Information Obfuscation of Graph Neural Networks

A. Proofs

In this section we provide the detailed proofs of both theorems in the main text. We first rigorously show the relationship
between the adversarial advantage and the inference error made by a worst-case adversarial:

Claim4. 1 — Advp(Fa) =infjer, (Prp(f(Z)=1]|A=0)+Prp(f(Z2)=0]A=1)).
Proof. Recall that F 4 is symmetric, hence Vf € F4, 1 — f € F 4 as well:

1 —Advp(Fa)=1-— sup

Pr(f(Z)=0]A=0)~Pr(f(Z)=0|A=1)|

feFalD
1= swp (Pr(f(2)=014=0)~Pr(f(2) =0 A=1))
= inf (Br(f(2)=1]A=0)+Px(f(2)=0]A=1)),

where the second equality above is because
sup (Pr(f(2)=014=0)~Pr(f(2) =0 A=1))

is always non-negative due to the symmetric assumption of F 4.]

Before we prove the lower bound in Theorem 1, we first need to introduce the following lemma, which is known as the
data-processing inequality of the TV distance.

Lemma 5 (Data-processing of the TV distance). Let D and D’ be two distributions over the same sample space and g be a
Markov kernel of the same space, then drv (g4 D, g4D’) < drv(D,D’), where gyD(g;D’) is the pushforward of D(D’).

Lemma 6 (Contraction of the Wasserstein distance). Let f : £ — Y and C' > 0 be a constant such that || f||, < C. For
any distributions D, D’ over Z, W1 (fyD, fyD') < C - Wi (D, D’).

Proof. We use the dual representation of the Wasserstein distance to prove this lemma:

Wi(f;D, f;D) = sup / Jd(f,D) — / fd(f,D)

IF7 1l <1

= sup /f’ode—/f’ode’

(PP
< sup /thf/th’
Irllz<C
=CW;(D,D’),
where the inequality is due to the fact that for || f/||z < 1, ||/ o fllz < If'llz - I flle = C. |

The following fact will also be used in the proof of Theorem 1.

Proposition 7. Let Y and Y be two Bernoulli random variables with distributions D and D’. Then W1 (D, D’) = | Pr(Y =
1) = Pr(Y' =1)|.

Proof. Since both Y and Y are Bernoulli random variables taking values in {0, 1}, we solve the following linear program
to compute W1 (D, D’) according to the primal definition of the Wasserstein distance. Define D € R**% as D;; = |i — j| to
be the distance matrix between Y and Y. Then the solution of the following linear program (LP) gives W1 (D, D’):

1
min, T(yD) = ’ZO vii Dij
i,j=

(%)
1 1 1
subjectto Y yij =1,7i; > 0,) vy =Pr(Y =), 7i; = Pr(Y’ =).

4,7=0 7=0 i=0

Information Obfuscation of Graph Neural Networks

The objective function Tr(yD) is the transportation cost of a specific coupling -, hence the optimal v* corresponds to the
optimal transport between Y and Y. For this simple LP, we have

1
Z Y5 Dij = Yo1 + Y10
i,7=0
On the other hand, the constraint set gives
Yoo + Yo1 = Pr(Y =0); Y00 + 710 = Pr(Y’" = 0);
Y10 + 711 = Pr(Y = 1); Yo1 + 711 = Pr(Y' = 1);
From which we observe
[v01 — Y10| = |Pr(Y = 1) = Pr(Y' = 1)| = | Pr(Y =0) — Pr(Y' = 0)|,
hence,
(701 + 710) + Y01 — V10| = 2max{yo1,v10}
> 2|v01 — Y10l

which implies V+y that is feasible,
Tr(vD) =01 + 710 = 2|701 — V10| = 01 — 10| = |Pr(Y = 1) = Pr(Y' = 1)|.

To see that this lower bound is attainable, without loss of generality, assuming that Pr(Y = 1) > Pr(Y’ = 1), the following
~* suffices:

Yoo =Pr(Y =0); 15, =0; o =Pr(Y =1)-Pr(Y' =1); ~f=Pr(Y'=1). []

With the above tools, we are ready to prove Theorem 1:

Theorem 1. Let Z be the node representations produced by a GNN g and F 4 be the set of all binary predictors. Define
dy|a = | Prp,(Y = 1) — Prp, (Y = 1)|. Then for a classifier / such that ||h| < C,

eyja=o(hog) +eyja=1(hog)
> 0yja — C - Wi(g4Do, g:D1)
> Gyja — 2RC - Advp(Fa). 3)

Proof. Let g4D be the induced (pushforward) distribution of D under the GNN feature encoder g. To simplify the
notation, we also use Dy and D; to denote the conditional distribution of D given A = 0 and A = 1, respectively. Since
h: Z — {0,1} is the task predictor, it follows that (h o ¢); Dy and (h o g);D; induce two distributions over {0, 1}. Recall
that W1 (+, -) is a distance metric over the space of probability distributions, by a chain of triangle inequalities, we have:

Wi(DY |A=0),DY |A=1)) < Wi (D(Y [A=0),(hog);Do)
+ Wi((h o g);Do, (ho g);D1) + Wi((hog);Dy, D(Y | A= 1)).
Now by Lemma 6, we have
Wi((ho g)4Do, (ho g)¢D1) < C - Wi(g4Do, gsD1).
Next we bound W1 (D(Y | A = a), (ho ¢)4D,), Va € {0,1}:

WA(D(Y | A=a),(hog)sDa) = |Pr(Y = 1| A=a) ~ Pr((hog)(X) = 1| A=a)|

(Lemma 6, Both Y and h(g(X)) are binary)
= [Ep[Y | A= a] = Ep[(hog)(X) | A= d
<Ep[lY = (hog)(X)|| A =d] (Triangle inequality)

Information Obfuscation of Graph Neural Networks

= P(Y £ (hog)(X) | A=a)
< EY\A:a(hog)a

where the last inequality is due to the fact that the cross-entropy loss is an upper bound of the 0-1 binary loss. Again,
realizing that both D(Y | A = 0) and D(Y | A = 1) are Bernoulli distributions, applying Lemma 6, we have

Wi(D(Y | A=0),D(Y | A= 1)) = bya.
Combining all the inequalities above, we establish the following inequality:

eyla=o(hog) +eyja=1(hog) > dyja — C - Wi(gsDo, gsD1).

For the second part of the inequality, since sup, . = ||z|| < R, the diameter of Z is bounded by 2R. Now using the classic
result between the TV distance and the Wasserstein distance over a metric space (Gibbs & Su, 2002), we have

Wi(9:Do, g4D1) < 2R - drv(94Do, 94D1),

To complete the proof, we show that drv(g4Do, g¢D1) = Advp(Fa): since F4 contains all the binary predictors,

drv (gﬁDm gﬁDI) = sup

FE is measurable

Pr (fu(Z) = 1) — Pr (fu(Z) = 1)\

Pr (E)—- Pr (F
P ()~ Pr >\

= sup
fEEFA 931 Do 94D1

o Pr(fE<Z>=1|A=0>—Pr<fE<Z>=1A=1>‘
fe€Fa 9D 91D

ZAdVD(]:A),

where in the second equation above fg(-) is the characteristic function of the event E. Now combining the above two
inequalities together, we have:

eyja=o(h o g) +eyja=i(hog) > dyja — C - Wi(gyDo, g:D1)
> 5y‘A—2RC'AdVD(]:A). |

Corollary 2 then follows directly from Theorem 1:

Corollary 2. Assume the conditions in Theorem [hold. Let « := Prp(A = 0), then

ey(hog) > min{a,1— a} (5Y‘A -C- W1(guDo,guD1))
> min{o, 1 — a}(éy‘A —2RC - AdVD(]:A))-

Proof. Realize that

ey(hog) = %T(A =0)-eyja=o(hog) + %Y(A =1)-eyja=1(hoyg)
> min{l;r(A =0), l;r(A =1)}- (5y|A:0(h 0g)+eyja=i(ho g)) .

Applying the lower bound in Theorem 1 then completes the proof. |

The following lemma about the inverse binary entropy will be useful in the proof of Theorem 3:

Lemma 8 (Calabro (2009)). Let H; ' (s) be the inverse binary entropy function for s € [0, 1], then H; *(s) > 5/21g(6/s).

With the above lemma, we are ready to prove Theorem 3.

Information Obfuscation of Graph Neural Networks

Theorem 3. Let Z* be the optimal GNN node embedding of (4). Define o := Prp(A = 0), H* := H(A | Z*) and
Wy :=Wi(Z*| A=0,Z* | A=1). Then 1). For any adversary f : Z — {0,1}, Pr(f(Z) # A) > H*/21g(6/H*), 2).
For any Lipschitz adversary f such that || f| . < C, Pr(f(Z) # A) > min{«,1 — a}(1 — CW}).

Proof. To ease the presentation we define Z = Z*. To prove this theorem, let E be the binary random variable that takes
value 1iff A # f(Z),i.e., E =1(A # f(Z)). Now consider the joint entropy of A, f(Z) and E. On one hand, we have:

H(A, [(2),E) = H(A, [(2)) + H(E | A, f(2)) = H(A, f(2)) + 0= H(A| f(2)) + H((Z)).

Note that the second equation holds because E is a deterministic function of A and f(Z), that is, once A and f(Z) are
known, F is also known, hence H(E | A, f(Z)) = 0. On the other hand, we can also decompose H (A, f(Z), E) as
follows:

H(A, [(2),E) = H(E) + HA| E) + H(f(2) | A, E).

Combining the above two equalities yields
H(E,A| f(2)) = H(A| f(2)).
On the other hand, we can also decompose H(E, A | f(Z)) as
H(E,A|f(2))=H(E| [(2)+H(A|E, f(2)).
Furthermore, since conditioning cannot increase entropy, we have H(E | f(Z)) < H(FE), which further implies
H(A| f(2)) <H(E)+ H(A|E, f(2)).

Now consider H(A | E, f(Z)). Since A € {0, 1}, by definition of the conditional entropy, we have:

HA|E, f(Z)=Pr(E=1)HA|E=1,f(Z))+Pr(E=0H(A|E=0,f(Z))=0+0=0.
To lower bound H(A | f(Z)), realize that

I(A; f(2) + H(A| f(2)) = H(A) = [(A; 2) + H(A | Z).

Since f(Z) is a randomized function of Z such that A L f(Z) | Z, due to the celebrated data-processing inequality, we
have I(A; f(Z)) < I(4; Z), which implies

H(A| f(2)) =z H(A| Z).
Combine everything above, we have the following chain of inequalities hold:
H(A|Z) < H(A|f(2)) <H(E)+ H(A|E, f(2)) = H(E),

which implies
Pr(A # f(2)) = Pr(E = 1) > Hy ' (H(A| 2)),

where I, *(-) denotes the inverse function of the binary entropy H (t) := —tlogt — (1 — t)log(1 — t) when t € [0,1]. We
then apply Lemma 8 to further lower bound the inverse binary entropy function by

Pr(A# f(Z)) > Hy ' (H(A| Z)) > H(A| Z)/21g(6/H(A | Z)),
completing the proof of the first lower bound. For the second part, realize that
Pr(f(Z) # A) = Pr(A = 0)Pr(f(Z) = 1| A= 0) + Pr(A = 1) Pr(f(Z) =0 | A= 1)
> minfa, 1~ a) (Br((2) = 1)+ B1((2) = 0))
Now to lower bound Prp, (f(Z) = 1 — a), we apply the same argument in the proof of Theorem 1, which gives us

Pr(f(2) =1-a) = Px(f(2) # A| A=a)

Information Obfuscation of Graph Neural Networks

—Ep[|f(2) - Al|A=d
> [Ep[f(2) | A=a]~Ep[A| A =d]
~IPH(Z) = 1| A=a)—Pr(A=1] A=0)

=Wi(Du(f(Z2)),A| A=nq) (Lemma 6, Both A and f(Z) are binary).
As a last step, using the triangle inequality of W1 (-, -) and Lemma 6, we have
Wi(Do(f(2)), A | A=0)+ Wi(D(f(Z),A]| A=1) > 644 — CW} =1 - CWS.

Combining all the steps above yields

Pi(f(2) £ 4) 2 minfa. 1 - o) (Br(7(2) = 1)+ 2x(4(2) =0))
(D

> minfa, 1 - a} (W (Do(£(2)), A | A = 0) + Wi(Dy(£(2)), A| A =1))
> min{a, 1 — a}(1 — CWY),

which completes the second part of the proof.]

B. Experimental Setup Details

Optimization For the objective function, we selected block gradient descent-ascent to optimize our models. In particular,
we took advantage of the optim module in PyTorch (Paszke et al., 2019) by designing a custom gradient-reversal layer,
first introduced by (Ganin et al., 2016), to be placed between the attacker and the GNN layer we seek to defend. The
implementation of the graident-reversal layer can be found in the Appendix. During training, we would designate two
Optimizer instances, one having access to only task-related parameters, and the other having access to attack-related
parameters and parameters associated with GNN defense. We could then call the .step() method on the optimizers in an
alternating fashion to train the entire network, where the gradient-reversal layer would carry out both gradient descent (of
the attacker) and ascent (of protected layers) as expected. Tradeoff control via A is achieved through multiplying the initial
learning rate of the adversarial learner by the desired factor. For graphs that are harder to optimize, we introduce pre-training
as the first step in the pipeline, where we train the encoder and the task decoder for a few epochs before introducing the
adversarial learner.

Movielens IM The main dataset of interest for this work is Movielens-1M *, a benchmarking dataset in evaluating
recommender systems, developed by (Harper & Konstan, 2015). In this dataset, nodes are either users or movies, and the
type of edge represents the rating the user assigns to a movie. Adapting the formulation of (Bose & Hamilton, 2019b), we
designate the main task as edge prediction and designate the adversarial task as extracting user-related information from the
GNN embedding using multi-layer perceptrons with LeakyReLU functions (Maas, 2013) as nonlinearities. Training/test
splits are creating using a random 90/10 shuffle. The network encoder consists of a trainable embedding layer followed
by neighborhood aggregation layers. Node-level embeddings have a dimension of 20, and the decoder is a naive bilinear
decoder, introduced in (Berg et al., 2017). Both the adversarial trainers and the main task predictors are trained with separate
Adam optimizers with learning rate set to 0.01. Worst-case attackers are trained for 30 epochs with a batch-size 256 nodes
before the original model is trained for 25 epochs with a batch-size of 8,192 edges.

Planetoid Planetoid * is the common name for three datasets (Cora, CiteSeer, Pubmed) used in benchmarks of graph
neural networks in the literature, introduced by (Yang et al., 2016). Nodes in these datasets represent academic publications,
and edges represent citation links. Since the Cora dataset is considered to be small to have any practical implications in
the performance of our algorithm, we report only the results of CiteSeer and Pubmed. Similar to Movielens, the main task
is edge prediction, and the attacker will seek to predict node attributes from GNN-processed embeddings. The network
architecture is message-passing layers connected with ReL.U nonlinearities, and both the decoder and attacker are also

https://grouplens.org/datasets/movielens/1m/

“Raw data available at https: //github.com/kimiyoung/planetoid/tree/master/data. For this work, we used the
wrapper provided by https://pytorch-geometric.readthedocs.io/en/latest/_modules/torch _geometric/
datasets/planetoid.html.

https://grouplens.org/datasets/movielens/1m/
https://github.com/kimiyoung/planetoid/tree/master/data
https://pytorch-geometric.readthedocs.io/en/latest/_modules/torch_geometric/datasets/planetoid.html
https://pytorch-geometric.readthedocs.io/en/latest/_modules/torch_geometric/datasets/planetoid.html

Information Obfuscation of Graph Neural Networks

single-layer message-passing modules. Regarding training/valid/test splits, we adopt the default split used in the original
paper, maintained by (Fey & Lenssen, 2019). The network encoder consists of a trainable embedding layer followed by
neighborhood aggregation layers. Node-level embeddings have a dimension of 64, and both the adversarial trainers and
the main task predictors are trained with separate Adam optimizers with learning rate set to 0.01. Worst-case attackers are
trained for 80 epochs with before the original model is trained for 150 epochs, and the entire graph is fed into the network at
once during each epoch.

QM9 QM9 ° is a dataset used to benchmark machine learning algorithms in quantum chemistry (Wu et al., 2017),
consisting of around 130,000 molecules (represented in their spatial information of all component atoms) and 19 regression
targets. The main task would be to predict the dipole moment g for a molecule graph, while the attacker will seek to extract
its isotropic polarizability a from the embeddings. The encoder is a recurrent architecture consisting of a NNConv (Gilmer
et al., 2017) unit, a GRU (Cho et al., 2014) unit and a Set2Set (Vinyals et al., 2015) unit, with both the decoder and the
attacker (as regressors) 2-layer multi-layer perceptrons with ReLU nonlinearities. The training/valid/test is selected in the
following manner: the order of samples is randomly shuffled at first, then the first 10,000 and 10,000 - 20,000 samples are
selected for testing and validation respectively, and the remaining samples are used for training. Preprocessing is done with
scripts provided by (Fey & Lenssen, 2019) © , using functions from (Landrum). Node-level embeddings have a dimension of
64, and both the adversarial trainers and the main task predictors are trained with separate Adam optimizers with learning
rate set to 0.001. Worst-case attackers are trained for 30 epochs with before the original model is trained for 40 epochs with
a batch-size of 128 molecular graphs.

FB15k-237/WN18RR These two datasets are benchmarks for knowledge base completion: while FB15k-237 7 is semi-
synthetic with nodes as common entities, WN18RR 8 is made by words found in the thesaurus. Our formulation is as
follows: while the main task from both datasets is edge prediction, the attackers’ goals are different:

« For FB15k-237, we took node-level attributes from (Moon et al., 2017) ?, and task the attacker with predicting the
50-most frequent labels. Since a node in FB15k-237 may have multiple labels associated with it, adversarial defense on
this may be seen as protecting sets of node-level attributes, in contrast to single-attribute defense in other experimental
settings.

* For WN18RR, we consider two attributes for a node (as a word): its word sense (sense greater than 20 are considered
as the same heterogeneous class), and part-of-speech tag. The labels are obtained from (Bordes et al., 2013) '°.

As for the architecture, we used a modified version of the CompGCN paper (Vashishth et al., 2019), where the attacker
has access to the output of the CompGCN layer (of dimension 200), and the original task utilizes the ConvE model for the
decoder. The training/valid/test split also aligns with the one used in the CompGCN paper. On both datasets, the adversarial
trainers and main task predictors are trained with separate Adam optimizers with learning rate set to 0.001. Worst-case
attackers are trained for 30 epochs with a batch-size of 128 nodes before the original model is trained for 120 epochs after
35 epochs of pre-training, with a batch-size of 128 nodes.

Computing Infrastructure All models are trained with NVIDIA GeForce® RTX 2080 Ti graphics processing units
(GPU) with 11.0 GB GDDR6 memory on each card, and non-training-related operations are performed using Intel®
Xeon® Processor E5-2670 (20M Cache, 2.60 GHz).

SRaw data available at https://s3-us-west-1.amazonaws.com/deepchem.io/datasets/molnet_publish/
gm9.zipand https://ndownloader.figshare.com/files/3195404

Available at https://pytorch-geometric.readthedocs.io/en/latest/_modules/torch_geometric/
datasets/gm9.html

"https://www.microsoft.com/en-us/download/details.aspx?id=52312

$https://github.com/TimDettmers/ConvE

9https://github.com/cmoon2/knowledge_graph

10https://everest.hds.utc.fr/doku.php?id:en:smemlle

https://s3-us-west-1.amazonaws.com/deepchem.io/datasets/molnet_publish/qm9.zip
https://s3-us-west-1.amazonaws.com/deepchem.io/datasets/molnet_publish/qm9.zip
https://ndownloader.figshare.com/files/3195404
https://pytorch-geometric.readthedocs.io/en/latest/_modules/torch_geometric/datasets/qm9.html
https://pytorch-geometric.readthedocs.io/en/latest/_modules/torch_geometric/datasets/qm9.html
https://www.microsoft.com/en-us/download/details.aspx?id=52312
https://github.com/TimDettmers/ConvE
https://github.com/cmoon2/knowledge_graph
https://everest.hds.utc.fr/doku.php?id=en:smemlj12

Information Obfuscation of Graph Neural Networks

Estimated Average Runtime Below are the averge training time per epoch for each models used in the main text, when
the training is performed on the computing infrastructure mentioned above:

DATASET Encoder t
CITESEER ChebNet 0.0232s
GCN 0.0149s
GAT 0.0282s
PUBMED ChebNet 0.0920s
GCN 0.0824s
GAT 0.129s
QM9 MPNN 199.25s
MOVIELENS-1M GCN 12.05s
GAT 45.86s
FB15k-237 CompGCN 463.39s
WNI18RR CompGCN 181.55s

C. Degredation of RMSE on Movielens-1M dataset Regarding Neighborhood Attack

This is a supplementary figure for the neighborhood attack experiments introduced in the main section. Band represents
95% confidence interval over five runs.

55 —— rmse (gender)
---- rmse (age)
s0 e rmse (occupation)

1.0

0.8
-4 -3 -2 -1 0 1 2 3
l0g10(A)

Information Obfuscation of Graph Neural Networks

D. N-Hop Algorithm for Neighborhood Defense

Intuitively, this algorithm greedily constructs a path of length n by uniformly picking a neighbor from the current end of the
path and checking if the node has existed previously in the path, avoiding formation of cycles. Worst-case running time
of this algorithm is O(n?), because in each step of the main loop, the algorithm performs O(n) checks in the worst case
scenario.

Algorithm 2 Monte-Carlo Probabilistic N-Hop

Input: G = (V,E): undirected graph (via adjacency list); v € V: starting node; n > 1: hop
Output: On success: v’ € V such that d(v,v’) = n or NO if such vertex doesn’t exist; On failure: v’ € V such that
1 < d(v,v") < nor NO if such vertex doesn’t exist
V = () {Initial path is empty}
t=0
v =w
repeat
S = [N (v')] {O(1) time by adjacency list}
i = RandInt(0, |S|) {O(1) uniform random sample (without replacement)}
e = S.pop(i)
repeat
i = RandInt(0, | S])
e = S.pop(4)
until ~(e € V and S # []) {Loop runs at most O(n) times}
if e ¢ V then
V=Vn{e}
v =e
else
reject with NO {Current path not satisfiable, reject}
end if
t=t+1
until £ >=n
accept with v’

