Debiasing a First-order Heuristic for Approximate Bi-level Optimization

DEBIASING A FIRST-ORDER HEURISTIC FOR APPROXIMATE BI-
LEVEL OPTIMIZATION: SUPPLEMENTARY MATERIALS

A Related work

Unbiased gradient estimation. Stochastic gradient descent (SGD) (Bottou et al., 2018) is an essential component of
large-scale machine learning. Unbiased gradient estimation, as a part of SGD, guarantees convergence to a stationary point
of the optimization objective. For this reason, many algorithms were proposed to perform unbiased gradient estimation
in various applications, e.g. REINFORCE (Williams, 1992) and its low-variance modifications (Tucker et al., 2017; Gu
et al., 2016) with applications in reinforcement learning and evolution strategies (Wierstra et al., 2014). The variational
autoencoder (Kingma & Welling, 2014) and variational dropout (Kingma et al., 2015) are based on a reparametrization trick
for unbiased back-propagation through continuous or, involving a relaxation (Jang et al., 2016; Gal et al., 2017), discrete
random variables.

Theory of meta-learning. Our proof technique fits into the realm of theoretical understanding for meta-learning, which has
been explored in (Fallah et al., 2019; Ji et al., 2020) for nonconvex functions (see also (Ablin et al., 2020) for convergence
analysis in certain bi-level optimization setups), as well as (Finn et al., 2019; Balcan et al., 2019) for convex functions
and their extensions, such as online convex optimization (Hazan, 2019). While (Fallah et al., 2019) provides a brief
counterexample for which (r = 1)-step FOM does not converge, we establish a rigorous non-convergence counterexample
proof for FOM with any number of steps  when using stochastic gradient descent. Our proof is based on arguments using
expectations and probabilities, providing new insights into stochastic optimization during meta-learning. Furthermore, while
(Ji et al., 2020) touches on the zero-order case found in (Song et al., 2020), which is mainly focused on reinforcement
learning, our work studies the case where exact gradients are available, which is suited for supervised learning.

B Synthetic Experiment Details

For the synthetic experiments shown in Figures 1a, 1b, and 1c, we set the following parameters from Theorem 1 and proof
of Theorem 2:

10
r = 107 O[:O.l, q:01 (UF()]\/[)7 VkGN’Yk; = ?7

a; = 0.5, as = 1.5, bl = 0, bg = 17.397 A =12.59
(b and A values are obtained by setting D = 0.06 in the Theorem 2 proof). We do 5 simulations for FOM and UFOM,
where we sample 6 from a uniform distribution on a segment [—10, 30].

To demonstrate a wider range of ¢* values, for Figures 1d, le, and 1f, we opt for a slightly different set of parameters:

10
r=10, a=0.1, VkGN:'}/k:?, a1 =0.5, ax =15, by=10, A=10.

To approximate V2, D? on Figure 1d, we find a maximal value of the corresponding expectation (computed precisely for
two tasks with equal probability) on a grid of 10000 6 values on [—50, 50].

To output the “experiment” curve on Figure le, for each value of o, we search for ¢ on a grid of 20 elements between 0.02
and 0.4. For each q on a grid we simulate 10000 SGD loops (100 iterations each) from a starting point drawn uniformly on
[—50, 50]. Then we compute the average of the curves corresponding to \%M(Z’” for these 10000 simulations. Given the

best g for each a, we choose the one which achieves the minimal average value of |%M(1’) | in the fastest time, computed
for ¢ = 0.02.

For Figure 1f, we report mean and standard error over 1000 curves starting from a point drawn uniformly on [—50, 50].

C Data Hypercleaning Details

Validation loss and ¢ do not depend on 6, and thus to use UFOM, we include the last inner optimization step into the
definition of £°%*. This implies that £°“¢ depends on §. We partition the original MNIST train set into sets of size
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Figure 4: Adaptive g probabilities during training for the hypercleaning setup.
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Figure 5: Adaptive ¢ probabilities during training for the few-shot learning setup.

5000 for the hyperclearning task’s train and validation sets. We use the MINIST test set for testing. We corrupt half of
training examples by drawing labels uniformly from 0, .. ., 9. For the classifier, we use a 2-layer feedforward network with
dimensions 784 — 256 — 10, with ReLU nonlinearities. We use Adam (Kingma & Ba, 2014) as an outer-loop optimizer

with a learning rate of 0.1. We run all methods for a number of function calls equivalent to 500 outer-loop iterations for the
memory-efficient exact gradient.

Figure 4 demonstrates adaptively chosen ¢ during optimization using Adaptive UFOM. We observe that g stabilizes soon in
the beginning of optimization and doesn’t change much during training. This could mean that statistics D2, V2 are roughly
the same along the whole optimization trajectory.

D Few-Shot Learning Details

All results are reported in a transductive setting (Nichol et al., 2018). In all setups for Reptile, we reuse the code from
(Nichol et al., 2018). For the exact ABLO and Adaptive UFOM, we clip each entry of the gradient to be in [—0.1,0.1]. We
use the following hyperparameters for the two datasets:

* Omniglot. We run all methods for the number of function calls equivalent to 7 = 200000 outer iterations of the
memory-efficient exact ABLO. For exact ABLO/FOM/Adaptive UFOM, we set Vk : v, = 0.1, meta-batch size of 5,
a = 0.005. In all setups for Reptile, we set hyperparameter values to be equal to the ones found in the 1-shot 20-way
case (Nichol et al., 2018). This is because Reptile underperforms if its hyperparameters are set to the values used for
exact ABLO/FOM/Adaptive UFOM. We take train and test splits as in (Finn et al., 2017; Nichol et al., 2018).

* CIFAR100. We use the same hyperparameters as in Omniglot setup, but run all methods for the number of function
calls equivalent to 7 = 40000 outer iterations of the memory-efficient exact ABLO. For a train-test split, we combine
CIFAR100’s train and test sets and randomly split classes into 80 train and 20 test classes.

Figure 5 demonstrates adaptively chosen g during optimization using Adaptive UFOM. Again, we observe that g stabilizes

and doesn’t change much during training, most probably meaning that statistics D2, V2 are roughly the same along the
optimization trajectory.
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E Proofs

In this section, we provide proofs for Theorems 1 and 2 from the main body of the paper.

E.1 Theorem 1

We start by formulating and proving three helpful lemmas. In proofs we use the fact that, as a direct consequence of
Assumption 1, forall § € R%, ¢ € RP. T € Qf

0?
(9’¢7T)||2> ”@‘CW( 7¢7T)H2) < L.

max(|

0009
Lemma 1. Let p,r,s € N, {a; > 0}32, be any sequence, q € (0,1], p(T) be a distribution on a nonempty set Q,
¢ ~ Bernoulli(q) be independent of p(T), V : R® x Qr — RP, LI LU . R® x RP x Q7 — R be functions satisfying

Assumption 1, and let U™ : R® x Q7 — RP? be defined according to (2-3), M(") : R® — R be defined according to (4)
and satisfy Assumption 2. Define Gro : R®* X Qr = R%and G : R® x Q7 x {0,1} — R® as

Gro(0,T) = 5y £7(0.60.T) + (V0. TN 5oL 0,00 T). 6 =UTO,T),
G(0,T.x) = Gro(0,T) + 5<ve£"“t<97 ¢, T) = Gro(0,T)).
Then
D? < D2, unds (25)
V2 <V2 0 Viound = L1 + My Ly H(1 +ajLy) + Ly Ly Z a; H (1+ ajrLa), (26)
j=1 j=1  j'=j

where D, V, Dyouna are defined in (14), (16), (15) respectively. Further, for all 6 € R?
0 X
Ee o) [0, T, )] = 5,MT(0), 27)

1
Ee oo [1G0, T, O3] < (5 - 1)D* + V2 (28)

Proof. First, we show (25). Let ¢y, ..., ®, be inner-GD rollouts (2-3) corresponding to 6 and 7. Observe that by
Assumption 1

0
I35

and according to (8-9) foreach1 < j <r

‘Cout( 7¢T7T)H2 = ||v¢,,'£0ut(97¢’m7—>”2 S Ll

i i
||V¢j—1ﬁout(0a ¢ra T)HQ = ”vd)jﬁout(a’ ¢T7 T) - (W‘C’ln( ’¢j*1’ T)> v¢j’COUt(97 ¢r’ T)”2

=1V, £7(0, ¢r, )H2+04]|| L0, 61, T2l Vo, L7, 6r, T2

r

< (L4 L) [V, L7, 6, T)ll2 < -+ < [V, L70, 6, T)ll2 [[ (14 L)

J'=7j

0¢?

<L [[(+ayLa). @9

Jj'=J
In addition, we deduce that

B 92 T
D ot (9, 6 T = V50 L7 (0, 67, T) — (ﬁm( ,aso,T)) Vg, L7 (0, 60, T)

out _
”V%‘C (97¢T7T) 6¢ 8¢2
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a out
- %L (97¢Ta7—)”2
0
< ||v¢1£0ut(07 ¢T> T) - %Lout(e’ ¢T> )||2 +aog H@Em (97 ¢0> T)H?Hv%‘cout(ea d)r’ T)HQ
0

< IV, £7(0, b, T) = 2L (0, 60, T)|l2 + 1 L1 Lo H (1+ajLs) <

a¢ j'=1

8 T T T
—E"“t(ﬁ, Gy T2 + L1 Lo Zaj H (1+ ij/LQ =IL1Ls Za] H 1+ Oéj/Lg).

< IVo L7410, 60, T) = 52
Jj=1 j'=j J'=j

Then:

9 o, 6., 7))

o T
[Gr0(6.7) = VoL 0.0 O.T). Dl = | 5VO.T)) (Varl(0.00,T) - 5

T

.
-2 (aeaﬂ"( ,%1»7)) Vo, L0, 60, T2
Jj=

0 - 9
— L0, ¢, T2 + Z%”mﬁm(e»%—lﬂvﬂb
j=1

< I gV O TRl Vo £6, 0 T) — 5

IV, L7(0, ¢, T)l2

T

< MlLlLQZaj H(1+aj/L2 Z(){ngLl H l-i-O(]/Lg = Dpound-

=1 = 3=

Hence, for each 0 € R® E, (1) [|Gro (0, T) — VoL (0,U) (0, T),T)||3] is well-defined and bounded by D7, ..
Therefore, D? is well-defined and bounded by D7 .

Next, we show (26). From (29) it follows that

a T
||v9£out(07 U(T)(eaT) )”2 - Haaﬁout( 3¢T7T) + (69 (9 T)) V¢0£OUt(95¢T7T)

8 T
-« (Wﬁl”(e, ¢a‘—177>> Vo, L7060, T2
]_

8 ou ou mn
< 5L (0, r, )||2+|| VO, T2l Vo £7 (0, b0, T ||2+Z%Ilaea¢ﬁ (0,051, T)l2

AV, L0, 60 T2

<L+ ML [+ L)+ ajLaLy [ (1 + ajLa) = Vieuna-
=1 =1 =3

Hence, for each 0 € R® E, (1) [[| VoL (0,UM (6, T),T)|3] is well-defined and bounded by V%, . for all § € R®.
Consequently, V2 is well-defined and is also bounded by VZ .

(27) is satisfied by observing that

Eepr) [0, T,6)] = Eyor |Ee (66,7, e)}]

~ By |Gro (0. 7) + L(VaL™ (0,01, T) - Gro(s. T))}

=E,7) vgcouf(e),@,fr)] =E,7) {vgcout(a, U (H,T),T)}
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= VoE, o [Lo(0, U0, T),T) :%M(”(a),

To show (28), we fix T € Q7. Let ¢y, . . . , ¢, be inner-GD rollouts (2-3) corresponding to 6 and 7.

Next:
1G(0, T, €)ll2 < 1G(6, T, &) — VoL (0,U (0, T), T2 + VoL (0,UT (0, T), T2
—(1- §>||gFo<err> — VL0, U0, T), T2+ VoL (0, U (0, T), T)ll2.

Take square and then expectation:

Eem 1600, T-6)I8] = Eyor Ee [16(0, T 6)13]
2
SEPmEg[(l—zg +EN6ro6.7) - Vol 0,00, 7), T}

+2<1—§>||9Fo<o,7>—v9.com<9, U0, T), T2l VoL (6,070, T), T)l2
+ VoL (0,U (0, T), T>||§}

1
=By [< ~IGro(8,T) = VoL (6,U(6,T), T3
+2-0-[Gro(8,T) = VoL (0,U (0, T), T)|l2 VoL (6, U (0, T), T)|l2
+[IVo £ (0, U (6,7, T)ll%}

1
< (5 - 1)D? + V2

O

Lemma 2. Letp,r,s € N, {a; > 0}32, be any sequence, p(T) be a distribution on a nonempty set Qr, V : R® x Q7 —
RP, L™ Lo% : R® x RP x Q7 — R be functions satisfying Assumption 1, and let U") : R® x Q7 — RP be defined
according to (2-3), M) : R® — R be defined according to (4) and satisfy Assumption 2. Then for all 00" € R® it holds

that
0

0
55 M) = MO < CI8 = ]2,

where

C=Ly+ LA, + Z aj (LQB]- + L3(1+ A;_1)L H (1+ aj/L2)> + M By + MLy H(l +a;Ls), (30)

=1 7'=j+1 =t
B; = (L2(1+Ar)(1+ajL2)+L1L3 Z aj/(1—|—,4-/1)> H (1+aj/L2)7 31
j'=j+1 J'=j+1
J J J
A = <M1 H (14 ajrLo) + Lo Z a;r H (1+ aj”L2))' (32)
j'=1 j'=1 J"=i'"+1

Proof. Fix T € Q7. Let ¢, = V(¢',T),...,¢. and ¢ = V(0",T),...,#! be inner-GD rollouts (2-3) for 6’ and 0"
respectively. For each 1 < 5 < r inequalities applies:

o . ;o in/ gt M
j(%ﬁm(e,gb]_il?ﬂ a—¢£ (07,051, T))ll2

< N1 = dfallz + aj||7gm(9’ ¢, T) =

165 = ¢l = ll¢f—1 — &1 —

%Lin(eﬁ7 (b;'/flv T) ”2
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<@y — &) alla + ajLall@_y — ¢ _1ll2 + ajLa0" — 0"l
=1+ a;Lo)|| ¢y — ¢ 1ll2 + ajLa0" — 6”2

Therefore, foreach0 < j <r

J J J
165 = ¢ll2 < lldp — dgll2 [T (1 + ey L) + Lall6" = 0”112 Y oy J[ (1+ajnLs)
j':1 j/:1 j”:j/+1
=A; |0 = 0"z
Therefore,
ou ou ou 6 ou
IV L 67, T)) — Vg L2061, D2 =55 E “O', 9., T)) - 8¢£ YO or, Tl

< Lol — &y lla + Lal|0” = 0”]]2 < La(1 + r)||9' - 9"\\2-

For each 1 < 5 < r the following chain of inequalities applies as a result of (8-9):

[y L0060 T) = Vg L0 6Tl = [V L7406, T) — Vg L0, 61, T)

92 T 92 T
—Q ((Wﬁm("’ ¢9—1ff)> Ve LY, ¢, T) — (Wﬁm(dy 1,T)) Ve L(¢7, T)) 2
02 T
= |V L0, ), T) = Vi L2(0", 6, T) — (Wma' ¢;_1,T)) (Vo L7, 6], T)
92 92 T
— Vg L7(0", ¢, T)) — (&WU”(@’ i1, T) — 8¢2U"(9” ¢3’_1,T)> Ve L20", 67, T) |2

SV £, 6, T) = Vi L0, 67, Tll2 + OAJIIGTQH”(@’ 01 T2l Vo, £7(6", 67, T)

02 /
= Ve L7 (0", 6, T)ll2 +%H6752£’”(9’ 051, T) = WU”W s 851 Tll2 - Ve £7(0”, 67, T) 2

< (L4 La)[[ Vg L7, ¢, T) = Vg L70", ¢, T2 + o La Li ([| 951 — & 1|2

+ 10" =0"l2) ] (1 +ayLs)

i'=i+1
.

(33)

< (14 0y La)[[ Vg L0, 6. T) = Vi £L7(0", 6, T)ll2 + o L Ls (1 + A;—1)[|0 — 0”2 [] (1 + ayrLo)

=i+
<.
< Hvd);[,out(e/’ ¢;7 T) - Vdi’r"cow(euv (b;"lv T2 H (I + oy L)
Jj'=J
r r Jj'—
+LiLa)l0 = 0”2 Y ey (14 Ayoa) ] (L+agrLe) [T (1 apnLe) < Biall6 = 60",
J'=i =g’ J"=j+1

where we use (29). Using (6-7), we deduce that

[V £, U, T),T) = o £ (0 U@ T, T = o L0, 61, T) — 270", 67,7
T T 2

_ Z o ﬁm(el ¢/‘ T) \V/ /ﬁOUt(el ¢/ 7—) _ 9 /

ot 9006 i-b & ’T’ 9006 ACAY

) N ) !
(v 0n) Va0~ (V0T Vel @ Tl

Rk
£, T)) V¢;'50"t(9”,¢’r’,T))
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0

0

out (pn/
< N5 L0, 61, T) —

£out(0// (b 7—)”2

T T
Y ou /g 82 n/glt I ou "o
+Z%H<aea¢ﬁm(9 ¢“7T)> Vo £ t(97¢’“’7)_<aea¢£ ® 7%17)) Vor L0, 67, T2

0

.
aeVW T>> Ve L7(0", &7, T2

a T
ol (vw',ﬂ) Vo L0 6T <

7]
< H*ﬁ(’“t((?' O T) = 25 L7 (0", 6, Tl

a 3 A ’ ou /ol 82 il i/ ! ou "o
+Zaj”<aea¢ (e,@_lm) Vo £ 000 T) (Gt 01 T)) Va0 o)
2

T T
= (ot 0652 T)) Va0 6 T) = (o 70T ) Vg0 6 Tl
o T
I gpven) v - (e ) Vo L0, 6, T)
) ’ )
+ < SV, T)) Vg L0, 6, T) — <av 0", T > Vg L0, 6, T
0 0

<| aec"“%e' G T) = 5L (0,61 Tl

00

+ Zajllmcmw', &1 Tall Vo L (O, 6 T) = Vo L7406, T
j=1

+Zaj|
j=1

0
5 VO T2l Vi £(8', 6. T) = Vg L7861/, T2

0 0
+ 55V (. T) = 55V O TRV £7(0", 6, Tl

82
000¢

"0, 651, T) — Lm0, 71 D2l Ve, £70", 67, Tl

J

000¢

< Loll6' — 0"l + Lal|¢), — ¢/ll2 + >y <L25j||9/ = 0"[l2 + L(]|0" — 0" |2
=1

o5y — ¢ all)lr J] 1+ Oéj'L2)|2) + MiBo||0) — 0" |2 + Ma|6" — 6" |]2Ly [](1 + e L)
i=j+1 j=1

< Lol|0' = 0”2+ LaAd|l0/ = 072+ > oy (L26j||0/ = 0"+ Ls([|6" — 0”2

j=1
T

+ A0 =071 ] (1 + aj’L2)|2> + MiBo|¢' = 0" la + Mo|6 — 6" ||2Ly [ (1 + asLs) < €10 = 6",
i'=j+1 =1

where we use (29) and (33). Finally, by taking expectation with respect to 7 ~ p(7") and applying Jensen inequality we get

0 0
||%M( ( ) _ %M(T)(GN)H% S ]Ep(T) [||V0,£out(0/’ U(T)(Q/’T)’T) _ V@llﬁout(eﬁ,U(T)(GN,T),T)H%}
< C?[le" — 0"|I3,
which is equivalent to the statement of Lemma. O

Lemma 3. Letp,7,s € N, {a; > 0}52; and {yx > 0}32, be any sequences, q € (0,1],00 € RP, p(T) be a distribution
on a nonempty set Q, V : RS x Qr — RP, L L% . R® x RP x Q7 — R be functions satisfying Assumption 1, and let
U RS x Qf — RP be defined according to (2-3), M) : RP — R be defined according to (4) and satisfy Assumption 2.
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Define Gro : R x Qr > R%and G : R® x Q7 x {0,1} - R* as

0

Gro(0,T) = - L7(0,01,T) + (= T

(55V 0T 55
Q(G, T,x) =Gro(0,T) + E(Vg[l(’“t(& ér, T) = Gro(0,7)).

— L0, ¢,,T), ¢ =U"(0,T),

Let {Ti}52 1, {&k}72, be sequences of i.i.d. samples from p(T) and Bernoulli(q) respectively, such that c-algebras
populated by both sequences are independent. Let {6, € R°}2°  be a sequence where for all k € N 0, = 01 —
V.G (Ok—1, Tk, k). Then for each k € N

k
0 . ) r 1
>[I g MO8 < MO0~ M0 +((2 = 0p2 +v2) 352 34
et a0 q
where C is defined in (30-32), D,V are defined in (14), (16) respectively.

Proof. Let F,, denote a o-algebra populated by {7y, & }x<w. Using Lemma 2, we apply Inequality 4.3 from (Bottou et al.,
2018) to obtain that for all ', 6" € R®

.
1
M) < MO + (MO @ =0+ Sl o

For any u € N, by setting 8’ = 6,,, 6" = 0,,_1 we deduce that

0

]
meu_n) GBumr. Tor ) + 7210, T )

(g ) < M) N
MO(6,) < MO0, = 3

Take expectation with respect to F;:

0

E [ MO (0,)17.] < MO (6,-1)— ( N

.
M(T( )) E[g(au—lvnafuﬂfu]

+ 373CE (16001, Tar € B

< MO (G,y) - vun—M“(u I3+ vc(< 1>1D>2+V2)’

where we use Lemma 1’s result. Take the full expectation:

B [M6,)] < B [MO0,-)] - 18 MO @] + 3020 - oo+ )

which is equivalent to

e [igg 0] <2 [ 0] e @] e vt e ). e

Sum inequalities (35) forall 1 < u < k:

k

Z% { 9 Mg, I)M <E {Mm(go)} _E {Mm(ek)] +c((q —1)D? +V2> >

u=1

k
<MD () — M +c<(; - 1)D? +V2> >

u=1
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Theorem I proof. Under conditions of the theorem results of Lemma 3 are true.

First, we prove 1. If Z/ii1 7,% < 00, then the right-hand side of (34) converges to a finite value when k& — co. Therefore,
the left-hand side also converges to a finite value. Suppose the statement of 1 is false. Then there exists kg € N, A > 0 such
that Vu > ko : E [|| Z M) (0,-1)[|3] > A. But then for all k > ko

k
;% MO OuDIB] 243 3 > oc

u:k:[)
when k — oo, which is a contradiction. Therefore, 1 is true.

Next, we prove 2. Observe that
min E [Ha./\/l(r ||2} zk: zk: [ |- M) (0, 1)”%]
0<u<k
! = k
<MD () = M +c<(; - 1)D? +V2> >

u=1

Divide by Zﬁzl Yau:

k
i B L g MO0 < 000~ (-1t ) ot St
2 is satisfied by observing that
k k k k
D= uw P =0(k), Y 4i=) u"t =0(ogk) = O(k)
u=1 u=1 u=1 u=1
for any € > 0. O

E.2 Theorem 2

Proof. Consider a set Q7 consisting of two elements: Q7 = {71, T2}, Define p(T) so that
P (T =TW) =By (T=T") =3

Choose arbitrary numbers 0 < aj,as < i, ay # ag and set by = 0. Since a1 # ag, (1 — aa1)/(1 — aaz) # 1 and,
consequently,

1—aa \" 1— aa r
“ :
1 — «aas 1 — «as

Multiply by &L L # 0

a1 1—aa\" |, o 1—aay r
— — . 36
as (1oza2> #ag (loza2> (36)
From (36) and since ¢* (} aas) o (1= s )2" > 0 it follows that
ﬂ(l—aal )27‘ 1
2 17040.2
=2 _1#£0.
1 (1l=aai\r
Z72(17§32) + 1

Multiply inequality by (1 — caz)?" # 0 and numerator/denominator by as(1 — aaz)” # 0:

a1 (1 = aar)* + ax(1 — aag)?”
a1(1 — aa)” + az(1 — aag)”

(1 — aaz)” — (1 — aaz)® #0.
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Because of the inequality above, we can define a number b5 as

a1(1 — aa1)?” + az(1 — aag)?” e
by = 2v/2D L aa) (1 . 0 .
2= 22D ar(l —aay)” + az(1 — aaz)" (1 —aa1)” = (1 - aa) > (37)

and select arbitrary number A so that

b b
A>|L - 2. (38)
al as
Consider two functions f;(z), f; : R = R, i € {1, 2} defined as follows (denote z; = z;(x) = |z — % )
%aizf ifz; < A
filx) = —%ai(zi — AP+ %ai(zi — A2 +a;Az; — %aiA2 fA<z<A4+1. (39)
(%ai + CLZA)Zz — %ai — %aiA2 — %azA ifA+1<z

It is easy to check that for ¢ € {1,2} f;(z) is twice differentiable with a global minimum at Z—’ The following expressions
apply for the first and second derivative:

a;x — b; ifz; <A
(z) = (—%ai(zi —A)?+ aizi>sign(m - Z—) ifA<z<A+4+1, (40)
(3a; + a;A)sign(z — Z—L) ifA+1<z
a; ifz; < A
(@) =X —a;zi+a;+a;A ifA<z <A+1. (41)
0 ifA+1<z

From (40-41) it follows that each f; has bounded, Lipschitz-continuous gradients and Hessians. Define V(0,7) = 6,
L£7M0,6,T;) = LG, 0, T;) = fi(¢™M) fori € {1,2}, where ¢(!) denotes a first element of ¢, then Assumption 1 is
satisfied. Since (27 is finite, Assumption 2 is also satisfied.

Let] = [Z—"; —A, 2—11 + A]. Observe that from (38) it follows that 2—17 2—2 €Tand C [ — A 2 4 Alforie {1,2},ie I
corresponds to a quadratic part of both f;(z) and fo(z). If x € I, then for i € {1, 2}

L= afl/(x) =z —oalax—b) = (1 —aa)z+ ab;
=(1—-aa;) -+ aa;- Z € [min(z, ﬁ),max(ﬂc, ﬁ)] cI (42)

i a; %)

since © — af!(xr) is a convex combination of x and Z— 0 < aa;,1 — aa; < 1). From (42) and the definition of

L0, 0, T), LU0, ¢, T) it follows that if ¢y, . . ., @, is a rollout of inner GD (3) for task 7 and (1) = d)f)l) € I, then
§1), .. .,qﬁq(nl) € I and, hence,
Vo, L0, 6, THW = fi(61)) = aiplV) — by,
Vie{l,...r}: ¢l = (1 aa)el”; + ab;. 43)

From (43) we derive that

b @ b y b o) bi
?; —afi—(l—aai)(%q—afi)v ¢$)—a—(1—aai) (¢ —;i),
D) — (1 — a7 (oD _ Py bi
o = (1= aay (o) - 2+ 2,
out (i)y(1) _ ro)  bi b _ o) bi
Vi, L7NO, ¢, T = a; | (1 — aai)" (¢ *;)JF; —bi = a;(1 - aa;)" (¢ *;)- (44)
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From (5) it follows that there exists a deterministic number ky € N such that for all k& > kg

1 1
- - 45
T < 15%%} a; (1 + aa;)" 45)
If (45) holds, then it also holds that
< ! < ! (46)
min ————, min ————
T ie{1,2} a; (1 4+ aa;)" T i€{1,2} a;(1 — aa;)"”
For any k£ > kg the following cases are possible:
1. Case 1: 6", € I. An identity (44) allows to write that for i € {1,2}
, bi
Gro(Br—1, T)V = a;i(1 — aa)" (6,2, = ). (47)

For i € {1,2} let random number v; € 0, 1 denote an indicator that 7;, = 7 (v; 4+ vy = 1). Then from (47) we
deduce that

b;
0 —91(; 1 *ykalal (1—-aa;)" (9,(61 1T )
i=1 v
b
=1 - Zviai(l —aa;)") - 9](;_)1 + vevrar (1 — aaq)” (li
i=1

)
+ rv20a2(1 — aaz)” - ai
2

9(1) b1 bz) (9(1) b1 bo

€ [min(6, 1’;1a;2 po ) 1

ay az

since 0,(61) is a convex combination of 0,2121, %, Z—; Indeed, due to (46)

(1 — ZvZaZ —aa;)"),v1a1 (1 — aar)", ypvea2(l — aag)” < 1

and

(1 — Zvlal —aa;)") +yviar(l — aar)” 4+ ypveas(l — aas)” = 1.

As a result of this Case we conclude that if £ > kg and 9,2121 € I, then for all ¥’ > k it also holds that 9,(;) el

2. Case 2: 9,21_)1 > 2—11 + A. From (41) observe that for i € {1,2} and any x € R f/'(x) < a;. Hence, f/’s Lipschitz
constant is a;. Let ¢p, ..., (bT and 50, ..., $, be two inner-GD (3) rollouts for task 7 and ¢\ > qbél). or
j € {1,...,r} suppose that qﬁj 1> (Z)] 1- Then

o~ 9y = ol — B — alfl6{0) — 11(3,2)

> oM, =5 —al i@ — F1@ D)
> ¢j—1 ¢( ) (1) 1

> ol — 3
=0

aal|¢] 1

1
B — 1, ¢j_1|
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or (;5(1) > 5(1) where we use Lipschitz continuity of f/ and that aa; < 1 by the choice of a1, as. Therefore, since

(1) > (;50 , ¢11) > 5&1) and so on, eventually oM > af.”. Observe that f/(x) is a strictly monotonously increasing
functlon, therefore f]( 5«1)) > fl (&f})) To sum up:

—a —a
FH60) > 113, when 6 > 3", (48)
Set aél) = 2, then f’(a 1) =0and ¢§1) = qb(()l) —a-0= 6(()1) and so on, eventually aﬁ” = % and f’(ail)) =0.

Therefore, if (;Sél) = b1 + A > max(& 2) then i (1)) > fl’(afnl)) = 0. For i € {1,2} denote a deterministic

a1’ a

value of f/( S”) by Bi > 0. By setting (;5(1) = 0 1, ¢0 = Z—i + A and using (48) we obtain:

Gro(Or1, TN = FI(6V) > f1(@,) = B; > B > 0. (49)
where we denote B = min(B;, Bg).

In addition, set ¢(1 =0 1)1, ¢>0 = Z—i Then

gmwkfl,ﬂ”)“)=|gm<ek1T<i>><1>|=|f-’<¢<l>> 0] = | £1( ¢<l>> AEM)
< ;oM — ¢> | ailo®; — 3 — a(fl(6Y) - 1B
< ailot = 3|+ aail f(6D)) — F1@B)]

1
<ai(l1+ O‘az)|¢(1) - ¢£—)1

<a;(1+ aai)"|¢(()l) —
b;
= a;(1 + aa)"|0", — =,

Since 912121 > % +A> max(z 2—2) we derive that

Gro(B-1, TV < a1+ aa) (62, = 2 < — (62, - )
% Tk 4
by 1 bir
< max —(0,(61)1 —) = —(9,(:_)1 — min
i e{l 2} Yk [e7% Yk i'e{1,2} a;

b
= 9(1) _a
’)’k( Rt 111)

bl_

where we use (46) and the fact that , Z—z > 0. Next, we deduce that

b b
91(:) = 91(:_)1 — 1Gro(Oe-1, Te)V > gl(cl—)l - (0(1)1 1) = (50)
Tk ai ay
On the other hand, from (49)
Gro(Op—1, 7)Y > B
and
0 =01, — %Gro (-1, T)V < 0V, — B (51)

According to (5) there exists a number k1 > & such that

ki1—1

b
> > —(0“) -1, (52)
k'=k

ai
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In addition, let k1 be a minimal such number. Suppose that for all £ < k' < k; 9,(;)_ 1> 2—11 + A. Then by applying
bound (51) for all K = k' we obtain that

k1
(1) (1) (1) by
O, <O 1~V B<-<0,),-B> < o
k'=k
which is a contradiction with the bound (50) applied to ¥ = k;. Therefore, there exists & < k' < ky such that
9(1) < bl + A. Then there exists a number

ko = min K. (53)
k<k/<k1,00) <2L4+A

a7

Hence, 0,(3_1 > {% + A and by applying bound (50) to & = ko we conclude that 0,(61) > %. Averall:

by b
o) e [L, L+ Al C 1.
2 ay aq
As shown in Case 1, for all &’ > ko (including k1) it also holds that 9,(;) € I. To summarize, we have proven that there
exists a deterministic number B > 0 such that for k; defined by (52) 9,(;) € Iforall k' > k.

3. Case 3: Ok 1 < — A. Using a symmetric argument as in Case 2 it can be shown that there exists a deterministic
number C' > 0 so that the following holds. According to (5) there exists k3 > k such that

ks—1

1.b
va—i—e )- (54)

In addition, let k3 be a minimal such number. Then 9,9) € I forall k' > ks.

Since p(T) is a discrete distribution, there only exists a finite number of outcomes for a set of random variables {7 } k<, -
Therefore, there is only a finite set of possible outcomes of the 9,(;))71 random variable. Consequently, there exists a

deterministic number £ > 0 such that |9,(€?71| < FE. According to (5) there exist deterministic numbers k4, k5 > ko such

that
ka—1 ks—1

1 b
nyk/>—Ef—1), ZW>— . T E). (55)

ay

and let kg = max(ky4, k5), which is also a deterministic number. Let k1, k3 be random numbers from Cases 2, 3 applied
to k = kg. Then from (55) and E’s definition, it follows that k1, k3 < kg. In addition, kg < kg from kg’s definition. As a
result of all cases, we conclude that for any k& > kg qﬁ(l)

Denote
* 1 T r * 1 r r *
a* = §(a1(1—aa1) +az(l —aas)”), b= 5(51(1—Cm1) +bo(1 — an)”), z*¥=—

and consider arbitrary k > kg. Denote G = Gro(6x_1, Tx) and let Fy, be a o-algebra populated by {7}, s < k. From
Equation (47) we conclude that
E |:§(1)|-Fk:| _ a*gl(gl_)l _ b

Outer-loop update leads to an expression:
9(1) 9( — Yk g

Subtract z*: W
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Take a square:

* * (1 1 1)2
(0 —2")? = (0, — 2" — %G = (01, —2")? = 2900, — 2@ + 4757,

Take expectation conditioned on Fy:
B[ — 221 7] = (0, — o) = 26, — o")E G| 7] +47E [( v)’ m}
=0, — 27 = 22, )oY, )+t | () 17
= (00— a) — 2t (0, — )6, — ) + AR {(g(”)2 |]—'k]
— (1= )02, - o2 o | (07) 17

Fori € {1,2}, Gro(0x—1, T™W)™) depends linearly on 912121 (47) and, therefore, is bounded on 9,(617)1 € I. Hence, 3(1)2 is

also bounded by a deterministic number F' > 0: G g2 < F. Then:

E [0 - ") 7] < (1= 294a”) (61, — 2) + 12F.

Take a full expectation:
E[(0)" - o] < (1 - 2%a") B0, — ") +4EF,

and denote y, = E [(91(:) - x*)z}:
yr < (1= 2ya*)yr—1 + i F. (56)

Now, we prove that limy_, ., yx = 0. Indeed, consider arbitrary ¢ > 0. According to (5) there exists k. > kg such that
VE > ke iy < “==. As aresult of (56) for every k > k. it holds

yr < (1= 2ya™)yr_1 + ViF < (1 — 2ypa™)yr_1 + yra*e.

Subtract §:
€

< (1 —=2va™)(Yp—1 — 5). (57)

ko it holds that 1 — 2y,a* > 0. Therefore and since (57) holds for all

Yk —

v Nl

Observe that by (45), a*’s definition and since k
k > k., it can be written that for all £ > k.

k k
* €
yk_§§ (H (1-2wa ))(yk 71—* (H (1 —2ypa®) )|yk€1_2|~

K =k, k'=ke

We use inequality 1 — 2 < exp(—=x) to deduce that

k
€ . €
w5 < ( [T (12w )>|yke—1 =5l

K =k.
b €
< exp(—2a* > w)lykg_l -5l (58)
K =k,
If |yr, -1 — §| = 0, then from (58) it follows that y < 0+ § < e for all £ > k.. Otherwise, from (5) there exists &, such
that Sy, e > 2811 =578 5 Then from (58) it follows that for all k > k. y, — § < § or i < €. Since yx > 0

by definition, we have proven that limy_, o yx = 0, or

lim E {(9,&” - x*)ﬂ = 0. (59)

k—o0
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Again, let k > k. Let ¢g = 0y, . . ., ¢, be a rollout (3) of inner GD for task 7 (). Then according to (6-9)
r—1

Vo, L7, U (01, TO), TND = Gro (01, TN D T (1 — afl (61"

=0

From (42) it follows that f/’ (¢§-1)) = q; for j € {0,...,r — 1}. Moreover, we use (47) to obtain that

. . bi
Vo L7 (01, UM (01, TO), TEOYD = 0,(1 — ) > (6 — =)
and
0 ) .
%M(T)(Qk)(l) — EP(T) [Vokﬁout((gl€7 U(r)(gk, '7'(1))7 7’(1))(1)}
1 2r (1) b1 or (1) b2
=3 a1 (1 —aa)* (8, — —) +a2(l —aa2)™ (0, — —)
aj ag
=ao) — b
where

1 ~ 1
a= §(a1(1 —aa1)? +ax(l — aaz)?), b= §(b1(1 — aar)® + by(1 — aas)®).

Notice that since b; = 0 and b5 is defined by (37), it appears that [az* — 3| = V2D, or (az* — 3)2 = 2D. Multiply (59) by
@ to obtain that

. ~n(1) _~om2|
klgr;oE[(GHk axr’™) } =0, (60)
lim E[(ao,g” —b— (az* fﬁ)f] =0,
P ~
- (9D _ (arr _N2] =
klggoE[(aaM 0V — @z* - 1)) } 0. 61)

For each k£ > 1 by Jensen’s inequality :

2

0

(IE [;M“)(ok)ﬂ)} — (az* —A)> <E [(89/\/1<T>(9k)(1> — (az* —B))Q] .

Hence,

k—o0

0 ~\? 0 ~
lim (IE [ 9./\/[ (6k) } (ax ))) =0, khm E { 9/\/1 (0k) ] = (ax )

and by expanding (61) we derive that

lim E

k—o0

9 2 ~ 9 ~ ~

v (r) (1) — Yt . v (r) M| _ m0x _7\2 — (Fr* _DB)2 —
<80M (0k) > ] 2(ax )klgroloE {89/\/1 (6k) ] (az* — b)* = (az* — b)* =2D.
We conclude the proof by observing that

0 0
1 1 —_— (T) 2 — ] E— (/r) 2 — N
hkmlnfE [| 9./\/1 (9;.@)|2} = khm E [H M (Qk)||2] = khm E

8 2
(%M(T)(Gk)(l)> ] =2D > D.
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F Optimal Choice of ¢
The derivative of (19) has the form

2

1+2e 2
g(q) - 26 — 1 ((1/(] - 1) true + Vtrue) 1=2e q 2]]:))157"11,6(621615 + CTTldq) ((1/(] - 1) true + Vtrue) T Crnd

142e

_ 2
2((1/q - 1) true + Vtrue) 1=z (26_]_Dgrue(cdet + Crndq) + Crnd (D?rue + q(Vfrue Dfrue))

_ Lize 2e+1 2
2((1/(] - 1) true + Vtrue) 2 (CT’ﬂd(V?rue ]D?rue)q2 + % — D?’ruec’f’ﬂdq + o % — truecd€t> . (62)

‘We further deduce that
1+2

e 2
—2€ (CTnthrue % _ (Cdet + C’Fnd) true)

9(1) = (Vi)

Assuming that VZ_ . > 0, we conclude that g(1) > 0 iff
CT'II
D?’I‘ue d tQTUC' (63)

1_226 (Cdet + Crnd)

g(q) is differentiable on (0, +00). Let ¢* be the value corresponding to the minimum of (19) on (0, 1]. ¢* exists, since (19)
approaches +o0o when ¢* — 0. g(1) > 0 indicates that ¢* is not equal to 1, i.e. we obtain a tigher upper bound using UFOM
rather than exact gradients. Further, solving ¢g(q) = 0 reduces to solving a quadratic equation induced by the polynomial
inside big brackets of (62):

2¢+1

pOIy(q) = CTnd(V%rue ]D)z%rue)qQ + 26

2
2% — 1 t’ruecdet =0

1 ]D)tQTueCTqu +
Notice, that if € < 1 and (63) is satisfied, then poly(1) > 0 and poly(0) < 0. Hence, from the continuity of poly(q), it
follows that there is an odd number of roots of poly(¢) on (0, 1). Since the quadratic equation has at most 2 roots, we
conclude that there is a single root on (0, 1). Since (19) is differentiable on (0, 1], ¢ = 1 is not a local minimum of (19) on
(0, 1] and lim,_, 4+ g(g) = +o0, we conclude that this single root is a minimum of (19) on (0, 1].



