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Abstract

This supplementary document contains a detailed
description of MEDA biochips, the CNN architec-
ture for the MARL agents, the full set of MARL
training processes, and the MARL evaluation re-
sults.

1. Microelectrode-Dot-Array Biochips
The MEDA biochip platform has been proposed in recent
years to further advance microfluidics technology (Lai et al.,
2015b; Ho et al., 2016). A MEDA biochip is composed of a
two-dimensional microelectrode array that manipulates dis-
crete fluid droplets. MEDA biochips manipulate nanoliter
droplets using the principle of electrowetting-on-dielectric
(EWOD) (Pollack et al., 2000). When driven by a sequence
of control voltages, the microelectrode array can perform
fluidic operations, such as dispensing, mixing, and split-
ting (Wang et al., 2011; Zhong et al., 2020b). Using MEDA
biochips, bioassay protocols are scaled down to droplet size
and executed through software-based control of nanoliter
droplets. Figure 1(a) shows a fabricated MEDA biochip,
where a droplet is present.

MEDA biochips manipulate nanoliter droplets using the
principle of electrowetting-on-dielectric (EWOD) (Pollack
et al., 2000). EWOD refers to the modulation of the interfa-
cial tension between a conductive fluid and a solid electrode
coated with a dielectric layer by applying an electric field
between them. As shown in Figure 1(b), an imbalance of
interfacial tension is created if an electric field is applied to
only one side of the droplet; this interfacial tension gradient
forces the droplet to move toward to the right.

Compared with traditional EWOD biochips, the most sig-
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Figure 1. (a) Top-view of a fabricated MEDA biochip. A droplet is
present on a 30× 60 MEDA biochip. (b) Side-view of the MEDA
biochip. (c) Schematic of the microelectrode cell. (d) Real-time
sensing result indicates the droplet location.

nificant advantage of using MEDA biochips is that MEDA
architecture supports real-time sensing of droplets (Wang
et al., 2011; Ho et al., 2016). A MEDA biochip is com-
posed of an array of identical microelectrode cells (MCs);
see Figure 1(c). It has been fabricated at TSMC using a
mainstream 0.35 µm CMOS process. Each MC consists of
a microelectrode, an electronic control circuit, and a sens-
ing module that enables real-time sensing of droplets. An
example of a sensing result (a two-dimensional Boolean
array) obtained from a fabricated MEDA biochip is shown
in Figure 1(d). The sensing results have been used for real-
time point-of-care diagnostics such as glucose level test and
follicle-stimulating hormone test (Lai et al., 2015a).



As microfluidic biochips are being used for critical point-of-
care diagnostics, reliability in these systems has become an
important focus of research (Zhong et al., 2020a; Liang et al.,
2020b). It has been reported that the unit cells (i.e., elec-
trodes) of an EWOD biochip degrade over time (Verheijen &
Prins, 1999; Chakrabarty, 2009; Drygiannakis et al., 2009).
Electrode degradation results from charge trapping in the di-
electric insulator (Dong et al., 2015); therefore, a degraded
electrode cannot be observed using a CCD camera. Fluidic
operations, such as droplet transportation, associated with
the degraded microelectrode can fail, thereby compromis-
ing the integrity of the bioassay outcome. MEDA biochips,
in particular, are more susceptible microelectrode degrada-
tion than other EWOD biochips because microelectrodes in
MEDA biochips are charged during not only droplet actua-
tion, but also during droplet sensing, i.e., a microelectrode
in MEDA biochips is charged more frequently than in other
EWOD biochips (Zhong et al., 2020a).

2. Neural Network for the MARL Agent
Various neural network architectures have been proposed
over the past few years (Simonyan & Zisserman, 2014;
Howard et al., 2017; Gatys et al., 2015). We consider fab-
ricated MEDA biochips as test cases and evaluate the ef-
fectiveness of MARL-based adaptation using arrays of size
30× 60 and 80× 60 (Lai et al., 2015b). These array dimen-
sions correspond to the sizes of fabricated MEDA biochips.
Prior work has shown that while fully-connected neural
networks are effective for the droplet-routing problem for
small biochip instances (less than 100 electrodes), they do
not converge for large biochips (Liang et al., 2020a). There-
fore, we evaluated several convolutional neural networks
(CNNs) (Lerer et al., 2020), and many of them are effective.
However, because the network needs to be loaded on an
affordable biochip platform, the computational resources
on the associated controller may be limited compared to a
server. For example, in (Willsey et al., 2019), the cyber-
physical biochip system includes only a quad-core 1.2 GHz
ARMv7 processor with 1 GB RAM, and it does not contain
a GPU; therefore, large networks are not feasible in this ap-
plication scenario. We tested several options for the number
of hidden layers and number of neurons per layer. We found
that a simple CNN, as described in Table 1, can solve the
droplet-routing problem for large MEDA with more than
4, 000 electrodes.

3. Training Processes
We consider fabricated MEDA biochips as test cases and
evaluate the effectiveness of RL-based adaptation using ar-
rays of size 30 × 60 and 80 × 60 (Lai et al., 2015b). We
evaluated three RL algorithms, i.e. double DQN, PPO, and
ACER, using three training schemes, namely centralized,

Table 1. The convolutional neural network configuration used in
this work.

Layer Type Depth Activation Stride Padding
1 Convolution 32 ReLU 3 1
2 Convolution 32 ReLu 3 1
3 Max Pool N/A N/A 2 1
4 Convolution 64 ReLU 3 1
5 Convolution 64 ReLu 3 1
6 Max Pool N/A N/A 2 1
7 Convolution 128 ReLU 3 1
8 Convolution 128 ReLu 3 1
9 Max Pool N/A N/A 2 1
10 Fully-Connected 8 ReLU N/A N/A

concurrent, and parameter sharing. We compare the MARL
approaches with two baseline methods: 1) the single-agent
RL framework in (Liang et al., 2020a) and 2) a static (offline)
routing method in (Keszocze et al., 2017). We illustrate
training processes for the MEDA-Env that contains 30× 60
microelectrodes in Figure 2. For each training game of
MEDA-Env, nrt random routing tasks are generated, where
1 < nrt ≤ 4. A training epoch contains 20, 000 timesteps.
We observe that ACER is the most sample-efficient algo-
rithm in decentralized learning. However, ACER encounters
scalability issues in centralized learning, where reward be-
comes sparse in an exponentially growing action space.

Because double DQN and the single-agent model do not
converge in all the 30×60 MEDA environments, we did not
run these methods in 80×60 MEDA environments. Training
processes of 80 × 60 MEDA biochips are illustrated in
Figure 3. Unlike the results in 30× 60 MEDA biochips, we
observe that only ACER converges in decentralized learning.
However, only PPO improves its performance in centralized
learning. ACER is trapped in local minima in centralized
learning.

4. MARL Evaluation
We evaluate the performance of the models in a realistic
simulation setting, where microelectrodes degrade over time.
The training processes in Section 3 show that models in
concurrent schemes are more sample-efficient than the other
schemes. Therefore, we used the PPO and ACER models
that have been trained to achieve the same performance as
that of the baseline (Keszocze et al., 2017). Figure 4 shows
the simulation results when microelectrodes in MEDA-Env
degrade over time, where W = 30 and L = 60. After the
biochip is used for a while, we see that the performance of
the baseline method degrades because the baseline method
does not know which microelectrode is degraded and cannot
dynamically change the routing paths. On the other hand,
the MARL model “learns” the degradation process of the
biochip and alter the routing paths accordingly. Therefore,
the MARL model outperforms the baseline.

As shown in Section 3, ACER is the only algorithm that
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Figure 2. Training process corresponding to different RL algorithms and training schemes in a 30 × 60 MEDA biochip. Score is the
total reward that the MARL agents receive in a game. The performance is compared with two baseline methods: 1) a single-agent RL
method (Liang et al., 2020a) and 2) a static (offline) routing method in (Keszocze et al., 2017). (a, b, c) Results with at most 2 concurrent
routing tasks. (d, e, f) Results with at most 3 concurrent routing tasks. (g, h, i) Results with at most 4 concurrent routing tasks.

converges in concurrent schemes for a 80 × 60 MEDA
biochip. Therefore, we used ACER models that have been
trained to achieve the same performance as that of the base-
line (Keszocze et al., 2017) in degrade mode. Figure 5
illustrates the simulation results when microelectrodes de-
grade over time in a 80 × 60 MEDA biochip. We also
see that the MARL model outperforms the baseline, which
is consistent with the performance of MARL models in a
30× 60 MEDA biochip.
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Figure 3. Training process corresponding to different RL algorithms and training schemes in a 80× 60 MEDA biochip. Score is the total
reward that the MARL agents receive in a game. The performance is compared with a static (offline) routing method in (Keszocze et al.,
2017). (a, b, c) Results with at most 2 concurrent routing tasks. (d, e, f) Results with at most 3 concurrent routing tasks. (g, h, i) Results
with at most 4 concurrent routing tasks.
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Figure 4. Comparison between the MARL agents and the baseline
method in degrade mode of a 30× 60 MEDA. (a, b) Results with
at most 2 routing tasks in a game. (c, d) Results with at most 3
routing tasks in a game. (e, f) Results with at most 4 routing tasks
in a game.
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Figure 5. Comparison between the MARL agents and the baseline
method in degrade mode of a 80× 60 MEDA. (a) Results with at
most 2 routing tasks in a game. (b) Results with at most 3 routing
tasks in a game. (c) Results with at most 4 routing tasks in a game.
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