Ozdaglar,
A. A universally optimal multistage accelerated stochastic
gradient method. In Advances in Neural Information
Processing Systems, pp. 8523–8534, 2019.



A Second look at Exponential and Cosine Step Sizes

Bach, F. and Moulines, E. Non-asymptotic analysis of
stochastic approximation algorithms for machine learning.
In Shawe-Taylor, J., Zemel, R. S., Bartlett, P. L., Pereira,
F., and Weinberger, K. Q. (eds.), Advances in Neural
Information Processing Systems 24, pp. 451–459. Curran
Associates, Inc., 2011.

Berrada, L., Zisserman, A., and Kumar, M. Deep Frank-
Wolfe for neural network optimization. International
Conference on Learning Representations, 2019.

Bertsekas, D. P. and Tsitsiklis, J. N. Neuro-Dynamic Pro-
gramming. Athena Scientific, 1996.

Bowman, S., Angeli, G., Potts, C., and Manning, C. A large
annotated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing (EMNLP). As-
sociation for Computational Linguistics, 2015.

Chen, J., Zhou, D., Tang, Y., Yang, Z., and Gu, Q. Clos-
ing the generalization gap of adaptive gradient meth-
ods in training deep neural networks. arXiv preprint
arXiv:1806.06763, 2018.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. A
simple framework for contrastive learning of visual rep-
resentations. In Daumé, III, H. and Singh, A. (eds.),
Proceedings of the 37th International Conference on Ma-
chine Learning, volume 119 of Proceedings of Machine
Learning Research, pp. 1597–1607. PMLR, 13–18 Jul
2020.

Chen, Y. and Candes, E. Solving random quadratic systems
of equations is nearly as easy as solving linear systems.
In Cortes, C., Lawrence, N. D., Lee, D. D., Sugiyama, M.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems 28, pp. 739–747. Curran Associates,
Inc., 2015.

Conneau, A., Kiela, D., Schwenk, H., Barrault, L., and
Bordes, A. Supervised learning of universal sentence rep-
resentations from natural language inference data. In Pro-
ceedings of the 2017 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pp. 670–680,
Copenhagen, Denmark, September 2017. Association for
Computational Linguistics.

Cubuk, E. D., Zoph, B., Mane, D., Vasudevan, V., and Le,
Q. V. Autoaugment: Learning augmentation strategies
from data. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 113–
123, 2019.

Cutkosky, A. and Orabona, F. Black-box reductions for
parameter-free online learning in Banach spaces. In Proc.
of the Conference on Learning Theory (COLT), 2018.

Davis, D., Drusvyatskiy, D., and Charisopoulos, V.
Stochastic algorithms with geometric step decay con-
verge linearly on sharp functions. arXiv preprint
arXiv:1907.09547, 2019.

Davis, D., Drusvyatskiy, D., Xiao, L., and Zhang, J. From
low probability to high confidence in stochastic convex
optimization. Journal of Machine Learning Research, 22
(49):1–38, 2021.

Duchi, J., Hazan, E., and Singer, Y. Adaptive subgradient
methods for online learning and stochastic optimization.
In COLT, 2010.

Gastaldi, X. Shake-shake regularization of 3-branch residual
networks. In Proc. of the International Conference on
Learning Representations, 2017.

Ge, R., Kakade, S. M., Kidambi, R., and Netrapalli, P. The
step decay schedule: A near optimal, geometrically de-
caying learning rate procedure for least squares. In Ad-
vances in Neural Information Processing Systems, pp.
14951–14962, 2019.

Ghadimi, S. and Lan, G. Stochastic first- and zeroth-order
methods for nonconvex stochastic programming. SIAM
Journal on Optimization, 23(4):2341–2368, 2013.

Ginsburg, B., Castonguay, P., Hrinchuk, O., Kuchaiev, O.,
Lavrukhin, V., Leary, R., Li, J., Nguyen, H., Zhang, Y.,
and Cohen, J. M. Stochastic gradient methods with layer-
wise adaptive moments for training of deep networks.
arXiv preprint arXiv:1905.11286, 2019.

Goffin, J.-L. On convergence rates of subgradient opti-
mization methods. Mathematical programming, 13(1):
329–347, 1977.

Grill, J., Strub, F., Altché, F., Tallec, C., Richemond, P.,
Buchatskaya, E., Doersch, C., Avila P., B., Guo, Z.,
Gheshlaghi Azar, M., Piot, B., kavukcuoglu, K., Munos,
R., and Valko, M. Bootstrap your own latent - a new
approach to self-supervised learning. In Larochelle, H.,
Ranzato, M., Hadsell, R., Balcan, M. F., and Lin, H.
(eds.), Advances in Neural Information Processing Sys-
tems, volume 33, pp. 21271–21284. Curran Associates,
Inc., 2020.

Hazan, E. and Kale, S. Beyond the regret minimization bar-
rier: an optimal algorithm for stochastic strongly-convex
optimization. In Kakade, S. M. and von Luxburg, U.
(eds.), Proc. of the 24th Annual Conference on Learn-
ing Theory, volume 19 of Proc. of Machine Learning
Research, pp. 421–436, Budapest, Hungary, 09–11 Jun
2011. PMLR.



A Second look at Exponential and Cosine Step Sizes

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In Proc. of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

He, T., Zhang, Z., Zhang, H., Zhang, Z., Xie, J., and Li, M.
Bag of tricks for image classification with convolutional
neural networks. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2019.

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger,
K. Q. Densely connected convolutional networks. In
Proceedings of the IEEE conference on Computer Vision
and Pattern Recognition, pp. 4700–4708, 2017.

Jin, C., Ge, R., Netrapalli, P., Kakade, S., and Jordan, M. I.
How to escape saddle points efficiently. In Proc. of the
34th International Conference on Machine Learning, vol-
ume 70, pp. 1724–1732. PMLR, 2017.

Karimi, H., Nutini, J., and Schmidt, M. Linear conver-
gence of gradient and proximal-gradient methods under
the Polyak-Łojasiewicz condition. In Joint European Con-
ference on Machine Learning and Knowledge Discovery
in Databases, pp. 795–811. Springer, 2016.

Khaled, A. and Richtárik, P. Better theory for SGD in
the nonconvex world. arXiv preprint arXiv:2002.03329,
2020.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In International Conference on Learning
Representations (ICLR), 2015.

Kleinberg, B., Li, Y., and Yuan, Y. An alternative
view: When does SGD escape local minima? In
Dy, J. and Krause, A. (eds.), Proc. of the 35th Inter-
national Conference on Machine Learning, volume 80
of Proc. of Machine Learning Research, pp. 2698–2707,
Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018.
PMLR.

Kulunchakov, A. and Mairal, J. A generic acceleration
framework for stochastic composite optimization. In
Advances in Neural Information Processing Systems, pp.
12556–12567, 2019.

Lawen, H., Ben-Cohen, A., Protter, M., Friedman, I., and
Zelnik-Manor, L. Attention network robustification for
person ReID. arXiv preprint arXiv:1910.07038, 2019.

Lee, C., Xie, S., Gallagher, P., Zhang, Z., and Tu, Z. Deeply-
supervised nets. In Proc. of the Eighteenth International
Conference on Artificial Intelligence and Statistics, vol-
ume 38, pp. 562–570. PMLR, 2015.

Lei, L., Ju, C., Chen, J., and Jordan, M. I. Non-convex
finite-sum optimization via SCSG methods. In Advances

in Neural Information Processing Systems 30, pp. 2348–
2358. Curran Associates, Inc., 2017.

Levy, K. Y., Yurtsever, A., and Cevher, V. Online adaptive
methods, universality and acceleration. In Advances in
Neural Information Processing Systems, pp. 6500–6509,
2018.

Li, X. and Orabona, F. On the convergence of stochastic
gradient descent with adaptive stepsizes. In Proc. of the
22nd International Conference on Artificial Intelligence
and Statistics, AISTATS, 2019.

Li, X. and Orabona, F. A high probability analysis of adap-
tive SGD with momentum. In ICML 2020 Workshop on
Beyond First Order Methods in ML Systems, 2020.

Li, Z., Bao, H., Zhang, X., and Richtárik, P. Page: A sim-
ple and optimal probabilistic gradient estimator for non-
convex optimization. arXiv preprint arXiv:2008.10898,
2020.

Liu, H., Simonyan, K., and Yang, Y. Darts: Differentiable ar-
chitecture search. In International Conference on Learn-
ing Representations, 2018.

Łojasiewicz, S. A topological property of real analytic
subsets (in french). Coll. du CNRS, Les équations aux
dérivées partielles, pp. 87–89, 1963.

Loshchilov, I. and Hutter, F. SGDR: Stochastic gradient
descent with warm restarts. In International Conference
on Learning Representations, 2017.

McMahan, H. B. and Streeter, M. J. Adaptive bound opti-
mization for online convex optimization. In COLT, 2010.

Nesterov, Y. A method for unconstrained convex minimiza-
tion problem with the rate of convergence O(1/k2). In
Doklady AN SSSR (translated as Soviet. Math. Docl.),
volume 269, pp. 543–547, 1983.

Nesterov, Y. Introductory lectures on convex optimization:
A basic course, volume 87. Springer, 2004.

Nesterov, Y. Universal gradient methods for convex op-
timization problems. Mathematical Programming, 152
(1-2):381–404, 2015.

Orabona, F. A modern introduction to online learning. arXiv
preprint arXiv:1912.13213, 2019.

Orabona, F. and Pál, D. Scale-free algorithms for online
linear optimization. In International Conference on Algo-
rithmic Learning Theory, pp. 287–301. Springer, 2015.

Orabona, F. and Pál, D. Scale-free online learning. Theoret-
ical Computer Science, 716:50–69, 2018. Special Issue
on ALT 2015.



A Second look at Exponential and Cosine Step Sizes

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,
Bai, J., and Chintala, S. Pytorch: An imperative style,
high-performance deep learning library. In Advances
in Neural Information Processing Systems 32, pp. 8024–
8035. Curran Associates, Inc., 2019.

Pennington, J., Socher, R., and Manning, C. GloVe: Global
vectors for word representation. In Proceedings of the
2014 Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pp. 1532–1543, 2014.

Polyak, B. T. Gradient methods for minimizing functionals.
Zhurnal Vychislitel’noi Matematiki i Matematicheskoi
Fiziki, 3(4):643–653, 1963.

Reddi, S. J., Hefny, A., Sra, S., Poczos, B., and Smola, A.
Stochastic variance reduction for nonconvex optimization.
In International conference on machine learning, pp. 314–
323, 2016.

Reddi, S. J., Kale, S., and Kumar, S. On the convergence
of Adam and beyond. In International Conference on
Learning Representations, 2018.

Robbins, H. and Monro, S. A stochastic approximation
method. Annals of Mathematical Statistics, 22:400–407,
1951.

Sun, R. and Luo, Z. Guaranteed matrix completion via non-
convex factorization. IEEE Transactions on Information
Theory, 62(11):6535–6579, 2016.

Tieleman, T. and Hinton, G. Lecture 6.5-rmsprop: Divide
the gradient by a running average of its recent magnitude.
COURSERA: Neural Networks for Machine Learning,
2012.

Vaswani, S., Bach, F., and Schmidt, M. Fast and faster con-
vergence of SGD for over-parameterized models and an
accelerated Perceptron. In Chaudhuri, K. and Sugiyama,
M. (eds.), Proc. of the 22nd International Conference on
Artificial Intelligence and Statistics, volume 89 of Proc.
of Machine Learning Research, pp. 1195–1204. PMLR,
16–18 Apr 2019a.

Vaswani, S., Mishkin, A., Laradji, I., Schmidt, M., Gidel,
G., and Lacoste-Julien, S. Painless stochastic gradient:
Interpolation, line-search, and convergence rates. In Ad-
vances in Neural Information Processing Systems, pp.
3727–3740, 2019b.

Ward, R., Wu, X., and Bottou, L. AdaGrad stepsizes: Sharp
convergence over nonconvex landscapes. In Interna-
tional Conference on Machine Learning, pp. 6677–6686.
PMLR, 2019.

Ward, R., Wu, X., and Bottou, L. AdaGrad stepsizes: Sharp
convergence over nonconvex landscapes. Journal of Ma-
chine Learning Research, 21(219):1–30, 2020.

You, J., Leskovec, J., He, K., and Xie, S. Graph structure of
neural networks. In International Conference on Machine
Learning, pp. 10881–10891. PMLR, 2020.

Yuan, Z., Yan, Y., Jin, R., and Yang, T. Stagewise training
accelerates convergence of testing error over sgd. In
Advances in Neural Information Processing Systems, pp.
2604–2614, 2019.

Zeiler, M. D. ADADELTA: an adaptive learning rate method.
arXiv preprint arXiv:1212.5701, 2012.

Zhang, X., Wang, Q., Zhang, J., and Zhong, Z. Adversarial
autoaugment. In International Conference on Learning
Representations, 2019a.

Zhang, Z., Wu, Y., and Wang, G. Bpgrad: Towards global
optimality in deep learning via branch and pruning. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 3301–3309, 2018.

Zhang, Z., He, T., Zhang, H., Zhang, Z., Xie, J., and Li,
M. Bag of freebies for training object detection neural
networks. arXiv preprint arXiv:1902.04103, 2019b.

Zhao, H., Jia, J., and Koltun, V. Exploring self-attention
for image recognition. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), June 2020.

Zhou, Z., Mertikopoulos, P., Bambos, N., Boyd, S., and
Glynn, P. W. Stochastic mirror descent in variationally
coherent optimization problems. In Advances in Neural
Information Processing Systems, pp. 7043–7052, 2017.

Zhu, Z. Natasha 2: Faster non-convex optimization than
SGD. In Bengio, S., Wallach, H., Larochelle, H., Grau-
man, K., Cesa-Bianchi, N., and Garnett, R. (eds.), Ad-
vances in Neural Information Processing Systems 31, pp.
2675–2686. Curran Associates, Inc., 2018.

Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. V. Learning
transferable architectures for scalable image recognition.
In Proc. of the IEEE conference on computer vision and
pattern recognition, pp. 8697–8710, 2018.


