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Abstract
Decentralized training of deep learning models
is a key element for enabling data privacy and
on-device learning over networks. In realistic
learning scenarios, the presence of heterogeneity
across different clients’ local datasets poses an op-
timization challenge and may severely deteriorate
the generalization performance.
In this paper, we investigate and identify the limi-
tation of several decentralized optimization algo-
rithms for different degrees of data heterogeneity.
We propose a novel momentum-based method to
mitigate this decentralized training difficulty. We
show in extensive empirical experiments on vari-
ous CV/NLP datasets (CIFAR-10, ImageNet, and
AG News) and several network topologies (Ring
and Social Network) that our method is much
more robust to the heterogeneity of clients’ data
than other existing methods, by a significant im-
provement in test performance (1%−20%). Our
code is publicly available1.

1. Introduction
Decentralized machine learning methods—allowing com-
munications in a peer-to-peer fashion on an underly-
ing communication network topology (without a central
coordinator)—have emerged as an important paradigm
in large-scale machine learning (Lian et al., 2017; 2018;
Koloskova et al., 2019; 2020b). Decentralized Stochastic
Gradient Descent (DSGD) methods offer (1) scalability to
large datasets and systems in large data-centers (Lian et al.,
2017; Assran et al., 2019; Koloskova et al., 2020a), as well
as (2) privacy-preserving learning for the emerging EdgeAI
applications (Kairouz et al., 2019; Koloskova et al., 2020a),
where the training data remains distributed over a large num-
ber of clients (e.g. mobile phones, sensors, or hospitals) and
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is kept locally (never transmitted during training).

A key challenge—in particular in the second scenario—is
the large heterogeneity (non-i.i.d.-ness) in the data present
on the different clients (Zhao et al., 2018; Kairouz et al.,
2019; Hsieh et al., 2020). Heterogeneous data (e.g. as
illustrated in Figure 1) causes very diverse optimization
objectives on each client, which results in slow and unstable
global convergence, as well as poor generalization perfor-
mance (shown in the inline table of Figure 1). Addressing
these optimization difficulties is essential to realize reliable
decentralized deep learning applications. Although such
challenges have been theoretically pointed out in Shi et al.
(2015); Lee et al. (2015); Tang et al. (2018b); Koloskova
et al. (2020b), the empirical performance of different DSGD
methods remains poorly understood. To the best of our
knowledge, there currently exists no efficient, effective, and
robust optimization algorithm yet for decentralized deep
learning on heterogeneous data.

In the meantime, SGD with momentum acceleration
(SGDm) remains the current workhorse for the state-of-the-
art (SOTA) centralized deep learning training (He et al.,
2016; Goyal et al., 2017; He et al., 2019). For decen-
tralized deep learning, the currently used training recipes
(i.e. DSGDm) maintain a local momentum buffer on each
worker (Assran et al., 2019; Koloskova et al., 2020a; Nadi-
radze et al., 2020; Singh et al., 2020; Kong et al., 2021) while
only communicating the model parameters to the neighbors.
However, these attempts in prior work mainly consider ho-
mogeneous decentralized data—and there is no evidence
that local momentum enhances generalization performance
of decentralized deep learning on heterogeneous data.

As our first contribution, we investigate how DSGD and
DSGDm are impacted by the degree of data heterogeneity
and the choice of the network topology. We find that hetero-
geneous data hinders the local momentum acceleration in
DSGDm. We further show that using a high-quality shared
momentum buffer (e.g. synchronizing the momentum buffer
globally) improves the optimization and generalization per-
formance of DSGDm. However, such a global communi-
cation significantly increases the communication cost and
violates the decentralized learning setup.

github.com/epfml/quasi-global-momentum
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(a) CIFAR-10, n=16, α = 10.
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(b) CIFAR-10, n=16, α = 1.
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(c) CIFAR-10, n=16, α = 0.1.

Methods Ring (n=16) Social Network (n=32)

α = 10 α = 1 α = 0.1 α = 10 α = 1 α = 0.1

DSGD 89.90± 0.26 88.88± 0.26 74.55± 2.07 89.95± 0.23 88.41± 0.27 77.56± 1.65
DSGDm-N 91.47± 0.23 89.98± 0.10 77.48± 2.67 91.17± 0.11 89.96± 0.35 80.59± 2.32

QG-DSGDm-N (ours) 91.90± 0.17 91.28± 0.38 82.20± 1.27 91.51± 0.02 91.00± 0.24 85.19± 0.98

Figure 1: Illustrating the challenge of heterogeneous data in decentralized deep learning, for training ResNet-EvoNorm-20 on
CIFAR-10. The Dirichlet distribution α values control different non-i.i.d. degrees (Yurochkin et al., 2019; Hsu et al., 2019; He et al., 2020);
the smaller α is, the more likely the clients hold examples from only one class. The inline figures illustrate the # of samples per class
allocated to each client (indicated by dot sizes), for the case of α=10, 1, 0.1. The test top-1 accuracy results in the table are averaged
over three random seeds, with learning rate tuning for each setting. The performance upper bound (i.e. centralized training without local
data re-shuffling) for n=16 and 32 nodes are 92.95± 0.13 and 92.88± 0.07 respectively. Following prior work, the evaluated DSGD
methods maintain local momentum buffer (without synchronization) for each worker; other experimental setup refers to Section 5.1.

We instead propose Quasi-Global (QG) momentum, a sim-
ple, yet effective, method that mitigates the difficulties for
decentralized learning on heterogeneous data. Our approach
is based on locally approximating the global optimization di-
rection without introducing extra communication overhead.
We demonstrate in extensive empirical results that QG mo-
mentum can stabilize the optimization trajectory, and that it
can accelerate decentralized learning achieving much better
generalization performance under high data heterogeneity
than previous methods.

• We systematically examine the behavior of decentral-
ized optimization algorithms on standard deep learning
benchmarks for various degrees of data heterogeneity.
• We propose a novel momentum-based decentralized op-

timization method—QG-DSGDm and QG-DSGDm-N—
to stabilize the local optimization. We validate the ef-
fectiveness of our method on a spectrum of non-i.i.d.
degrees and network topologies—it is much more robust
to the data heterogeneity than all other existing methods.
• We rigorously prove the convergence of our scheme.
• We additionally investigate different normalization meth-

ods alternative to Batch Normalization (BN) (Ioffe &
Szegedy, 2015) in CNNs, due to its particular vulnerable
to non-i.i.d. local data and the caused severe quality loss.

2. Related Work
Decentralized Deep Learning. The study of decentralized
optimization algorithms dates back to Tsitsiklis (1984),
relating to use gossip algorithms (Kempe et al., 2003; Xiao
& Boyd, 2004; Boyd et al., 2006) to compute aggregates

(find consensus) among clients. In the context of machine
learning/deep learning, combining SGD with gossip averag-
ing (Lian et al., 2017; 2018; Assran et al., 2019; Koloskova
et al., 2020b) has gained a lot of attention recently for
the benefits of computational scalability, communication
efficiency, data locality, as well as the favorable leading
term in the convergence rate O

(
1
nε2

)
(Lian et al., 2017;

Scaman et al., 2017; 2018; Tang et al., 2018b; Koloskova
et al., 2019; 2020a;b) which is the same as in centralized
mini-batch SGD (Dekel et al., 2012). A weak version of
decentralized learning also covers the recent emerging
federated learning (FL) setting (Konecnỳ et al., 2016;
McMahan et al., 2017; Kairouz et al., 2019; Karimireddy
et al., 2020b; Lin et al., 2020b) by using (centralized)
star-shaped network topology and local updates. Note that
specializing our results to the FL setting is beyond the
scope of our work. It is also non-trivial to adapt certain
very recent techniques developed in FL for heterogeneous
data (Karimireddy et al., 2020b;a; Lin et al., 2020b; Wang
et al., 2020a; Das et al., 2020; Haddadpour et al., 2021) to
the gossip-based decentralized deep learning.

A line of recent works on decentralized stochastic optimiza-
tion, like D2/Exact-diffusion (Tang et al., 2018b; Yuan et al.,
2020a; Yuan & Alghunaim, 2021), and gradient tracking (Pu
& Nedić, 2020; Pan et al., 2020; Lu et al., 2019), proposes
different techniques to theoretically eliminate the influence
of data heterogeneity between nodes. However, it remains
unclear if these theoretically sound methods still endow with
superior convergence and generalization properties in deep
learning.
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Other works focus on improving communication efficiency,
from the aspect of communication compression (Tang et al.,
2018a; Koloskova et al., 2019; 2020a; Lu & De Sa, 2020;
Taheri et al., 2020; Singh et al., 2020; Vogels et al., 2020;
Taheri et al., 2020; Nadiradze et al., 2020), less frequent
communication through multiple local updates (Hendrikx
et al., 2019; Koloskova et al., 2020b; Nadiradze et al., 2020),
or better communication topology design (Nedić et al., 2018;
Assran et al., 2019; Wang et al., 2019; 2020b; Neglia et al.,
2020; Nadiradze et al., 2020; Kong et al., 2021).

Mini-batch SGD with Momentum Acceleration. Mo-
mentum is a critical component for training the SOTA deep
neural networks (Sutskever et al., 2013; Lucas et al., 2019).
Despite various empirical successes, the current theoreti-
cal understanding of momentum-based SGD methods re-
mains limited (Bottou et al., 2016). A line of work on the
serial (centralized) setting has aimed to develop a conver-
gence analysis for different momentum methods as a special
case (Yan et al., 2018; Gitman et al., 2019). However, SGD
is known to be optimal in the worst case for stochastic non-
convex optimization (Arjevani et al., 2019).
In distributed deep learning, most prior works focus on ho-
mogeneous data (especially for numerical evaluations) and
incorporate momentum with a locally maintained buffer
(which has no synchronization) (Lian et al., 2017; Assran
et al., 2019; Lin et al., 2020c;a; Koloskova et al., 2020a;
Singh et al., 2020). Yu et al. (2019) propose synchro-
nizing the local momentum buffer periodically for better
performance at the cost of doubling the communication.
SlowMo (Wang et al., 2020c) instead proposes to periodi-
cally perform a slow momentum update on the globally syn-
chronized model parameters (with additional All-Reduce
communication cost), for centralized or decentralized meth-
ods. Parallel work (Balu et al., 2020) introduces DMSGD
for decentralized learning2—it constructs the acceleration
momentum from the mixture of the local momentum and
consensus momentum. Our proposed method has no extra
communication overhead and significantly outperforms all
existing methods (in Section 5.2).

Batch Normalization in Distributed Learning. Batch
Normalization (BN) (Ioffe & Szegedy, 2015) is an indis-
pensable component in deep learning (Santurkar et al., 2018;
Luo et al., 2019) and has been employed by default in most
SOTA CNNs (He et al., 2016; Huang et al., 2016; Tan & Le,
2019). However, it often fails on distributed deep learning
with heterogeneous local data due to the discrepancies be-
tween local activation statistics (see recent empirical exami-
nation for federated learning in Hsieh et al., 2020; Andreux
et al., 2020; Li et al., 2021; Diao et al., 2021). As a rem-
edy, Hsieh et al. (2020) propose to replace BN with Group

2 We detail the DMSGD algorithm and clarify the difference in
Appendix B.2; we empirically compare with DMSGD in Table 5.

Normalization (GN) (Wu & He, 2018) to address the issue
of local BN statistics, while Andreux et al. (2020); Li et al.
(2021); Diao et al. (2021) modify the way of synchronizing
the local BN weight/statistics for better generalization per-
formance. In the scope of decentralized learning, the effect
of batch normalization has not been investigated yet.

3. Method
3.1. Notation and Setting

We consider sum-structured distributed optimization prob-
lems f : Rd → R of the form

f? := minx∈Rd
[
f(x) := 1

n

∑n
i=1 fi(x)

]
, (1)

where the components fi : Rd → R are distributed among
the n nodes and are given in stochastic form: fi(x) :=
Eξ∼Di [Fi(x, ξ)], where Di denotes the local data distribu-
tion on node i ∈ [n]. In D(ecentralized)SGD, each node i
maintains local parameters x(t)

i ∈ Rd, and updates them as:

x
(t+1)
i =

∑n
j=1 wij

(
x
(t)
j − η∇Fj(x

(t)
j , ξ

(t)
j )
)
, (DSGD)

that is, by a stochastic gradient step based on a sample ξ(i)
i ∼

Di, followed by gossip averaging with neighboring nodes in
the network topology encoded by the mixing weights wij .

In this paper, we denote DSGD with local HeavyBall
momentum by DSGDm, and DSGD with local Nesterov
momentum by DSGDm-N; the naming rule also applies to
our method. For the sake of simplicity, we use HeavyBall
momentum variants in Section 3 and 4 for analysis purposes.

3.2. QG-DSGDm Algorithm

To motivate the algorithm design, we first illustrate the im-
pact of using different momentum buffers (local vs. global)
on distributed training on heterogeneous data.

Heterogeneous data hinders local momentum
acceleration—an example 2D optimization illustra-
tion. In Figure 2 shows a toy 2D optimization example
that simulates the biased local gradients caused by hetero-
geneous data. It depicts the optimization trajectories of two
agents (n = 2) that start the optimization from the position
(0, 0) and receive in every iteration a gradient that points
to the local minimum (0, 5) and (4, 0) respectively. The
gradient is given by the direction from the current model
(position) to the local minimum, and scaled to a constant
update magnitude. Model synchronization (i.e. uniform
averaging) is performed for every local model update step.

Heterogeneous data strongly influences the effectiveness of
the local momentum acceleration. Though local momentum
in Figure 2(b) assists the models to converge to the neighbor-
hood of the global minimum (better convergence than when
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(b) w/ local HeavyBall momentum.
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(c) Our scheme.

Figure 2: The ineffectiveness of local momentum acceleration under heterogeneous data setup: the local momentum buffer accumu-
lates “biased” gradients, causing unstable and oscillation behaviors. The size of marker will increase by the number of update steps; colors
blue and green indicate the local models of two workers (after performing local update), while color black is the synchronized global
model. Uniform weight averaging is performed after each update step, and the new gradients will be computed on the averaged model.
We use the common β=0.9 in this illustration and more results on different β values refer to Appendix D.2.

excluding local momentum in Figure 2(a)), it also causes an
unstable and oscillation optimization trajectory. The prob-
lem gets even worse in decentralized deep learning, where
the learning relies on stochastic gradients from non-convex
function and only has limited communication.

Synchronizing the local momentum buffers boosts
decentralized learning. We here consider a hypothetical
method, which synchronizes the local momentum buffer
as in Yu et al. (2019), to use the global momentum buffer
locally (avoid using ill-conditioned local momentum buffer
caused by heterogeneous data, as shown by the poor
performance in Figure 1). We can witness from Table 5 that
synchronizing the buffer per update step by global averaging
to some extent mitigates the issue caused by heterogeneity
(1%−5% improvement comparing row 3 with row 7 in Ta-
ble 5). Despite its effectiveness, the global synchronization
fundamentally violates the realistic decentralized learning
setup and introduces extra communication overhead.

Our proposal—QG-DSGDm. Motivated by the perfor-
mance gain brought by employing a global momentum
buffer, we propose a Quasi-Global (QG) momentum
buffer—a communication-free approach to mimic the
global optimization direction—to mitigate the difficulties
for decentralized learning on heterogeneous data. Integrat-
ing quasi-global momentum with local stochastic gradients
alleviates the drift in the local optimization direction, and
thus results in a stabilized training and high robustness to
heterogeneous data.

Algorithm 1 highlights the difference between DSGDm and
QG-DSGDm. Instead of using local gradients from het-
erogeneous data to form the local momentum (line 4 for
DSGDm), which may significantly deflect from the global
optimization direction, for QG-DSGDm, we use the differ-

Algorithm 1 Decentralized learning algorithms: QG-DSGDm

v.s. DSGDm ; Colors indicate the two alternative algorithm vari-
ants. At initialization m

(0)
i = m̂

(0)
i := 0.

1: procedure WORKER-i
2: for t ∈ {1, . . . , T} do
3: sample ξ(t)

i and compute g(t)
i = ∇Fi(x(t)

i , ξ
(t)
i )

4: m
(t)
i = βm

(t−1)
i + g

(t)
i

5: m
(t)
i = βm̂

(t−1)
i + g

(t)
i

6: x
(t+ 1

2 )
i = x

(t)
i − ηm

(t)
i

7: x
(t+1)
i =

∑
j∈N (t)

i
wijx

(t+ 1
2 )

j

8: d
(t)
i =

x
(t)
i −x

(t+1)
i

η

9: m̂
(t)
i = µm̂

(t−1)
i + (1− µ)d

(t)
i

10: return x
(T )
i

ence of two consecutive synchronized models (line 8)

d
(t)
i =

1

η

(
x

(t)
i − x

(t+1)
i

)
, (2)

to update the momentum buffer (line 9) by m̂
(t)
i =

µm̂
(t−1)
i + (1−µ)d

(t)
i . We set µ = β for all our numerical

experiments, without needing hyper-parameter tuning.

The update scheme of QG-DSGDm can be re-formulated in
matrix form (X = [x1, . . . ,xn] ∈ Rd×n, etc.) as follows

X(t+1) = W
(
X(t) − η

(
βM(t−1) +G(t)

))
M(t) = µM(t−1) + (1− µ)X

(t)−X(t+1)

η
.

(3)
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(b) n=32.
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Figure 3: Understanding QG-DSGDm through the distributed average consensus problem on a fixed ring topology. QG-DSGDm
without gradient update step ((4)) still presents faster convergence (to a relative high precision) than the standard gossip averaging.
Appendix D.1 illustrates the results on other communication topologies and topology scales.

3.3. Convergence Analysis

We provide a convergence analysis for our novel QG-
DSGDm for non-convex functions. The proof details can be
found in Appendix C.

Assumption 1. We assume that the following hold:

• The function f(x) we are minimizing is lower bounded
from below by f?, and each node’s loss fi is smooth
satisfying ‖∇fi(y)−∇fi(x)‖ ≤ L ‖y−x‖.
• The stochastic gradients within each node satisfies
E [gi(x)] = ∇fi(x) and E ‖gi(x)−∇fi(x)‖2 ≤ σ2.
The variance across the workers is also bounded as
1
n

∑n
i=1 ‖∇fi(x)−∇f(x)‖2 ≤ ζ2.

• The mixing matrix is doubly stochastic: for all ones
vector 1, we have W1=1 and W>1=1.
• Define Z̄ = Z 1

n11
> for any matrix Z ∈ Rd×n, then

the mixing matrix satisfies EW

∥∥ZW − Z̄
∥∥2

F
≤ (1 −

ρ)
∥∥Z− Z̄

∥∥2

F
.

Theorem 3.1 (Convergence of QG-DSGDm for non–
convex functions). Given Assumption 1, the sequence
of iterates generated by (3) for step size η =
O
(√

n
σ2T

)
and momentum parameter β

1−β ≤
ρ
21 satisfies

1
T

∑T−1
t=0 E ‖∇f(x̄t)‖2 ≤ ε in iterations

T = O
(
Lσ2

nε2 + Lζ̃
ρε3/2

+ L
ε ( 1

ρ + 1
(1−µ)(1−β)2 )

)
,

where ζ̃2 := ζ2 + (1 + 1−β
1−µ )σ2.

Remark 3.2. The asymptotic number of iterations required,
O
(
σ2

nε2

)
shows perfect linear speedup in the number of work-

ers n, independent of the communication topology. This up-
per bound matches the convergence bounds of DSGD (Lian
et al., 2017) and centralized mini-batch SGD (Dekel et al.,
2012), and is optimal (Arjevani et al., 2019). This sig-
nificantly improves over previous analyses of distributed
momentum methods which need Lσ2

n(1−β)ε2 iterations, slow-
ing down for larger values of β (Yu et al., 2019; Balu et al.,
2020). The second drift term 1

ρε3/2
arises due to the non-iid

data distribution, and matches the tightest analysis of DSGD
without momentum (Koloskova et al., 2020b). Finally, our
theorem imposes some constraint on the momentum param-

eter β (but not on µ). In practice however, QG-DSGDm
performs well even when this constraint is violated.

3.4. Connection with Other Methods

We bridge quasi-global momentum with two recent works
below. The corresponding algorithm details are included
in Appendix B.1 for clarity.

Connection with MimeLite. MimeLite (Karimireddy
et al., 2020a) was recently introduced in a preprint for FL on
heterogeneous data. It shares a similar ingredient as ours: a
“global” movement direction d is used locally to alleviate the
issue caused by heterogeneity. The difference falls into the
way of forming d (c.f. line 8 in Algorithm 1): in MimeLite,
d is the full batch gradients computed on the previously
synchronized model, while the d in our QG-DSGDm is the
difference on two consecutive synchronized models.
MimeLite only addresses the FL setting, which results in
a computation and communication overhead (to form d),
and is non-trivial to extend to decentralized learning.

Connection with SlowMo. SlowMo and its “noaverage”
variant (Wang et al., 2020c) aim to improve generalization
performance in the homogeneous data-center training
scenario, while QG-DSGDm is targeting learning with data
heterogeneity. In terms of update scheme, SlowMo variants
update the slow momentum buffer through the model
difference d of τ � 1 local update (and synchronization)
steps, while QG-DSGDm only considers consecutive
models (analogously τ = 1)3. Besides, in contrast to
QG-DSGDm, the slow momentum buffer in SlowMo will
never interact with the local update—setting τ to 1 in
SlowMo variants cannot recover QG-DSGDm.
SlowMo variants are orthogonal to QG-DSGDm; combin-
ing these two algorithms may lead to a better generalization
performance, and we leave it for future work.

3 We also study the variant of QG-DSGDm with τ > 1 in
Appendix D.8—we stick to τ=1 in the main paper for its superior
performance and hyper-parameter (τ ) tuning free.
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4. Understanding QG-DSGDm
4.1. Faster Convergence in Average Consensus

We now consider the simpler averaging consensus prob-
lem (isolated from the learning part of QG-DSGDm): we
simplify (3) by removing gradients and step-size:

X(t+1) = W
(
X(t) − βM(t−1)

)
M(t) = µM(t−1) + (1− µ)

(
X(t) −X(t+1)

)
,

(4)

and compare it with gossip averaging X(t+1) = WX(t).

Figure 3 depicts the advantages of (4) over standard gossip
averaging, where QG-DSGDm can quickly converge to a
critical consensus distance (e.g. 10−2). It partially explains
the performance gain of QG-DSGDm from the aspect of im-
proved decentralized communication (which leads to better
optimization)—decentralized training can converge as fast
as its centralized counterpart once the consensus distance is
lower than the critical one, as stated in Kong et al. (2021).

4.2. QG-DSGDm (Single Worker Case) Recovers QHM

Considering the single worker case, QG-DSGDm can be
further simplified to (derivations in Appendix B.3.1):

m̂(t) = β̂m̂(t−1) + g(t)

x(t+1) = x(t) − η
(
(1− µ

β̂
)m̂(t) + µ

β̂
g(t)
)
,

where β̂ := µ+ (1− µ)β. Thus, the single worker case of
QG-DSGDm (i.e. QG-SGDm) recovers Quasi-Hyperbolic
Momentum (QHM) (Ma & Yarats, 2019; Gitman et al.,
2019). We illustrate its acceleration benefits as well
as the performance gain in Figure 12 and Figure 13 of
Appendix D.3. We elaborate in Appendix B.3 that SGDm is
only a special case of QG-SGDm/QHM (by setting µ=0).
Besides, it is non-trivial to adapt (centralized) QHM to
(decentralized) QG-DSGDm due to discrepant motivation.

Stabilized optimization trajectory. We study the opti-
mization trajectory of Rosenbrock function (Rosenbrock,
1960)4 f(x, y) = (y − x2)2 + 100(x − 1)2 as in Lucas
et al. (2019) to better understand the performance gain
of QG-SGDm (with zero stochastic noise). Figure 15
illustrates the effects of stabilization in QG-SGDm (much
less oscillation than SGDm).

Larger effective step-size. Recent works (Hoffer et al.,
2018; Zhang et al., 2019a) point out the larger effective
step-size (i.e. η/ ‖xt‖22) brought by weight decay provides
the primary regularization effect for deep learning training.
Figure 5 examines the effective step-size during the opti-
mization procedure: QG-SGDm illustrates a larger effective

4 We further study the optimization trajectory for more compli-
cated non-convex function in Appendix D.4.
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Figure 4: Understanding the optimization trajectory of QG-
SGDm and SGDm (i.e. single worker case) via a 2D toy function
f(x, y) = (y − x2)2 + 100(x− 1)2. This function has a global
minimum at (x, y) = (1, 1). SGDm and QG-SGDm use β =
0.9, η = 0.001, with initial point (0, 0). Trajectories for different
initial points and/or β values refer to Appendix D.4.
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(a) ResNet-BN-20.
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(b) ResNet-GN-20.

Figure 5: The effective step-size η/ ‖xt‖22 of QG-SGDm and
SGDm (single worker case) on CIFAR-10. The weight norm
curves refer to Figure 14 in Appendix D.3.

step-size than SGDm, explaining the performance gain e.g.
in Figure 12 and Figure 13 of Appendix D.3.

5. Experiments
5.1. Setup

Datasets and models. We empirically study the decen-
tralized training behavior on both CV and NLP benchmarks,
on the architecture of ResNet (He et al., 2016), VGG (Si-
monyan & Zisserman, 2014) and DistilBERT (Sanh
et al., 2019). • Image classification (CV) benchmark: we
consider training CIFAR-10 (Krizhevsky & Hinton, 2009),
ImageNet-32 (i.e. image resolution of 32) (Chrabaszcz et al.,
2017), and ImageNet (Deng et al., 2009) from scratch, with
standard data augmentation and preprocessing scheme (He
et al., 2016). We use VGG-11 (with width factor 1/2 and
without BN) and ResNet-20 for CIFAR-10, ResNet-20 with
width factor 2 (noted as ResNet-20-x2) for ImageNet-32,
and ResNet-18 for ImageNet. The width factor indicates
the proportional scaling of the network width corresponding
to the original neural network. Weight initialization
schemes follow He et al. (2015); Goyal et al. (2017). • Text
classification (NLP) benchmark: we perform fine-tuning
on a 4-class classification dataset (AG News (Zhang et al.,
2015)). Unless mentioned otherwise, all our experiments are
repeated over three random seeds. We report the averaged
performance of local models on the full test dataset.

Heterogeneous distribution of client data. We use the
Dirichlet distribution to create disjoint non-i.i.d. client
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Table 1: The test top-1 accuracy of different decentralized optimization algorithms evaluated on different degrees of non-i.i.d. lo-
cal CIFAR-10 data, for various neural architectures and network topologies. The results are averaged over three random seeds, with
learning rate tuning for each setting. We also include the results of centralized baseline for reference purposes, following the decentralized
experiment configuration, except that the centralized baseline uses randomly partitioned local training data (i.e. independent of α).

Datasets Neural Architectures Methods Ring (n=16) Social Network (n=32)

α = 10 α = 1 α = 0.1 α = 10 α = 1 α = 0.1

CIFAR-10

ResNet-BN-20

SGDm-N (centralized) 92.95± 0.13 92.88± 0.07
DSGD 90.94± 0.15 88.95± 0.59 54.66± 3.58 90.52± 0.24 89.22± 0.35 58.32± 3.27

DSGDm-N 92.53± 0.27 89.13± 0.81 57.19± 2.65 92.20± 0.24 90.19± 0.54 63.00± 2.50
QG-DSGDm-N 92.65± 0.17 91.21± 0.28 58.16± 3.32 92.52± 0.09 91.20± 0.16 64.32± 2.43

ResNet-GN-20

SGDm-N (centralized) 88.06± 1.12 86.19± 1.08
DSGD 86.86± 0.37 85.93± 0.14 73.14± 3.92 84.00± 0.67 82.98± 0.47 67.84± 3.94

DSGDm-N 89.86± 0.15 88.30± 0.49 71.86± 2.22 88.54± 0.22 86.36± 0.55 72.02± 1.79
QG-DSGDm-N 90.18± 0.44 89.68± 0.41 82.78± 2.05 88.58± 0.09 88.19± 0.30 83.60± 1.83

ResNet-EvoNorm-20

SGDm-N (centralized) 92.18± 0.19 91.92± 0.33
DSGD 89.90± 0.26 88.88± 0.26 74.55± 2.07 89.95± 0.23 88.41± 0.27 77.56± 1.65

DSGDm-N 91.47± 0.23 89.98± 0.10 77.48± 2.67 91.17± 0.11 89.96± 0.35 80.59± 2.32
QG-DSGDm-N 91.90± 0.17 91.28± 0.38 82.20± 1.27 91.51± 0.02 91.00± 0.24 85.19± 0.98

VGG-11
(w/o normalization layer)

SGDm-N (centralized) 88.87± 0.29 87.38± 0.39
DSGDm-N 88.68± 0.30 88.52± 0.24 77.45± 3.15 86.39± 0.06 85.85± 0.22 77.02± 2.66

QG-DSGDm-N 89.01± 0.04 89.00± 0.22 83.41± 2.20 86.87± 0.60 86.09± 0.30 84.86± 0.58

training data (Yurochkin et al., 2019; Hsu et al., 2019; He
et al., 2020)—the created client data is fixed and never
shuffled across clients during the training. The degree of
non-i.i.d.-ness is controlled by the value of α; the smaller α
is, the more likely the clients hold examples from only one
class. An illustration regarding how samples are distributed
among 16 clients on CIFAR-10 can be found in Figure 1;
more visualizations on other datasets/scales are shown
in Appendix A.2. Besides, Figure 7 in Appendix A.1
visualizes the Social Network topology.

Training schemes. Following the SOTA deep learning
training scheme, we use mini-batch SGD as the base op-
timizer for CV benchmark (He et al., 2016; Goyal et al.,
2017), and similarly, Adam for NLP benchmark (Zhang
et al., 2019b; Mosbach et al., 2021). In Section 5.2, we
adapt these base optimizers to different distributed variants5.

For the CV benchmark, the models are trained for 300 and
90 epochs for CIFAR-10 and ImageNet(-32) respectively;
the local mini-batch size are set to 32 and 64. All exper-
iments use the SOTA learning rate scheme in distributed
deep learning training (Goyal et al., 2017; He et al., 2019)
with learning rate scaling and warm-up. The learning rate is
always gradually warmed up from a relatively small value
(i.e. 0.1) for the first 5 epochs. Besides, the learning rate
will be divided by 10 when the model has accessed specified
fractions of the total number of training samples—{ 1

2 ,
3
4}

for CIFAR and { 1
3 ,

2
3 ,

8
9} for ImageNet.

For the NLP benchmark, we fine-tune the distilbert-base-
uncased from HuggingFace (Wolf et al., 2019) with constant

5 We by default use local momentum variants without buffer
synchronization. We consider DSGDm-N as our primary competi-
tor for CNNs, as Nesterov momentum is the SOTA training scheme.
We also investigate the performance of DSGDm in Table 5.

learning rate and mini-batch of size 32 for 10 epochs.

We fine-tune the learning rate for both CV6 and NLP tasks;
we use constant weight decay (1e-4). The tuning procedure
ensures that the best hyper-parameter lies in the middle of
our search grids; otherwise we extend our search grid.
Regarding momentum related hyper-parameters, we follow
the common practice in the community (β=0.9 and without
dampening for Nesterov/HeavyBall momentum variants,
and β1 =0.9, β2 =0.99 for Adam variants).

BN and its alternatives for distributed deep learning.
The existence of BN layer is challenging for the SOTA dis-
tributed training, especially for heterogeneous data setting.
To better understand the impact of different normalization
schemes in distributed deep learning, we investigate:

• Distributed BN implementation. Our default implemen-
tation7 follows Goyal et al. (2017); Andreux et al. (2020)
that computes the BN statistics independently for each
client while only synchronizing the BN weights.
• Using other normalization layers: for instance on ResNet

with BN layers (denoted by ResNet-BN-20), we can
instead use ResNet-GN by replacing all BN with GN with
group number of 2, as suggested in Hsieh et al. (2020).
We also examine the recently proposed S0 variant of
EvoNorm (Liu et al., 2020) (which does not use runtime
mini-batches statistics), noted as ResNet-EvoNorm.
6 We tune the initial learning rate and warm it up from 0.1 (if

the tuned one is above 0.1).
7 We also try the BN variant (Li et al., 2021) proposed for FL,

but we exclude it in our comparison due to its poor performance.
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Table 2: Comparison with Gradient Tracking (GT) methods for training CIFAR-10. D2 and D2
+ do not include the momentum

acceleration. We carefully tune the learning rate for each case, and results are averaged over three seeds where std is indicated.
ResNet-EvoNorm-20 on Ring (n=16) ResNet-EvoNorm-20 on Ring (n=32)

DSGD (w/ GT) DSGDm-N DSGDm-N (w/ GT) D2 D2
+ QG-DSGDm-N DSGDm-N DSGDm-N (w/ GT) QG-DSGDm-N

α=1 87.36± 0.40 89.98± 0.10 90.38± 0.41 74.89 85.70± 0.29 91.28± 0.38 88.46± 0.29 89.44± 0.60 90.27± 0.27
α=0.1 66.16± 1.05 77.48± 2.67 78.64± 1.84 49.80 69.18± 3.30 82.20± 1.27 78.17± 1.63 79.25± 2.17 83.18± 1.11

5.2. Results

Comments on BN and its alternatives. Table 1 and
Table 3 examine the effects of BN and its alternatives
on the training quality of decentralized deep learning on
CIFAR-10 and ImageNet dataset. ResNet with EvoNorm
replacement outperforms its GN counterpart on a spectrum
of optimization algorithms, non-i.i.d. degrees, and network
topologies, illustrating its efficacy to be a new alternative to
BN in CNNs for distributed learning on heterogeneous data.

Superior performance of quasi-global momentum. We
evaluate QG-DSGDm-N and compare it with several DSGD
variants in Table 1, for training different neural networks on
CIFAR-10 in terms of different non-i.i.d. degrees on Ring
(n = 16) and Social Network (n = 32). QG-DSGDm-N
accelerates the training by stabilizing the oscillating opti-
mization trajectory caused by heterogeneity and leads to
a significant performance gain over all other strong com-
petitors on all levels of data heterogeneity. The benefits
of our method are further pronounced when considering
a higher degree of non-i.i.d.-ness. These observations are
consistent with the results on the challenging ImageNet(-32)
dataset in Table 3 (and the learning curves in Figure 17 in
Appendix D.5).

Table 3: Test top-1 accuracy of different decentralized opti-
mization algorithms evaluated on different degrees of non-
i.i.d. local ImageNet data. The results are over three random
seeds. We perform sufficient learning rate tuning on ImageNet-32
for each setup while we use the same one for ImageNet due to the
computational feasibility. “?” indicates non-convergence.

Datasets Neural
Architectures

Methods Ring (n=16)

α = 1 α = 0.1

ImageNet-32
(resolution 32)

ResNet-20-x2
(EvoNorm)

SGDm-N (centralized) 44.43± 0.20
DSGDm-N 30.35± 0.05 16.71± 0.17

QG-DSGDm-N 31.24± 0.27 19.53± 0.91

ResNet-20-x2
(GN)

SGDm-N (centralized) 37.89± 0.67
DSGDm-N 34.16± 1.37 ?

QG-DSGDm-N 38.57± 0.45 21.42± 0.81

ImageNet

ResNet-18
(EvoNorm)

SGDm-N (centralized) 69.55± 0.25
DSGDm-N 68.77± 0.05 53.15± 0.14

QG-DSGDm-N 69.20± 0.08 56.50± 0.01

ResNet-18
(GN)

SGDm-N (centralized) 62.59± 0.01
DSGDm-N 60.76± 0.48 39.57± 1.22

QG-DSGDm-N 64.92± 0.27 47.86± 1.05

Decentralized Adam. We further extend the idea of
quasi-global momentum to the Adam optimizer for
decentralized learning, noted as QG-DAdam (the al-
gorithm details are deferred to Algorithm 2 in Ap-
pendix B.1). We validate the effectiveness of QG-DAdam

Table 4: Test top-1 accuracy of different decentralized SGD al-
gorithms evaluated on different degrees of non-i.i.d.-ness and
communication topologies, for training ResNet-EvoNorm-18 on
ImageNet. The results are over three random seeds. We use the
same learning rate for different experiments due to the computa-
tional feasibility. Centralized SGDm-N reaches 69.55± 0.25.

Communication Topology Methods Test Top-1 Accuracy

α = 1 α = 0.1

Ring (n=16) DSGDm-N 68.77± 0.05 53.15± 0.14
QG-DSGDm-N 69.20± 0.08 56.50± 0.01

1-peer directed exponential graph
(n=16) (Assran et al., 2019)

DSGDm-N 69.00± 0.11 58.52± 0.27
QG-DSGDm-N 69.34± 0.17 61.44± 0.20

over D(decentralized)Adam in Table 6, on fine-tuning Dis-
tilBERT on AG News and training ResNet-EvoNorm-20 on
CIFAR-10 from scratch: QG-DAdam is still preferable over
DAdam. We leave a better adaptation and theoretical proof
for future work.

Generalizing quasi-global momentum to time-varying
topologies. The benefits of quasi-global momentum are
not limited to the fixed and undirected communication
topologies, e.g. Ring and Social network in Table 1—it
also generalizes to other topologies, like the time-varying
directed topology (Assran et al., 2019), as shown in Table 4
for training ResNet-EvoNorm-18 on ImageNet. These re-
sults are aligned with the insights of the critical consensus
distance on the generalization performance of decentralized
deep learning (Kong et al., 2021), supporting the fact that
quasi-global momentum can be served as a simple plugin
to further improve the performance of decentralized deep
learning.

Comparison with D2 and Gradient Tracking (GT). As
shown in Table 2, D2 (Tang et al., 2018b) and GT meth-
ods (Pu & Nedić, 2020; Pan et al., 2020; Lu et al., 2019)
cannot achieve comparable test performance on the standard
deep learning benchmark, while QG-DSGDm-N outper-
forms them significantly. Additional detailed comparisons
are deferred to Appendix D.9.
It is non-trivial to integrate D2 with momentum. Besides, D2

requires constant learning rate, which does not fit the SOTA
learning rate schedules (e.g. stage-wise) in deep learning8.
We include an improved D2 variant9 (denoted as D2

+) to

8D2 can be rewritten as W(X(t)−η((X(t−1)−X(t))/η+∇f(X(t))−
∇f(X(t−1)))), and the update would break if the magnitude of
X(t−1)−X(t) is a factor of 10η (i.e. performing learning rate decay
at step t).

9The update scheme of D2
+ follows W(X(t)−η(t)((X(t−1)−

X(t))/η(t−1)+∇f(X(t))−∇f(X(t−1)))).
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Table 5: An extensive investigation for a wide spectrum of DSGD variants, for training ResNet-EvoNorm-20 on CIFAR-10. The results
are averaged over three seeds, each with learning rate tuning. We use “communication topology” to synchronize the model parameters,
while some methods involve “extra communication”, with specified objective to be communicated on the given network topology.

Methods
Communication

Topology
Extra

Communication
Momentum

Type
Test Top-1 Accuracy (n=16)

α = 1 α = 0.1

SGDm-N complete - global 92.18± 0.19

DSGDm-N complete - local 91.47± 0.10 71.24± 3.08
DSGDm-N ring momentum buffer (complete) local 90.96± 0.33 81.22± 1.78

SlowMo ring model parameters (complete) local & global 91.06± 0.26 79.20± 1.16

DSGD ring - - 88.88± 0.26 74.55± 2.07
DSGDm ring - local 89.67± 0.33 77.66± 0.95

DSGDm-N ring - local 89.98± 0.10 77.48± 2.67
DSGDm ring momentum buffer (ring) local 90.42± 0.32 78.69± 2.39

DSGDm-N ring momentum buffer (ring) local 90.48± 0.67 79.83± 2.29
DSGDm-N ring local gradients (ring) local 90.10± 0.61 78.58± 4.12
DMSGD ring - local 90.06± 0.04 79.89± 0.97

QG-DSGDm ring - local 91.22± 0.41 82.24± 1.05
QG-DSGDm-N ring - local 91.28± 0.38 82.20± 1.27

Table 6: Test accuracy of different decentralized optimiza-
tion algorithms (with Adam), evaluated on different degrees
of non-i.i.d. local data. The results are over three random seeds,
with tuned learning rate.

Models & Datasets Methods α = 0.1

Fine-tuning DistilBERT-base
(AG News)

DAdam 87.29± 0.60
QG-DAdam 88.33± 0.67

Training ResNet-EvoNorm-20
from scratch (CIFAR-10)

DAdam 65.52± 3.32
QG-DAdam 66.86± 2.81

address this learning rate decay issue in D2, but the perfor-
mance of D2

+ still remains far behind our scheme.

Ablation study. Table 5 empirically investigates a wide
range of different DSGD variants, in terms of the generaliza-
tion performance on different degrees of data heterogeneity.
We can witness that (1) DSGD variants with quasi-global
momentum always significantly surpass all other methods
(excluding the centralized upper bound), without introduc-
ing extra communication cost; (2) local momentum acceler-
ates the decentralized optimization (c.f. the results of DSGD
v.s. DSGDm and DSGDm-N), while our quasi-global mo-
mentum further improves the performance gain; (3) syn-
chronizing local momentum buffer or local gradients only
marginally improves the generalization performance, but
the gains fall behind our quasi-global momentum (as we
accelerate the consensus and stabilize trajectories, as illus-
trated in Section 4); (4) the parallel work DMSGD10 (Balu
et al., 2020) does show some improvements, but its perfor-
mance gain is much less significant than ours. Table 18
in the Appendix D.6 further shows that tuning momentum
factor for DSGDm-N cannot alleviate the training difficulty
caused by data heterogeneity.

10 We tune both learning rate η and weighting factor µ (using
the grid suggested in Balu et al. (2020)) for DMSGD (option I).

Besides, Figure 6 showcases the generality of quasi-global
momentum for achieving remarkable performance gain on
different topology scales and non-i.i.d. degrees.
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Figure 6: Test top-1 accuracy of different decentralized algo-
rithms evaluated on different topology scales and non-i.i.d. de-
grees, for training ResNet-EvoNorm-20 on CIFAR-10. The results
are over three random seeds, each with sufficient learning rate tun-
ing. Colors blue and red indicate DSGDm-N and QG-DSGDm-N
respectively. Numerical results refer to Table 7 in Appendix D.7.

Conclusion
We demonstrated that heterogeneity has an out sized impact
on the performance of deep learning models, leading to un-
stable convergence and poor performance. We proposed a
novel momentum-based algorithm to stabilize the training
and established its efficacy through thorough empirical eval-
uations. Our method, especially for mildly heterogeneous
settings, leads to a 10–20% increase in accuracy. However,
a gap still remains between the centralized training. Clos-
ing this gap, we believe, is critical for wider adoption of
decentralized learning.
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A. Detailed Experimental Setup
A.1. Visualization for Communication Topologies

Figure 7 visualizes the Social Network topology we evaluated in the main paper.

A.2. Visualization of Non-IID Local Data

The synthetic formulation of non-i.i.d. client data. We re-iterate the partition scheme introduced and stated in Yurochkin
et al. (2019); Hsu et al. (2019) for completeness reasons.

Assume every client training example is drawn independently with class labels following a categorical distribution over
M classes parameterized by a vector q (qi ≥ 0, i ∈ [1,M ] and ‖q‖1 = 1). To synthesize client non-i.i.d. local data
distributions, we draw α ∼ Dir(αp) from a Dirichlet distribution, where p characterizes a prior class distribution over M
classes, and α > 0 is a concentration parameter controlling the identicalness among clients. With α→∞, all clients have
identical distributions to the prior; with α→ 0, each client holds examples from only one random class.

To better understand the local data distribution for the datasets we considered in the experiments, in Figure 8 we visualize
the partition results of CIFAR-10 and ImageNet(-32) for various degrees of non-i.i.d.-ness and network scales; in Figure 9,
we visualize the partitioned local data on 16 clients with α={10, 1, 0.1} for AG News and SST-2.
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Figure 7: The visualization of the examined social topology (generated from “networkx.generators.social.davis_southern_women_graph”).
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(a) CIFAR-10, n=16, α = 10.
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(b) CIFAR-10, n=16, α = 1.
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(c) CIFAR-10, n=16, α = 0.1.
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(d) CIFAR-10, n=32, α = 1.
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(e) CIFAR-10, n=32, α = 0.1.
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(f) CIFAR-10, n=48, α = 1.
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(g) CIFAR-10, n=48, α = 0.1.
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(h) ImageNet, n=16, α = 1.
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(i) ImageNet, n=16, α = 0.1.

Figure 8: Illustration of # of samples per class allocated to each client (indicated by dot sizes), for different Dirichlet distribution α values
on CV datasets.
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(a) AG News, n=16, α = 10.
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(b) AG News, n=16, α = 1.
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(c) AG News, n=16, α = 0.1.

Figure 9: Illustration of # of samples per class allocated to each client (indicated by dot sizes), for different Dirichlet distribution α values
on NLP datasets.
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B. Detailed Algorithm Description and Connections
B.1. Detailed Algorithm Description

The variant of Adam with the idea of quasi-global momentum is detailed in Algorithm 2.

Algorithm 2 QG-DAdam. m̂(0)
i , v̂

(0)
i are initialized as 0 for all workers.

1: procedure
2: for t ∈ {1, . . . , T} do
3: sample ξ(t)

i and compute g
(t)
i = ∇Fi(x(t)

i , ξ
(t)
i )

4: m
(t)
i = β1m̂

(t−1)
i + (1− β1)ĝ

(t)
i

5: v
(t)
i = β2v̂

(t−1)
i + (1− β2)ĝ

(t)
i � ĝ

(t)
i

6: x
(t+ 1

2 )
i = x

(t)
i − η

m
(t)
i√

v
(t)
i +ε

7: x
(t+1)
i =

∑
j∈N (t)

i
wijx

(t+ 1
2 )

j

8: d
(t)
i = x

(t)
i − x

(t+1)
i

9: d̂
(t)
i =

d
(t)
i∥∥∥d(t)
i

∥∥∥
2

10: m̂
(t)
i = β1m̂

(t−1)
i + (1− β1)d̂

(t)
i

11: v̂
(t)
i = β2v̂

(t−1)
i + (1− β2)d̂

(t)
i � d̂

(t)
i

12: return x
(T )
i

Algorithm 3 Multiple-step variant of QG-DSGDm. m(0)
i = m̂

(0)
i := 0. τ is the number of local steps.

1: procedure WORKER-i
2: for t ∈ {1, . . . , T} do
3: sample ξ(t)

i and compute g
(t)
i = ∇Fi(x(t)

i , ξ
(t)
i )

4: m
(t)
i = βm̂

(t−1)
i + g

(t)
i

5: x
(t+ 1

2 )
i = x

(t)
i − ηm

(t)
i

6: x
(t+1)
i =

∑
j∈N (t)

i
wijx

(t+ 1
2 )

j

7: if mod(t, τ) 6= 0 then
8: m̂

(t)
i = m̂

(t−1)
i

9: else

10: d
(t)
i =

x
(t)
i −x

(t+1)
i

η

11: m̂
(t)
i = µm̂

(t−1)
i + (1− µ)d

(t)
i

12: return x
(T )
i

Algorithm 4 depicts the general procedure of MimeLite in Karimireddy et al. (2020a). For SGDm, the update step U and the
tracking step V follow

U (∇Fi(yi, ξ), s) := (1− β)∇Fi(yi, ξ) + βs

V

(
1

|S|
∑
i∈S
∇fi(x), s

)
:= (1− β)

1

|S|
∑
i∈S
∇fi(x) + βs .

Algorithm 5 shows the pseudocode of SlowMo (Wang et al., 2020c). For our evaluation in Table 5, we follow the
hyper-parameter suggestion mentioned in Wang et al. (2020c): for CIFAR-10 dataset, we set α = 1, τ = 12, β = 0.7.
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Algorithm 4 MimeLite (Karimireddy et al., 2020a).
1: procedure
2: for each round t ∈ [T ] do
3: sample subset S of clients
4: communicate (x, s) to all clients i ∈ S
5: for client i ∈ S in parallel do
6: initialize local model yi ← x

7: for client i ∈ S in parallel do
8: for k ∈ [τ ] do
9: sample mini-batch ξ from local data

10: yi ← yi − ηU (∇Fi(yi, ξ), s)
11: compute full local-batch gradient∇fi(x)

12: communicate (yi,∇fi(x))

13: s← V
(

1
|S|
∑
i∈S ∇fi(x), s

)
. update optimization statistics

14: x← 1
|S|
∑
i∈S yi . update server parameters

15: return xT

Algorithm 5 SlowMo (Wang et al., 2020c). d(t)
i,k indicates the local update direction for communication round t at local update steps k.

1: procedure
2: for t ∈ [T ] at worker-i in parallel do
3: Maintain/Average base optimizer buffers
4: for k ∈ [τ ] do
5: Base optimizer step: x(t)

i,k+1 = x
(t)
i,k − γ(t)d

(t)
i,k

6: Exact-Average: x(t)
τ = 1

n

∑n
i=1 x

(t)
i,τ

7: Update slow momentum: m(t+1) = βm(t) + 1
γ(t) (x

(t)
i,0 − x

(t)
τ )

8: Update outer iterates: x(t+1)
i,0 = x

(t)
i,0 − αγ(t)m(t+1)

9: return xT
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B.2. Difference between DMSGD and QG-DSGDm

We first re-iterate DMSGD (Balu et al., 2020) in Algorithm 6 with slightly adjusted notations.

Algorithm 6 Original formulation of DMSGD. m̂(0)
i are initialized as 0 for all workers.

1: procedure WORKER-i
2: for t ∈ {1, . . . , T} do
3: v

(t)
i =

∑
j∈N (t)

i
wijx

(t)
j . Consensus step

4: m̂
(t)
i = µ(x

(t)
i − x

(t−1)
i ) + (1− µ)(v

(t)
i − v

(t−1)
i ) . Momentum step

5: sample ξ(t)
i and compute g

(t)
i = ∇Fi(x(t)

i , ξ
(t)
i )

6: x
(t+1)
i = v

(t)
i − ηg

(t)
i + βm̂

(t)
i . Option I of local gradient step

7: x
(t+1)
i = x

(t)
i − ηg

(t)
i + βm̂

(t)
i . Option II of local gradient step

By re-organizing, we can further simplify Algorithm 6 to Algorithm 7.

Algorithm 7 Re-organized formulation of DMSGD. m̂(0)
i are initialized as 0 for all workers.

1: procedure WORKER-i
2: for t ∈ {1, . . . , T} do
3: sample ξ(t)

i and compute g
(t)
i = ∇Fi(x

(t− 1
2 )

i , ξ
(t)
i )

4: x
(t+ 1

2 )
i = x

(t)
i − η(βm̂

(t−1)
i + g

(t)
i ) . Option I of local gradient step

5: x
(t+ 1

2 )
i = x

(t− 1
2 )

i − η(βm̂
(t−1)
i + g

(t)
i ) . Option II of local gradient step

6: x
(t+1)
i =

∑
j∈N (t)

i
wijx

(t+ 1
2 )

j . Consensus step

7: m̂
(t)
i = µ(x

(t− 1
2 )

i − x
(t+ 1

2 )
i ) + (1− µ)(x

(t)
i − x

(t+1)
i ) . Momentum step

For a fair comparison, we unify Algorithm 7 with QG-DSGDm, as in Algorithm 8 (we slightly abuse the notations for
comparison purpose).

Algorithm 8 DMSGD v.s. QG-DSGDm. m̂(0)
i are initialized as 0 for all workers.

1: procedure WORKER-i
2: for t ∈ {1, . . . , T} do
3: sample ξ(t)

i and compute g
(t)
i = ∇Fi(x(t)

i , ξ
(t)
i )

4: x
(t+ 1

2 )
i = x

(t)
i − η(βm̂

(t−1)
i + g

(t)
i )

5: x
(t+1)
i =

∑
j∈N (t)

i
wijx

(t+ 1
2 )

j

6: m̂
(t)
i is determined by the algorithm.

7: return x
(T )
i

Note that in Algorithm 8 (slightly different from the m̂(t) in Algorithm 7), m̂(t)
i in DMSGD is defined as

m̂
(t)
i =

µ(x
(t− 1

2 )
i − x

(t+ 1
2 )

i ) + (1− µ)(x
(t)
i − x

(t+1)
i )

η
,

while for QG-DSGDm, we have

m̂
(t)
i = µm̂

(t−1)
i + (1− µ)x

(t)
i − x

(t+1)
i

η
.
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Thus, for option I of DMSGD, we have

m̂
(t)
i =

µ(x
(t− 1

2
)

i − x
(t+ 1

2
)

i ) + (1− ω)(x(t)
i − x

(t+1)
i )

η

=
µ

η

((
x
(t−1)
i − η(βm̂(t−2)

i + g
(t−1)
i )

)
−
(
x
(t)
i − η(βm̂

(t−1)
i + g

(t)
i )
))

+ (1− µ)x
(t)
i − x

(t+1)
i

η

= µ

(
x
(t−1)
i − x

(t)
i

η
−
((
βm̂

(t−2)
i + g

(t−1)
i

)
−
(
βm̂

(t−1)
i + g

(t)
i

)))
+ (1− µ)x

(t)
i − x

(t+1)
i

η

= µ

(
x
(t−1)
i − x

(t)
i

η
− β(m̂(t−2)

i − m̂
(t−1)
i )− (g

(t−1)
i − g

(t)
i )

)
+ (1− µ)x

(t)
i − x

(t+1)
i

η

= µ

(
βm̂

(t−1)
i + g

(t)
i +

x
(t−1)
i − x

(t)
i

η
− βm̂(t−2)

i − g
(t−1)
i

)
+ (1− µ)x

(t)
i − x

(t+1)
i

η
,

for option II of DMSGD, we have

m̂
(t)
i =

µ(x
(t− 1

2
)

i − x
(t+ 1

2
)

i ) + (1− ω)(x(t)
i − x

(t+1)
i )

η

= µ
(
βm̂

(t−1)
i + g

(t)
i

)
+ (1− µ)x

(t)
i − x

(t+1)
i

η
.

It is obvious that the design of DMSGD is different from our QG-DSGDm:

• The update scheme on the momentum buffer m̂i is different, as illustrate above.

• DMSGD is based on the heavy-ball momentum, while our scheme can generalize to heavy ball momentum SGD, Nesterov
momentum SGD, and even Adam variants.

B.3. Connections Between SGDm and QG-SGDm

B.3.1. CONNECTIONS BETWEEN SGDM AND QG-DSGDM

Note our scheme QG-DSGDm on the single worker case (i.e. QG-SGDm) has the following equation:

x(t+1) = x(t) − η
(
βm(t−1) + g(t)

)
mt = µm(t−1) + (1− µ)

x(t) − x(t+1)

η
= (µ+ (1− µ)β)m(t−1) + (1− µ)g(t) .

By letting m̂(t) := m(t)

1−µ , we have

x(t+1) = x(t) − η
(
β(1− µ)m̂(t−1) + g(t)

)
m̂(t) = (µ+ (1− µ)β) m̂(t−1) + g(t) .

We further let β̂ := µ+ (1− µ)β, then we have

x(t+1) = x(t) − η
(
β̂m̂(t−1) + g(t) +

(
β(1− µ)− β̂

)
m̂(t−1)

)
= x(t) − η

(
β̂m̂(t−1) + g(t) − µm̂(t−1)

)
m̂(t) = β̂m̂(t−1) + g(t) .

By re-organizing, we have

m̂(t) = β̂m̂(t−1) + g(t)

x(t+1) = x(t) − η
(
m̂(t) − µm̂(t−1)

)
= x(t) − η

(
m̂(t) − µm̂(t−1)

)
= x(t) − η

(
(1− µ

β̂
)m̂(t) +

µ

β̂
g(t)

)
,

(5)
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which recovers the QHM (Gitman et al., 2019).

Comparing to the case of SGD with Heavy-ball Momentum (SGDm), where

m̂(t) = βm̂(t−1) + g(t)

x(t+1) = x(t) − ηm̂(t) ,

we can witness that SGDm is only a special case of (5) (when µ=0).

B.3.2. CONNECTIONS BETWEEN SGDM-N AND QG-SGDM

First note that our simplified version of QG-DSGDm (i.e. QG-SGDm) can recover the QHM (Gitman et al., 2019), as
illustrated in Appendix B.3.1. Furthermore, as pointed out in Gitman et al. (2019) that, the QHM is indeed equivalent to the
original SGDm-N with re-scaling of η → η/(1− β). Therefore, we can argue that our simplified version of QG-DSGDm
(i.e. QG-SGDm or QHM) is equivalent to the original SGDm-N with re-scaling of η → η/(1− β).

For the reason of completeness, we include the derivatives below.

First of all, SGD with Nesterov Momentum (SGDm-N) can be rewritten as

x(t+ 1
2 ) = x(t) + βm(t−1)

m(t) = βm(t−1) − η∇f(x(t+ 1
2 ))

x(t+1) = x(t+ 1
2 ) − η∇f(x(t+ 1

2 )) ,

and in PyTorch, we instead have

x(t+ 1
2 ) = x(t) + βm(t−1)

m(t) = βm(t−1) +∇f(x(t+ 1
2 ))

x(t+1) = x(t) − ηm(t) ,

(6)

where the above equations are equivalent for the constant β.

Then we reiterate the derivatives in Gitman et al. (2019) below, from SGDm-N to QHM (which is equivalently Equation (5)).
The SGDm-N in Gitman et al. (2019) follows

m(t) = βm(t−1) − η∇f
(
x(t) + βm(t−1)

)
x(t+1) = x(t) + m(t) ,

where we can move the learning rate out of the momentum into the iterates update:

m(t) = βm(t−1) +∇f
(
x(t) − ηβm(t−1)

)
x(t+1) = x(t) − ηm(t) ,

(7)

where the above two methods produce the same sequence of iterates x(t) if m(0) is initialized at 0. The second equation (7)
is equivalent to the Pytorch implementation in Equation (6).

Let’s normalize the momentum update by 1− β:

m(t) = βm(t−1) + (1− β)∇f
(
x(t) − ηβm(t−1)

)
x(t+1) = x(t) − ηm(t) ,

which is equivalent to the un-normalized one by re-scaling η → η
1−β for constant parameters. We make a change of variables



Quasi-Global Momentum

y(t) = x(t) − ηβm(t−1),

m(t) = βm(t−1) + (1− β)∇f(y(t))

y(t+1) = x(t+1) − ηβm(t) = x(t) − ηm(t) − ηβm(t)

= y(t) + ηβm(t−1) − ηm(t) − ηβm(t)

= y(t) + η
(
m(t) − (1− β)∇f(y(t))

)
− ηm(t) − ηβm(t)

= y(t) − η
(

(1− β)∇f(y(t)) + βm(t)
)
,

where by renaming y(t) back to x(t), we obtain the exact formula used in QHM update.

B.3.3. THE SIMPLIFICATION OF QG-DSGDM-N ON SINGLE WORKER CASE

We can further simplify our scheme QG-DSGDm-N on the single worker case (and obtain QG-SGDm-N):

x(t+ 1
2 ) = x(t) + βm(t−1)

m̂(t) = βm(t−1) +∇f(x(t+ 1
2 ))

x(t+1) = x(t) − ηm̂(t)

m(t) = µm(t−1) + (1− µ)
x(t) − x(t+1)

η
.

We rewrite m(t) as

m(t) = µm(t−1) + (1− µ)
x(t) − x(t+1)

η
= µm(t−1) + (1− µ)m̂(t)

= (µ+ β − µβ)m(t−1) + (1− µ)∇f(x(t+ 1
2 )) .

Similar to the treatment in Appendix B.3.1, by letting m̂(t) := m(t)

1−µ , we have

x(t+1) = x(t) − ηm̂(t) = x(t) − η
(
β(1− µ)m̂(t−1) +∇f(x(t+ 1

2 ))
)

m̂(t) = (µ+ β − µβ) m̂(t−1) +∇f(x(t+ 1
2 )) ,

and thus, in the end we have the following equations for QG-SGDm-N

x(t+ 1
2 ) = x(t) + β(1− µ)m̂(t−1)

m̂(t) = β̂m̂(t−1) +∇f(x(t+ 1
2 ))

x(t+1) = x(t) − η
(

(1− µ

β̂
)m̂(t) +

µ

β̂
∇f(x(t+ 1

2 ))

)
,

where β̂ := µ+ (1− µ)β and we can recover SGDm-N by setting µ = 0.
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C. Global Convergence Rate Proofs
We reiterate the update scheme of QG-DSGDm in a matrix form:

X(t+1) = W
(
X(t) − η

(
βM(t) + G(t)

))
M(t+1) = µM(t) + (1− µ)

X(t) −X(t+1)

η

= (µ+ (1− µ)βW)M(t) + (1− µ)WG(t) +
1− µ
η

(I−W)X(t) ,

(8)

where our numerical experiments by default use µ = β. For each matrix Z, we define an averaged vector z̄ = Z 1
n1 and

matrix Z̄ = Z 1
n11

>. Note that we use bold lower-case to indicate vectors and bold upper-case to denote matrices.

First, we state some standard definitions and regularity conditions.
Assumption 2. We assume that the following hold:

1. The function f(x) we are minimizing is lower bounded from below by f?, and each node’s loss fi is smooth satisfying
‖∇fi(y)−∇fi(x)‖ ≤ L ‖y − x‖.

2. The stochastic gradients within each node satisfies E [gi(x)] = ∇fi(x) and E ‖gi(x)−∇fi(x)‖2 ≤ σ2. The variance
across the workers is also bounded as 1

n

∑n
i=1 ‖∇fi(x)−∇f(x)‖2 ≤ ζ2.

3. The mixing matrix is doubly stochastic where for the all ones vector 1, we have W1 = 1 and W>1 = 1. Further, define
Z̄ = Z 1

n11
> for any matrix Z ∈ Rd×n. Then, the mixing matrix satisfies EW

∥∥ZW − Z̄
∥∥2

F
≤ (1− ρ)

∥∥Z− Z̄
∥∥2

F
.

Average parameters. Let us examine the effect of updates in (8) on x̄(t) which is the parameters averaged across the
nodes. Note that since W is doubly stochastic, we can simplify the updates as follows:

x̄(t+1) = x̄(t) − η
(
βm̄(t) + ḡ(t)

)
, and

m̄(t+1) = µm̄(t) + (1− µ)
x̄(t) − x̄(t+1)

η

= (1− (1− µ)(1− β))m̄(t) + (1− µ)ḡ(t) .

(9)

Here, ḡ(t) := 1
n

∑n
i=1∇Fi(x

(t)
i , ξ

(t)
i ) is the average of the stochastic gradients across the nodes.

Virtual Sequence. Now we define a virtual sequence of parameters {x̂(t)} which has a simple SGD style update, which
will be easy to analyze and an error sequence:

x̂(t+1) = x̂(t) − η

1− β
ḡ(t), and

ē(t) := x̂(t) − x̄(t) .
(10)

Our strategy for the analysis will be to analyze the virtual sequence {x̂(t)} and prove that the real sequence of iterates
remains close i.e. that the e(t) remains small.

Single-step progress of virtual update. We will show that every step we make some progress, but have to balance three
sources of error: i) the stochastic error which depends on σ2 due to using stochastic gradients, ii) consensus error which
depends on Xt − X̄t, and finally iii) momentum error due to using momentum which depends on e(t).
Lemma C.1 (Non-convex one step progress). Given assumptions 2, the sequence of iterates generated by (8) using η ≤ 1−β

4L
satisfy

Ef(x̂(t+1)) ≤ Ef(x̂(t))− η̃
4

∥∥∥∇f(x̄(t))
∥∥∥2

− η̃
4
E

∥∥∥∥∥ 1

n

n∑
i=1

∇fi(x(t)
i )

∥∥∥∥∥
2

+
Lη̃2σ2

n
+

3L2η̃

2

∥∥∥e(t)
∥∥∥2

+
3L2η̃

n

∥∥∥X(t) − X̄(t)
∥∥∥2

F
,

where we define η̃ := η
1−β .
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Proof. Starting from the smoothness of f , we have

Ef(x̂(t+1)) ≤ Ef(x̂(t)) + E
〈
∇f(x̂(t)), x̂(t+1) − x̂(t)

〉
+
L

2
E
∥∥∥x̂(t+1) − x̂(t)

∥∥∥2

= Ef(x̂(t))− η

1− β
1

n

n∑
i=1

E
〈
∇f(x̂(t)),∇fi(x(t)

i )
〉

+
Lη2

(1− β)2
E
∥∥∥ḡ(t)

∥∥∥2

≤ Ef(x̂(t))− η̃ 1

n

n∑
i=1

E
〈
∇f(x̂(t)),∇fi(x(t)

i )
〉

+ Lη̃2E

∥∥∥∥∥ 1

n

n∑
i=1

∇fi(x(t)
i )

∥∥∥∥∥
2

+
Lη̃2σ2

n

= Ef(x̂(t)) + Lη̃2E

∥∥∥∥∥ 1

n

n∑
i=1

∇fi(x(t)
i )

∥∥∥∥∥
2

+
Lη̃2σ2

n

− η̃

2
E

∥∥∥∥∥ 1

n

n∑
i=1

∇fi(x(t)
i )

∥∥∥∥∥
2

− η̃

2
E
∥∥∥∇f(x̂(t))

∥∥∥2

+
η̃

2
E

∥∥∥∥∥ 1

n

n∑
i=1

∇fi(x(t)
i )−∇f(x̂(t))

∥∥∥∥∥
2

≤ Ef(x̂(t)) + (Lη̃2 − η̃/2)E

∥∥∥∥∥ 1

n

n∑
i=1

∇fi(x(t)
i )

∥∥∥∥∥
2

+
Lη̃2σ2

n

− η̃

4
E
∥∥∥∇f(x̄(t))

∥∥∥2

+
η̃

2
E
∥∥∥∇f(x̂(t))−∇f(x̄(t))

∥∥∥2

+
η̃

2
E

∥∥∥∥∥ 1

n

n∑
i=1

∇fi(x(t)
i )−∇f(x̂(t))

∥∥∥∥∥
2

≤ Ef(x̂(t))− η̃

4
E
∥∥∥∇f(x̄(t))

∥∥∥2

+
Lη̃2σ2

n
− η̃/4E

∥∥∥∥∥ 1

n

n∑
i=1

∇fi(x(t)
i )

∥∥∥∥∥
2

+
3η̃

2
E
∥∥∥∇f(x̂(t))−∇f(x̄(t))

∥∥∥2

+
η̃

n

n∑
i=1

E
∥∥∥∇fi(x(t)

i )−∇fi(x̄(t))
∥∥∥2

.

In the last inequality we used our bound on the step-size that η ≤ 1−β
4L . In the rest of the inequalities, we repeatedly use the

identity that 2ab = −a2 − b2 + (a− b)2. Finally, using the smoothness of the function f and the definition η̃ := η
1−β , we

get

Ef(x̂(t+1)) ≤ Ef(x̂(t))− η̃

4

∥∥∥∇f(x̄(t))
∥∥∥2

+
Lη̃2σ2

n
+

3L2η̃

2

∥∥∥x̄(t) − x̂(t)
∥∥∥2

+
L2η̃

n

n∑
i=1

∥∥∥x(t)
i − x̄(t)

∥∥∥2

.

Recalling the definition of e(t) and X(t) yields the lemma.

Lemma C.2 (Strongly-convex one step progress). Suppose that the set of functions {fi} are µ-strongly convex in addition
to assumptions 2. Then the sequence of iterates generated by (8) using η ≤ 1−β

4L satisfy for η̃ := η
1−β ,

E
∥∥∥x̂(t+1) − x?

∥∥∥2

≤ (1− µη̃/2)E
∥∥∥x̂(t) − x?

∥∥∥2

+
η̃2σ2

n
− 3η̃/4(f(x̄(t))− f?) + 8Lη̃

∥∥∥e(t)
∥∥∥2

+
5Lη̃

n

∥∥Xt − X̄t
∥∥2

F
.

Proof. Starting from the update rule for x̂(t+1), and expanding very similar to the steps performed in the previous lemma
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we get,

E
∥∥∥x̂(t+1) − x?

∥∥∥2

= E
∥∥∥x̂(t) − x?

∥∥∥2

+ 2E
〈
x̂(t+1) − x̂(t), x̂(t) − x?

〉
+ E

∥∥∥x̂(t+1) − x̂(t)
∥∥∥2

≤ E
∥∥∥x̂(t) − x?

∥∥∥2

− 2η̃

n

n∑
i=1

〈
∇fi(x(t)

i ), x̂(t) − x?
〉

+
η̃2

n

n∑
i=1

E
∥∥∥∇fi(x(t)

i )−∇fi(x̄(t))
∥∥∥2

+ η̃2E
∥∥∥∇f(x̄(t))

∥∥∥2

+
η̃2σ2

n

≤ E
∥∥∥x̂(t) − x?

∥∥∥2

− 2η̃ 1
n

n∑
i=1

〈
∇fi(x(t)

i ), x̂(t) − x?
〉

︸ ︷︷ ︸
T1

+
η̃2L2

n

n∑
i=1

E
∥∥∥x(t)

i − x̄(t)
∥∥∥2

+ 2Lη̃2E(f(x̄(t))− f?) +
η̃2σ2

n
.

We will examine the term T1 now. Using strong convexity and smoothness of each of the functions {fi}, we have

1

n

n∑
i=1

〈∇fi(xi),xi − x?〉 ≥ 1

n

n∑
i=1

fi(xi)− f(x?) +
µ

2

1

n

n∑
i=1

‖xi − x?‖2

≥ 1

n

n∑
i=1

fi(xi)− f(x?) +
µ

4
‖x̂− x?‖2 − µ

2n

n∑
i=1

‖xi − x̂‖2

≥ 1

n

n∑
i=1

fi(xi)− f(x?) +
µ

4
‖x̂− x?‖2 − µ

n

n∑
i=1

‖xi − x̄‖2 − µ ‖x̂− x̄‖2

≥ 1

n

n∑
i=1

fi(xi)− f(x?) +
µ

4
‖x̂− x?‖2 − L

n

n∑
i=1

‖xi − x̄‖2 − L ‖x̂− x̄‖2 ,

and

1

n

n∑
i=1

〈∇fi(xi), x̄− xi〉 ≥ f(x̄)− 1

n

n∑
i=1

fi(xi)−
L

2n

n∑
i=1

‖xi − x̄‖2 ,

and finally,

1

n

n∑
i=1

〈∇fi(xi), x̂− x̄〉 =

〈
1

n

n∑
i=1

(∇fi(xi)±∇fi(x̄)) , x̂− x̄

〉

≥ − 1

8L

∥∥∥∥∥ 1

n

n∑
i=1

(∇fi(xi)±∇fi(x̄))

∥∥∥∥∥
2

− 2L ‖x̂− x̄‖2

≥ − 1

4Ln

n∑
i=1

‖∇fi(xi)−∇fi(x̄)‖2 − 1

4L
‖∇f(x̄)‖2 − 2L ‖x̂− x̄‖2

≥ − L

2n

n∑
i=1

‖xi − x̄‖2 − 1

2
(f(x̄)− f(x?))− 3L ‖x̂− x̄‖2 .

Adding up the three inequalities together yields the following expression for the term T1

1

n

n∑
i=1

〈
∇fi(x(t)

i ), x̂(t) − x?
〉
≥ 1

2
(f(x̄(t))− f(x?)) +

µ

4

∥∥∥x̂(t) − x?
∥∥∥2

− 2L

n

n∑
i=1

∥∥∥x(t)
i − x̄(t)

∥∥∥2

− 4L
∥∥∥x̂(t) − x̄(t)

∥∥∥2

.
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Plugging this back into the previous inequality and the using η̃ ≤ 1
4L finishes the proof of the lemma.

E
∥∥∥x̂(t+1) − x?

∥∥∥2

≤ (1− η̃µ/2)E
∥∥∥x̂(t) − x?

∥∥∥2

− η̃(1− 2Lη̃)E(f(x̄(t))− f?) +
η̃2σ2

n

+
η̃2L2 + 4η̃L

n

n∑
i=1

E
∥∥∥x(t)

i − x̄(t)
∥∥∥2

+ 8Lη̃
∥∥∥x̂(t) − x̄(t)

∥∥∥2

.

Bounding the consensus error. We will now try to bound the consensus error (Xt − X̄t) between the node’s parameters
and its average. During each step, we perform a diffusion step (communication with neighbors) which brings the parameters
of the nodes closer to each other. However we also perform additional gradient/momentum steps which moves the distance
away from each other.
Lemma C.3 (One step consensus change). Given assumptions 2, the sequence of iterates generated by (8) using η ≤ ρ

7L
satisfy for η̃ := η

1−β ,

1

n
E
∥∥Xt+1 − X̄t+1

∥∥2

F
≤ (1− ρ/4)

n
E
∥∥Xt − X̄t

∥∥2

F
+

12η2ζ2

ρ
+ 4(1− ρ)η2σ2 +

6η2β2

ρn
E
∥∥∥M(t) − M̄(t)

∥∥∥2

F

Proof. Starting from the update step (8),

1

n
E
∥∥Xt+1 − X̄t+1

∥∥2

F
=

1

n
E
∥∥∥W (

X(t) − η
(
βM(t) + G(t)

))
−
(
X̄(t) − η

(
βM̄(t) + Ḡ(t)

))∥∥∥2

F

≤ 1− ρ
n

E
∥∥∥(X(t) − η

(
βM(t) + G(t)

))
−
(
X̄(t) − η

(
βM̄(t) + Ḡ(t)

))∥∥∥2

F

≤ 1− ρ
n

E
∥∥∥(X(t) − η

(
βM(t) + Et

[
G(t)

]))
−
(
X̄(t) − η

(
βM̄(t) + Et

[
Ḡ(t)

]))∥∥∥2

F

+ 4(1− ρ)η2σ2

≤ (1− ρ)(1 + ρ/2)

n
E
∥∥∥X(t) − X̄(t)

∥∥∥2

F
+

6η2β2

ρn
E
∥∥∥M(t) − M̄(t)

∥∥∥2

F

+
6η2

ρn
E
∥∥∥Et [G(t)

]
− Et

[
Ḡ(t)

]∥∥∥2

F
+ 4(1− ρ)η2σ2 .

Here we used the contractivity of the mixing matrix and Young’s inequality. We can proceed as

1

n
E
∥∥Xt+1 − X̄t+1

∥∥2

F
≤ (1− ρ/2)

n
E
∥∥∥X(t) − X̄(t)

∥∥∥2

F
+

6η2β2

ρn
E
∥∥∥M(t) − M̄(t)

∥∥∥2

F
+ 4(1− ρ)η2σ2

+
6η2

ρn
E
∥∥∥Et [G(t)

]
−∇f(x̄(t))

∥∥∥2

F

=
(1− ρ/2)

n
E
∥∥∥X(t) − X̄(t)

∥∥∥2

F
+

6η2β2

ρn
E
∥∥∥M(t) − M̄(t)

∥∥∥2

F
+ 4(1− ρ)η2σ2

+
6η2

ρn

n∑
i=1

E
∥∥∥∇fi(x(t)

i )±∇fi(x̄(t))−∇f(x̄(t))
∥∥∥2

≤ (1− ρ/2)

n
E
∥∥∥X(t) − X̄(t)

∥∥∥2

F
+

6η2β2

ρn
E
∥∥∥M(t) − M̄(t)

∥∥∥2

F
+ 4(1− ρ)η2σ2

+
12η2

ρn

n∑
i=1

E
∥∥∥∇fi(x(t)

i )−∇fi(x̄(t))
∥∥∥2

+
12η2

ρn

n∑
i=1

E
∥∥∥∇fi(x̄(t))−∇f(x̄(t))

∥∥∥2

≤ (1− ρ/2)

n
E
∥∥∥X(t) − X̄(t)

∥∥∥2

F
+

6η2β2

ρn
E
∥∥∥M(t) − M̄(t)

∥∥∥2

F
+ 4(1− ρ)η2σ2

+
12η2L2

ρn

n∑
i=1

E
∥∥∥x(t)

i − x̄(t)
∥∥∥2

+
12η2ζ2

ρ
.



Quasi-Global Momentum

Our assumption that the step size η ≤ ρ
7L ensures that 12η2L2 ≤ ρ2/4, finishing the proof.

We will now try to bound the momentum error (Xt − X̄t) between the momentum on each node and its average across
nodes.

Lemma C.4 (One step momentum change). Given assumptions 2, the sequence of iterates generated by (8) using momentum
satisfying β

1−β ≤
ρ
21 ,

6η2β2

nρ(1− µ)(1− β)
E
∥∥Mt+1 − M̄t+1

∥∥2

F
≤
(

6η2β2

nρ(1− µ)(1− β)
− 6η2β2

nρ

)
E
∥∥∥(M(t) − M̄(t))

∥∥∥2

F

+
ρ

8n
E
∥∥∥X(t) − X̄(t)

∥∥∥2

F
+
η2ρζ2

8
+
η2ρσ2(1− β)

8(1− µ)
.

Proof. Starting from the update step (8) and proceeding similar to the previous lemma, we have

1

n
E
∥∥∥M(t+1) − M̄(t+1)

∥∥∥2

F

=
1

n
E
∥∥∥∥(µI + (1− µ)βW) (M(t) − M̄(t)) + (1− µ)W(G(t) − Ḡ(t)) +

1− µ
η

(I−W)X(t)

∥∥∥∥2

F

=
1

n
E
∥∥∥∥(µI + (1− µ)βW) (M(t) − M̄(t)) +

1− µ
η

(I−W)X(t) + (1− µ)W(E
[
G(t) − Ḡ(t)

]
)

∥∥∥∥2

F

+
1

n
E
∥∥∥(1− µ)W

(
G(t) − E

[
G(t)

]
− (Ḡ(t) − E

[
Ḡ(t)

]
)
)∥∥∥2

F

=
1

n
E
∥∥∥∥(µI + (1− µ)βW) (M(t) − M̄(t)) +

1− µ
η

(I−W)X(t) + (1− µ)W(E
[
G(t) − Ḡ(t)

]
)

∥∥∥∥2

F

+ 4σ2

≤ 1

n

(
1 +

(1− µ)(1− β)

1− (1− µ)(1− β)

)
E
∥∥∥(µI + (1− µ)βW) (M(t) − M̄(t))

∥∥∥2

F
+ 4σ2

+
1

n

(
1 +

1− (1− µ)(1− β)

(1− µ)(1− β)

)
E
∥∥∥∥1− µ

η
(I−W)X(t) + (1− µ)W

(
E
[
G(t) − Ḡ(t)

])∥∥∥∥2

F

.

Note that since W ≺ I, we have (µI + (1− µ)βW) ≺ (µ+ (1−µ)β)I = (1− (1−β)(1−µ))I. Further, since−I ≺W,
we have I−W ≺ 2I. With these observations, we can continue

1

n
E
∥∥∥M(t+1) − M̄(t+1)

∥∥∥2

F

≤ 1

n

(
1 +

(1− µ)(1− β)

1− (1− µ)(1− β)

)
E
∥∥∥(1− (1− µ)(1− β)) (M(t) − M̄(t))

∥∥∥2

F
+ 4σ2

+
1

n

(
1 +

1− (1− µ)(1− β)

(1− µ)(1− β)

)
E
∥∥∥∥1− µ

η
(I−W)X(t) + (1− µ)W

(
E
[
G(t) − Ḡ(t)

])∥∥∥∥2

F

≤ 1

n
(1− (1− µ)(1− β))E

∥∥∥M(t) − M̄(t)
∥∥∥2

F
+ 4σ2

+
1

(1− µ)(1− β)n
E
∥∥∥∥1− µ

η
(I−W)X(t) + (1− µ)W

(
E
[
G(t) − Ḡ(t)

])∥∥∥∥2

F

≤ 1

n
(1− (1− µ)(1− β))E

∥∥∥M(t) − M̄(t)
∥∥∥2

F
+ 4σ2

+
4(1− µ)

(1− β)nη2
E
∥∥∥X(t) − X̄(t)

∥∥∥2

F
+

2(1− µ)

(1− β)n
E
∥∥∥E [G(t)

]
− Ḡ(t)

∥∥∥2

F
.
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From the proof of the previous lemma, we can simplify the last term as

1

n
E
∥∥∥M(t+1) − M̄(t+1)

∥∥∥2

F
≤ 1

n
(1− (1− µ)(1− β))E

∥∥∥M(t) − M̄(t)
∥∥∥2

F
+ 4σ2

+
4(1− µ)

nη2(1− β)
E
∥∥∥X(t) − X̄(t)

∥∥∥2

F
+

2(1− µ)

n(1− β)
E
∥∥∥E [G(t)

]
±∇f(X̄(t))− Ḡ(t)

∥∥∥2

F

≤ 1

n
(1− (1− µ)(1− β))E

∥∥∥M(t) − M̄(t)
∥∥∥2

F
+ 4σ2

+
4(1− µ)

nη2(1− β)
E
∥∥∥X(t) − X̄(t)

∥∥∥2

F
+

8(1− µ)ζ2

(1− β)
+

4(1− µ)L2

n(1− β)
E
∥∥∥X(t) − X̄(t)

∥∥∥2

F

=
1

n
(1− (1− µ)(1− β))E

∥∥∥M(t) − M̄(t)
∥∥∥2

F
+ 4σ2

+
4(1− µ)(1 + η2L2)

nη2(1− β)
E
∥∥∥X(t) − X̄(t)

∥∥∥2

F
+

8(1− µ)ζ2

(1− β)

Multiplying both sides by 6η2β2

ρ(1−µ)(1−β) yields

6η2β2

nρ(1− µ)(1− β)
E
∥∥Mt+1 − M̄t+1

∥∥2

F

≤ 6η2β2

nρ(1− µ)(1− β)
E
∥∥∥(M(t) − M̄(t))

∥∥∥2

F
− 6η2β2

nρ
E
∥∥∥(M(t) − M̄(t))

∥∥∥2

F

+
48β2(1 + L2η2)

nρ(1− β)2
E
∥∥∥X(t) − X̄(t)

∥∥∥2

F
+

24η2β2σ2

ρ(1− µ)(1− β)
+

48η2β2ζ2

ρ(1− β)2

≤ 6η2β2

nρ(1− µ)(1− β)
E
∥∥∥(M(t) − M̄(t))

∥∥∥2

F
− 6η2β2

nρ
E
∥∥∥(M(t) − M̄(t))

∥∥∥2

F

+
ρ

8n
E
∥∥∥X(t) − X̄(t)

∥∥∥2

F
+
η2ρζ2

8
+
η2ρσ2(1− β)

8(1− µ)
.

The last step follows from our assumption that the momentum parameter that β
1−β ≤

ρ
21 and η ≤ 1

7L . This ensures that
48β2(1+L2η2)

ρ(1−β)2 ≤ 49β2

ρ(1−β)2 ≤
ρ
8 .

We can now exactly describe the progress in consensus made each round.

Lemma C.5 (One step consensus improvement). Given assumptions 2, the sequence of iterates generated by (8) using
step-size η ≤ ρ

7L and momentum β
1−β ≤

ρ
21 , satisfy

1

n
E
∥∥Xt+1 − X̄t+1

∥∥2

F
+

6η2β2

nρ(1− µ)(1− β)
E
∥∥Mt+1 − M̄t+1

∥∥2

F

≤ 1− ρ/8
n

E
∥∥Xt − X̄t

∥∥2

F
+

6η2β2

nρ(1− µ)(1− β)
E
∥∥Mt − M̄t

∥∥2

F
+

13η2ζ2

ρ
+

13η2σ2(2− β − µ))

(1− µ)ρ

Proof. Simply adding the results of Lemmas C.3 and C.4 gives the result.

Average and virtual sequences. We will now bound the difference between the average and the virtual sequences e(t)

which recall was defined to be e(t) = x̂(t) − x̄(t). The latter runs SGD with momentum whereas the former only runs SGD.
We view the momentum terms as accumulating the gradient terms, delayed over time and hence the proof views SGDm as
simply SGD run with a larger step-size.

Lemma C.6 (One step error contraction). Given assumptions 2, the sequence of iterates generated by (8) satisfy

E
∥∥∥e(t+1)

∥∥∥2

≤ (1− (1− µ)(1− β))E
∥∥∥e(t)

∥∥∥2

+
2η̃2β2

(1− β)(1− µ)
E
∥∥Et[ḡt]∥∥2

+ η̃2β2σ2
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Proof. By definition, x̂(0) = x̄(0) and hence we have e(0) = 0. For t ≥ 0, starting from the definition of the error term we
have

e(t+1) = x̂(t+1) − x̄(t+1)

=

(
x̂(t) − η

1− β
ḡ(t)

)
−
(
x̄(t) − η(βm̄(t) + ḡ(t))

)
= e(t) − ηβ(

1

1− β
ḡ(t) − m̄(t))

=

t∑
k=0

−ηβ(
1

1− β
ḡ(k) − m̄(k)) .

Using the update of the average momentum (9), we can write

et+1 =

(t)∑
k=0

−ηβ(
1

1− β
ḡ(k) − m̄(k))

=

(t)∑
k=0

−ηβ
(

1

1− β
ḡ(k) −

(
(1− (1− µ)(1− β))m̄(k−1) + (1− µ)ḡ(k−1)

))

= (1− (1− µ)(1− β))

t∑
k=0

−ηβ
(

1

1− β
ḡ(k−1) − m̄(k−1)

)
+

(t)∑
k=0

− ηβ

1− β

(
ḡ(k) − ḡ(k−1)

)
= (1− (1− µ)(1− β))e(t) − ηβ

1− β
ḡ(t) .

By convention, we assume that vectors with negative indices are 0. Taking norms and expectations gives

E
∥∥∥e(t+1)

∥∥∥2

= E
∥∥∥∥(1− (1− µ)(1− β))e(t) − ηβ

1− β
ḡ(t)

∥∥∥∥2

≤ E
∥∥∥∥(1− (1− µ)(1− β))e(t) − ηβ

1− β
Et[ḡ(t)]

∥∥∥∥2

+
η2β2σ2

(1− β)2

≤ (1− (1− µ)(1− β))E
∥∥∥e(t)

∥∥∥2

+
2η2β2

(1− β)3(1− µ)
E
∥∥∥Et[ḡ(t)]

∥∥∥2

+
η2β2σ2

(1− β)2
.

Convergence rate for non-convex case.

Theorem C.7. Given assumptions 2, the sequence of iterates generated by (8) for step size η =

min

(
ρ

7L ,
1−β
4L , (1−µ)(1−β)2

4βL ,
√

4n(f(x̄0)−f?)
Lσ2T

)
and momentum parameter β

1−β ≤
ρ
21 satisfies

1

T

T−1∑
t=0

E
∥∥∇f(x̄t)

∥∥ ≤ O(√Lσ2(f(x̄0)− f?)
nT

+

3

√
L2(f(x̄0)− f?)2

ζ̃2

ρ2T 2
+(

1

ρ
+

1

1− β
+

β

(1− µ)(1− β)2

)
L(f(x̄0)− f?)

T

)
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Proof. Define ζ̃2 := ζ2 + σ2
(

1 + 1−β
1−µ

)
. Scaling Lemma C.5 by 24L2η̃

ρ gives

24L2η̃

ρn
E
∥∥Xt+1 − X̄t+1

∥∥2

F
+

144L2η̃3β2(1− β)

nρ2(1− µ)
E
∥∥Mt+1 − M̄t+1

∥∥2

F

≤ 24L2η̃

ρn
E
∥∥Xt − X̄t

∥∥2

F
+

144L2η̃3β2(1− β)

nρ2(1− µ)
E
∥∥Mt − M̄t

∥∥2

F

− 3L2η̃

n
E
∥∥Xt − X̄t

∥∥2

F
+

312L2η̃3(1− β)2ζ̃2

ρ2

Scaling Lemma C.6 by 3L2η̃
2(1−µ)(1−β) gives

3L2η̃

2(1− µ)(1− β)
E
∥∥∥e(t+1)

∥∥∥2

≤ 3L2η̃

2(1− µ)(1− β)
E
∥∥∥e(t)

∥∥∥2

− 3L2η̃

2
E
∥∥∥e(t)

∥∥∥2

+
3L2η̃3β2

(1− β)2(1− µ)2
E
∥∥Et[ḡt]∥∥2

+
3L2η̃3β2σ2

2(1− µ)(1− β)

Finally Lemma C.1 gives

Ef(x̂(t+1)) ≤ Ef(x̂(t))− η̃

4

∥∥∥∇f(x̄(t))
∥∥∥2

− η̃

4
E

∥∥∥∥∥ 1

n

n∑
i=1

∇fi(x(t)
i )

∥∥∥∥∥
2

+
Lη̃2σ2

n
+

3L2η̃

2

∥∥∥e(t)
∥∥∥2

+
3L2η̃

n

∥∥Xt − X̄t
∥∥2

F
,

Define

Φt :=
24L2η̃

ρn
E
∥∥Xt − X̄t

∥∥2

F
+

144L2η̃3β2(1− β)

nρ2(1− µ)
E
∥∥Mt − M̄t

∥∥2

F
+

3L2η̃

2(1− µ)(1− β)
E
∥∥∥e(t)

∥∥∥2

+ E[f(x̄t)− f?]

Note that Φ0 = E[f(x̄0)]− f? and that Φt ≥ 0 for any t. Then adding the three inequalities from the lemmas as described
above gives

Φt+1 ≤ Φt − η̃

4

∥∥∥∇f(x̄(t))
∥∥∥2

+

(
3L2η̃3β2

(1− β)2(1− µ)2
− η̃

4

)
E

∥∥∥∥∥ 1

n

n∑
i=1

∇fi(x(t)
i )

∥∥∥∥∥
2

+
Lη̃2σ2

n
+

3L2η̃3β2σ2

2(1− µ)(1− β)
+

312L2η̃3(1− β)2ζ̃2

ρ2

Since, η ≤ (1−µ)(1−β)2

4βL , we have that 3L2η̃3β2

(1−β)2(1−µ)2 ≤
η̃
4 . Rearranging the terms and averaging over t, we get

1

T

T−1∑
t=0

E
∥∥∥∇f(x(t))

∥∥∥2

≤ 4

η̃T
(Φ0 − ΦT ) +

Lη̃σ2

n
+

6L2η̃2β2σ2

(1− µ)
+

1248L2η̃2(1− β)2ζ̃2

ρ2

≤ 1

η̃T
4(f(x̄0)− f?) + η̃

(
Lσ2

n

)
+ η̃2

(
L2ρ2σ2(1− β)

(1− µ)
+

1248L2(1− β)2ζ̃2

ρ2

)
.

≤ 1

η̃T
4(f(x̄0)− f?) + η̃

(
Lσ2

n

)
+ η̃2

(
L2σ2(1− β)

(1− µ)
+

1248L2ζ̃2

ρ2

)

≤ 1

η̃T
4(f(x̄0)− f?) + η̃

(
Lσ2

n

)
+ η̃2

(
1249L2ζ̃2

ρ2

)
.

Choosing an appropriate steps-size η proves the theorem.
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D. Additional Results
D.1. Results on Distributed Average Consensus Problem

Figure 10 illustrates the results for average consensus problem on other communication topologies and topology scales.
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(a) torus, n=16.
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(b) torus, n=64.
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(c) torus, n=100.
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(d) torus, n=256.
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(e) social network, n=32.

Figure 10: More results on understanding QG-DSGDm through the aspect of distributed consensus averaging problem on different
communication topologies and scales. QG-DSGDm without gradient update step (as in (4)) still presents faster convergence (to a relative
high precision) than the normal gossip algorithm.

D.2. Results on 2D Illustration

Following the 2D illustration in Figure 2, we elaborate below the different choices of momentum factor for SGDm and
QG-SGDm in Figure 11. We can witness that the effectiveness of local momentum (oscillation) in SGDm is always impacted
by the data heterogeneity, no matter the choices of momentum factor. While for QG-SGDm, there exists a trade-off between
stabilized optimization and fast convergence, controlled by the momentum factor β. Note that we always set µ := β in
QG-SGDm, which may result in undesirable behavior.
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(a) SGDm, β = 0.25.
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(b) QG-SGDm, β = 0.25.
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(c) SGDm, β = 0.5.
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(d) QG-SGDm, β = 0.5.
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(e) SGDm, β = 0.75.
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(f) QG-SGDm, β = 0.75.
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(g) SGDm, β = 0.90.
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(h) QG-SGDm, β = 0.90.
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(i) SGDm, β = 0.95.
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(j) QG-SGDm, β = 0.95.
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(k) SGDm, β = 0.99.
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(l) QG-SGDm, β = 0.99.

Figure 11: The ineffectiveness of local momentum acceleration under heterogeneous data setup: the local momentum buffer
accumulates “biased” gradients, causing unstable and oscillation behaviors. The gradient is estimated by the direction from a given model
to the local minimum with a constant update magnitude. The size of marker will increase by the number of update steps; colors blue
and green indicate the local models of two workers (after performing local update), while color black is the synchronized global model.
Uniform weight averaging is performed after each update step, and the new gradients will be computed on the averaged model.
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D.3. Understanding QG-DSGDm and QG-DSGDm-N on the Single Worker Case

Recall that the single worker case of QG-DSGDm and QG-DSGDm-N refers to QG-SGDm and QG-SGDm-N.

Figure 12 studies the learning behavior (learning curves for both training loss and top-1 test accuracy, as well as final best
test accuracy) of QG-SGDm and QG-SGDm-N on two different normalization methods (BN and GN) for ResNet-20 on
CIFAR-10. In general Nesterov momentum variants outperforms that of HeavyBall momentum, and we can witness a larger
performance gain when the optimization is challenging (e.g. in the of using GN replacement).

Figure 13 further investigates the impact of weight decay on Nesterov momentum variants. Excluding weight decay from
the training procedure is detrimental to the final generalization performance. We also notice larger benefits of QG-SGDm-N
when the optimization procedure is fragile/unstable.

Figure 14 in addition illustrates the curves of weight norm and effective step-size during the optimization procedure, to
interpret the potential causes of the performance gain.

0 50 100 150 200 250 300
Training epoch

0.0

0.1

0.2

0.3

0.4

0.5

Tr
ai

ni
ng

 lo
ss

SGDm-N
QG-SGDm-N
SGDm
QG-SGDm

(a) ResNet-BN-20 (training loss)
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(b) ResNet-BN-20 (test top-1)
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(c) ResNet-GN-20 (training loss)
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(d) ResNet-GN-20 (test top-1)

SGDm-N QG-SGDm-N SGDm QG-SGDm

BN 93.01± 0.12 93.17± 0.30 92.90± 0.15 92.95± 0.13
GN 90.92± 0.08 91.15± 0.06 90.61± 0.15 91.23± 0.01

Figure 12: Understanding the learning behavior of QG-SGDm and QG-SGDm-N, for training ResNet-20 on CIFAR-10 with mini-batch
size of 32.
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(a) ResNet-BN-20.
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(b) ResNet-GN-20.

w/ weight decay w/o weight decay

SGDm-N QG-SGDm-N SGDm-N QG-SGDm-N

BN 93.01± 0.12 93.17± 0.30 91.26± 0.19 91.28± 0.03
GN 90.92± 0.08 91.15± 0.06 88.39± 0.35 89.39± 0.20

Figure 13: Understanding the impact of weight decay on QG-SGDm-N, for training ResNet-20 on CIFAR-10 with mini-batch size of 32,
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(a) Weight norm ‖xt‖2.
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Figure 14: Understanding QG-SGDm through the lens of the effective step-size, for training ResNet-20 on CIFAR-10 with mini-batch
size of 32.
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D.4. Understanding QG-DSGDm on the Single Worker Case via Toy Function

Similar to Lucas et al. (2019), we first optimize the Rosenbrock function, defined as f(x, y) = (y − x2)2 + 100(x− 1)2.

Figure 4 illustrates the stabilized optimization trajectory in QG-SGDm (much less oscillation than SGDm).
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(a) β = 0.9, η = 0.001, initial point (0, 0).
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(b) β = 0.9, η = 0.001, initial point (2, 0).
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(c) β = 0.9, η = 0.001, initial point (0, 2).
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(d) β = 0.9, η = 0.001, initial point (2, 2).
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(e) β = 0.99, η = 0.001, initial point (0, 0).

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5
x

−1

0

1

2

y SGDm
QG-SGDm
optimal point

(f) β = 0.99, η = 0.001, initial point (2, 0).
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(g) β = 0.99, η = 0.001, initial point (0, 2).
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(h) β = 0.99, η = 0.001, initial point (2, 2).

Figure 15: Understanding the optimization trajectory of QG-SGDm and Heavy-ball momentum SGD (SGDm), via a 2D toy function
f(x, y) = (y − x2)2 + 100(x− 1)2. This function has a global minimum at (x, y) = (1, 1). Red line corresponds to SGDm and blue
line indicates QG-SGDm. Red line illustrates larger oscillation than QG-SGDm on the optimization trajectory.
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We further study a simple non-convex toy problem Lucas et al. (2019):

f(x, y) = log(ex + e−x) + 10 log
(
ee
x(y−sin(ax)) + e−e

x(y−sin(ax))
)
,

in Figure 16. In our experiments, we choose a = 8 and b = 10, and initialize the optimizer at (x, y) = (−2, 0).
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Figure 16: Understanding the optimization trajectory of QG-SGDm and Heavy-ball momentum SGD (SGDm), via a 2D toy function
f(x, y) = log(ex + e−x) + 10 log

(
ee
x(y−sin(8x)) + e−e

x(y−sin(8x))
)

. This function has an optimal value at (x, y) = (0, 0). Red line
corresponds to SGDm and blue line indicates QG-SGDm. Red line illustrates larger oscillation than QG-SGDm on the optimization
trajectory.

D.5. The Learning Curves on CV tasks

Figure 17 visualizes the learning curves for training ResNet-EvoNorm-20 on CIFAR-10, in terms of different degrees of
non-i.i.d.-ness and network topologies (Ring and Social topology).

D.6. The Ineffectiveness of Tuning Momentum Factor for DSGDm-N

Table 18 shows that tuning momentum factor for DSGDm-N cannot alleviate the training difficulty caused by heterogeneity.

D.7. The Superior Performance of QG-DSGDm-N Generalize Different Topology Scales

Table 7 further showcases the generality of the predominant performance gain of quasi-global momentum on different
topology scales (n).

Table 7: The test top-1 accuracy of different decentralized algorithms evaluated on different topology scales and non-i.i.d.-ness,
for training ResNet-EvoNorm-20 on CIFAR-10. The results are over three random seeds, with sufficient learning rate tuning. The table
corresponds to Figure 6 in the main paper.

Methods Ring (n=16) Ring (n=32) Ring (n=48)

α = 1 α = 0.1 α = 1 α = 0.1 α = 1 α = 0.1

SGDm-N (centralized) 92.18± 0.19 91.92± 0.33 91.63± 0.25
DSGDm-N 89.98± 0.10 77.48± 2.67 88.46± 0.29 78.17± 1.63 85.54± 0.33 73.67± 0.90
QG-DSGDm-N 91.28± 0.38 82.20± 1.27 90.27± 0.07 83.18± 1.11 89.75± 0.32 80.28± 1.52
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(a) Training ResNet-EvoNorm-20 on CIFAR-
10 with Social topology for n=32 (α=10).
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(b) Training ResNet-EvoNorm-20 on
CIFAR-10 with Social topology for n=32
(α=1).
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(c) Training ResNet-EvoNorm-20 on CIFAR-
10 with Social topology for n=32 (α=0.1).
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(d) Training ResNet-EvoNorm-20 on
CIFAR-10 with Ring topology for n = 16
(α=10).
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(e) Training ResNet-EvoNorm-20 on CIFAR-
10 with Ring topology for n=16 (α=1).
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(f) Training ResNet-EvoNorm-20 on CIFAR-
10 with Ring topology for n=16 (α=0.1).
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(g) Training ResNet-EvoNorm-18 on ImageNet with Ring topology
for n=16 (α=1).
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(h) Training ResNet-EvoNorm-18 on ImageNet with Ring topology
for n=16 (α=0.1).

Figure 17: Learning curves for cv tasks.
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Figure 18: The ineffectiveness of tuning momentum factors for DSGDm-N, for training ResNet-EvoNorm-20 on CIFAR-10. We illustrate
the performance gap between DSGDm-N (different combination of learning rate and momentum factor) and QG-DSGDm-N (tuned
learning rate from the grid with default momentum factor 0.9).



Quasi-Global Momentum

D.8. Multiple-step QG-DSGDm-N variant

Table 8 illustrates the performance for the multiple-step variant of QG-DSGDm-N. We can witness that tuning the value of
τ cannot lead to a significant performance gain.

Table 8: Ablation study for the variant of multiple-step QG-DSGDm-N (illustrated in Algorithm 3), for training ResNet-EvoNorm-20
on CIFAR-10. The results are averaged over three seeds with tuned learning rate.

Methods Ring (n=16)

α = 1 α = 0.1

SGDm-N (centralized) 92.18± 0.19

DSGD 88.88± 0.26 74.55± 2.07
DSGDm-N 89.98± 0.10 77.48± 2.67

QG-DSGDm-N (τ = 1) 91.28± 0.38 82.20± 1.27
QG-DSGDm-N (τ = 2) 91.11± 0.18 82.25± 1.68
QG-DSGDm-N (τ = 3) 91.04± 0.01 81.57± 2.21
QG-DSGDm-N (τ = 4) 91.26± 0.25 82.55± 1.55

D.9. Comparison with D2 and Gradient Tracking (GT) methods

We comment on GT methods below (including D2 (Tang et al., 2018b)), in order to 1) highlight the distinctions between
different algorithms, and 2) justify the comparison with existing GT methods.

• Distinctions between algorithms: 1) Both D2 and GT do not consider momentum in their algorithm design and theoretical
analysis, while one of our main contributions is the design of quasi-global momentum—a simple yet effective approach
for the SOTA decentralized deep learning training; 2) It is unclear how to integrate D2 with momentum, given the
original design intuition of D2; 3) QG-DSGDm is different from D2, where the updates of QG-DSGDm and D2 follow
W((1+β η(t)

η(t−1)
)X(t)−β η(t)

η(t−1)
X(t−1)−η(t)∇f(X(t))) and W(2X(t)−X(t−1)−η(∇f(X(t))−∇f(X(t−1)))) respectively (we simplify

the comparison by letting µ=0 in QG-DSGDm); 4) Compared to QG-DSGDm, GT requires extra one communication
step per update to approximate the global average of local gradients.
• D2 cannot achieve comparable test performance on the standard deep learning benchmark.

– D2 requires a constant learning rate, which does not fit the SOTA learning rate schedule (e.g. stage-wise) in deep
learning. Note that D2 can be rewritten as W(X(t)−η((X(t−1)−X(t))/η+∇f(X(t))−∇f(X(t−1)))), and the update would
break if the magnitude of X(t−1)−X(t) is a factor of 10η (i.e. performing learning rate decay at step t).

– It is non-trivial to improve D2 for the SOTA deep learning training. To support our argument, Table 2 compares to
an improved D2 variant (noted as D2

+) to address the issue of learning rate decay in D2 (though it breaks the design
intuition of D2); the performance of D2

+ is far behind our scheme. The update of D2
+ follows W(X(t)−η(t)((X(t−1)−

X(t))/η(t−1)+∇f(X(t))−∇f(X(t−1)))).
– The numerical results of D2 in Tang et al. (2018b); Pan et al. (2020); Lu et al. (2019) cannot support the practicability

of D2: 1) The experiments of Tang et al. (2018b); Pan et al. (2020) only consider a very small scale setup (# of nodes
n=5 or 8) for CIFAR-10, while (Lu et al., 2019) only evaluates on the toy MNIST dataset—these setups are much
less challenging than ours; 2) Only training loss curves are reported in Tang et al. (2018b); Pan et al. (2020); Lu et al.
(2019), and the final training loss values of Tang et al. (2018b); Pan et al. (2020) are much higher than 0 (i.e. not
converge to a local minimum).

• As suggested by anonymous reviewers, we compare with GT methods in Table 2: QG-DSGDm-N outperforms GT by a
large margin. We would like to point out that 1) the observations of the marginal performance gain in GT are aligned
with prior works, e.g. similar numerical results in Figure 3 & 4 & 5 of Xin et al. (2020); 2) GT may have more benefits in
the extreme low training loss regime (e.g. less than 1e−4) where gains might increase when combining with variance
reduction techniques (Xin et al., 2020)—however, we focus on the test performance for deep learning (Defazio & Bottou,
2019); 3) recent work (Yuan et al., 2020b) also proves that gradient tracking methods are in general much more sensitive
than diffusion-based methods.
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