
Guided Exploration with Proximal Policy Optimization using a Single Demonstration

A. Training details
For the training we used 14 parallel environments and we
compute the gradients using the Adam optimizer (Kingma &
Ba, 2014) with fixed learning rate of 10−5. In the Animal AI
Olympics environment the agent perceives the environment
through a 84 by 84 RGB pixels observations in a stack of
4. At each time-step the agent is allowed to take one of
nine actions. We use the network architecture proposed
in (Kostrikov, 2018) which includes a gated recurrent unit
(GRU) (Cho et al., 2014) with a hidden layer of size 256.
We ran the experiments on machines with 32 CPUs and 3
GPUs, model GeForce RTX 2080 Ti. The experiments for
the Animal-AI Olympics environment where carried out
with the following hyperparameters.

Table 1. Model and PPO Hyperparameters

Parameter Value

clip-param 0.15
gamma 0.998

frame-skip 2
frame-stack 4
num-steps 1000

num-mini-batch 6
entropy-coef 0.02

value-loss-coef 0.1
num-processes 14
learning rate 1e-5

eps (RMSprop optimizer epsilon) 1e-5
alpha (RMSprop optimizer apha) 0.99

gae-lambda 0.95
max-grad-norm 0.5

ppo-epoch 4

Different hyperparameters were used for the experiments
in the ReacherPyBulletEnv-v0 and LunarLander-v2 envi-
ronments. Table 2 shows the hyperparameters used for
ReacherPyBulletEnv-v0. When training PPO+D, PPO+BC
and vanilla PPO for LunarLander-v2, only slight changes
were made in comparison to the ReacherPyBulletEnv-v0
hyperparameters: the number of processes (num-processes)
changed from 64 to 32 and the entropy coefficient (entropy-
coef) changed from 0.02 to 0.01. For both these tasks the
policy is not recurrent as for the Animal AI Olympics tasks.

Table 2. Model and PPO Hyperparameters (ReacherPyBulletEnv-
v0)

Parameter Value

clip-param 0.2
gamma 0.99

frame-skip 1
frame-stack 1
num-steps 2048

num-mini-batch 32
entropy-coef 0.02

value-loss-coef 0.3
num-processes 64
learning rate 2e-4

eps (RMSprop optimizer epsilon) 1e-5
alpha (RMSprop optimizer apha) 0.99

gae-lambda 0.95
max-grad-norm 0.5

ppo-epoch 10

When training PPO+BC the loss combines the PPO loss and
the behavior cloning loss in the following way:

L =

{
LPPO, if τi ∼ D
LBC , if τi ∼ Env

where LBC is defined as the cross-entropy loss

LCE = −
n∑
t=1

at log(π(at|st))

when the action space is discrete, and as the mean squared
error:

LMSE =
1

n

n∑
t=1

(π(at|st)− at)2

when the action space is continuous. Note that in the above
equations at refers to the action taken in the demonstration.

For the Animal AI Olympics tasks we performed no hy-
perparameter search over the replay ratios φ and ρ but set
them to a reasonable number. We found other configurations
of these parameters to be sometimes more efficient in the
training, such for example setting ρ = 0.5 and φ = 0.0 in
the task ”One box easy”. The parameters we ran all the
experiments with have been chosen because they allow to
solve all of the experiments with one demonstration. We
did run a hyperparameter search for the parameter ρ for the
LunarLander-v2 and ReacherPyBulletEnv-v0 task for both
PPO+D and PPO+BC. The rest of the hyperparamters were
adopted from Schulman et al. (2017).

In computing the probability of a trajectory to be replayed
P (i) =

pαi∑
k p

α
k

, α = 10. The total buffer size is |D| =

Guided Exploration with Proximal Policy Optimization using a Single Demonstration

51 with |DV |0 = 50 plus the human generated trajectory.
|DR|0 = 51 meaning once the agent collects 50 successful
trajectories, new successful trajectories overwrite old ones,
following a FIFO strategy and no trajectory is replayed
from the value-buffer. The implementation used is based on
the repository (Kostrikov, 2018). On our infrastructure we
could train at approximately a speed of 1.3 millions frames
per hour. The code, pre-trained models, data-set of arenas
used for training are available at https://doi.org/
10.6084/m9.figshare.13853039.v1

B. Hyperparameters ablation
In this section we present the results of four different ex-
periments on a variation of the ”One box easy task” where
the agent position does not change across episodes and it
is shared with the demonstration. We test on this variation
of the task because it is one of the simplest problems we
can use to test PPO+D performance. We only perform the
ablation study on ρ because φ is harder to test: it is indis-
pensable for solving difficult tasks but it can slow down the
performance on easy tasks. This being an easy task, the
results obtained, do not provide any insights on the effect of
φ in harder problems (as shown in Figure 5). The follow-
ing figure shows the performance of the PPO+D algorithm
where the ρ parameter is changed and φ = 0. Interestingly
we observe that, among the values chosen, the performance
peaks for ρ = 0.3. We hypothesize that lower ρ values have
worse performance because the interval between demo re-
plays is so large that allows the network to forget the optimal
policy learned with the demonstrations. On the other side,
higher values of ρ are even more counterproductive as they
prevent the agent from learning from its own experience,
most critically learning what not to do.

Our implementation of GAIL based on (Li et al., 2017) was
trained with the following hyperparameters besides the PPO
parameters in Table 1.

C. GAIL test
To verify the correctness of our GAIL implementation we
use for the experiments in Figure 5 we test it on a simple
task in the Animal-AI environment. The task is shown in
Figure 6, it consists in collecting green food of random size
and position.

Table 3. GAIL Hyperparameters

Parameter Value

scaling-factor 0.001
gail-epoch 0.4

gail-batch-size 200

Figure 6. Food collection task. In this task the the agent is
spawned into the arena with one green ball. The green food size
and position are set randomly at the beginning of each episode.
The episode ends when the green food is collected.

Figure 7. Ablation study Performance for PPO+D with ρ =
0.1, φ = 0.0, ρ = 0.3, φ = 0.0, ρ = 0.5, φ = 0.0 and
ρ = 0.5, φ = 0.0 and PPO+D with ρ = 0.7, φ = 0.0, on a
variation of the ”One box easy” task were the initial position of
the agent is fixed. The curves represent the mean, min and max
performance for each of the baselines across 3 different seeds.

Table 4. Performance on the ”Food collection task”
Method Avg. Success rate Std.

GAIL 0.997 0.045
BC 0.617 0.487

https://doi.org/10.6084/m9.figshare.13853039.v1
https://doi.org/10.6084/m9.figshare.13853039.v1

Guided Exploration with Proximal Policy Optimization using a Single Demonstration

D. Analysis of the effect of the value-buffer

Figure 8. Sub-behaviors. Trajectories the agent played on the task ”Two boxes easy”. In each of the figure the upper part shows the
movements of the agent on the X-Y plane while the lower part shows the movement on the X-Z plane. The images are ordered by the time
they were executed in the training in millions of frames.

The value-buffer experience replay creates an incremental curriculum for the agent to learn, keeping different trajectories that
achieved an high maximum value in the buffer incentives the agent to combine these different sub-behaviors e.g. pushing
the blocks and going up the ramp.

