
Tractable Structured Natural-Gradient Descent Using Local Parameterizations

Appendices
Outline of the Appendix:

• Appendix A summarizes parameterizations and updates used in this work, which gives a road-map of the appendix.

• Appendix B contains more experimental results.

• Appendix C contains some useful results used in the remaining sections of the appendix.

• The rest of the appendix contains proofs of the claims and derivations of our update for examples summarized in Table
2 and Table 1.

A. Summary of Parameterizations Used in This Work

q(w) Name Our update in auxiliary space λ
N (w|µ,Σ) (App. D.2 ) Gaussian with covariance See Eq (42)
N (w|µ,S−1) (App. D.1 ) Gaussian with precision See Eq (38) for a full structure;

See Eq (52) and (54) for a block triangular structure
See Eq (55) for a block Heisenberg structure

Wp(W|S, n) (App. E ) Wishart with precision See Eq (44)
MN (W|E,S−1

U ,S−1
V ) (App. I ) Matrix Gaussian with Kronecker See Eq (49)

structure in precision form
1
K

∑K
k=1N (w|µk,S

−1
k ) (App. H ) Gaussian Mixture with precision See Eq (47)

B(w) exp
(
〈T(w), τ 〉 −A(τ )

)
(App. G ) Univariate Exponential Family See Eq (45)

Table 1. Summary of our updates. See Table 2 for the parameterizations used in our updates.

q(w) global τ auxiliary λ local η

N (w|µ,Σ) (App. D.1 )
[
µ
Σ

]
= ψ(λ) =

[
µ

AAT

] [
µ
A

]
= φλt(η) =

[
µt + Atδ

AtExp( 1
2M)

] [
δ
M

]
N (w|µ,S−1) (App. D.2 )

[
µ
S

]
= ψ(λ) =

[
µ

BBT

] [
µ
B

]
= φλt(η) =

[
µt + B−Tt δ
Bth(M)

] [
δ
M

]
Wp(W|S, n) (App. E )

[
n
S

]
= ψ(λ) =

[
2(f(b) + c)

2(f(b) + c)BBT

] [
b
B

]
= φλt(η) =

[
bt + δ

BtExp(M)

] [
δ
M

]
c = p−1

2 , f(b) = log(1 + exp(b))
general q(w|τ ) (App. F ) τ = ψ(λ) = λ λ = φλt(η) = λt + η η

MN (W|E,S−1
U ,S−1

V ) =

 E
SV
SU

 = ψ(λ) =

 E

AAT

BBT

 E
A
B

 = φλt(η) =

Et + B−Tt ∆A−1
t

Ath(M)
Bth(N)

 ∆
M
N


N (vec(W)|vec(E),S−1

V ⊗ S−1
U )

Kronecker structure (App. I )

1
K

∑K
k=1N (w|µk,S

−1
k ) τ =

[
µk
Sk

]K
k=1

, ψ(λ) = {ψk(λk)}Kk=1 λ =

[
µk
Bk

]K
k=1

, φλt(η) = {φk,λt(ηk)}Kk=1

[
δk
Mk

]K
k=1

(App. H )
[
µk
Sk

]
= ψk(λk) =

[
µk

BkB
T
k

] [
µk
Bk

]
= φk,λt(ηk) =

[
µk,t + B−Tk,t δk
Bk,th(Mk)

]
univariate EF q(w|τ ) (App. G ) τ = ψ(λ) = f(λ) λ = φλt(η) = λt + η η
B(w) exp

(
〈T(w), τ 〉 −A(τ )

)
f(λ) = log(1 + exp(λ))

Table 2. Summary of the parameterizations
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Figure 5. The performances of our updates for optimization of a CNN model on CIFAR-100 using layer-wise matrix Gaussian with
low-rank structures in a Kronecker-precision form, where our updates (O(k|w|)) have a linear iteration cost like Adam (O(|w|)) in terms
of time. For dataset “CIFAR-100”, we train the model with mini-batch size 120. Our updates achieve higher test accuracy (55.2% on
“CIFAR-100”) than Adam (53.3% on “CIFAR-100”).

B. More Results
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Figure 6. Comparison results of structured Gaussian mixtures to fit a 80-Dim mixture of Student’s t distributions with 10 components.
The first 9 marginal dimensions obtained by our updates is shown in the figure, where we consider the full covariance structure and the
diagonal structure.
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Figure 7. Comparison results of structured Gaussian mixtures to fit a 80-Dim mixture of Student’s t distributions with 10 components.
The first 9 marginal dimensions obtained by our updates is shown in the figure, where we consider the upper triangular structure and the
lower triangular structure in the precision form. The upper triangular structure performs comparably to the full covariance structure with
lower computational cost.
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Figure 8. Comparison results of structured Gaussian mixtures to fit a 80-Dim mixture of Student’s t distributions with 10 components.
The first 9 marginal dimensions obtained by our updates is shown in the figure, where we consider the upper Heisenberg structure and the
lower Heisenberg structure in the precision form. The upper triangular structure performs comparably to the full covariance structure with
lower computational cost.
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C. Fisher information matrix and Some Useful Lemmas
The Fisher information matrix (FIM) Fτ (τ ) of a parametric family of probability distributions {qτ} is expressed by
Fτ (τ ) = Covqτ (∇τ log qτ (w),∇τ log qτ (w)). Under mild regularity conditions (i.e., expectation of the score is
zero and interchange of integrals with gradient operators), we have Fτ (τ ) = Eqτ

[
∇τ log qτ (w)(∇τ log qτ (w))>

]
=

−Eqτ [∇2
τ log qτ (w)].

Lemma 4 In a general case, Eq (1) can be expressed as:

L(τ ) := Eq(w|τ ) [`(w)]− γH(q(w|τ ))

We have the following result:

gτ t := ∇τL(τ )
∣∣∣
τ=τ t

= ∇τEq(w|τ ) [`(w) + γ log q(w|τ t)]
∣∣∣
τ=τ t

Therefore, we could re-define `(w) to include γ log q(w|τ t) when we compute gradient∇τL(τ )
∣∣∣
τ=τ t

, where τ t highlighted

in red is considered as a constant.

The following lemma gives us an indirect approach to compute natural gradients. See Appendix G for the indirect approach
and Appendix G.1 for its limitation.

Lemma 5 (Indirect Natural-gradient Computation) If τ = ψ ◦ φλt(η) is C1-smooth w.r.t. η, we have the following
(covariant) transformation12.

Fη(η0) =
[
∇ητ

][
Fτ (τ t)

][
∇ητ

]T ∣∣∣
η=η0

where we use a layout so that∇ηiτ and∇ητj are a row vector and a column vector13, respectively.

If ĝτ t is easy to compute14, the natural gradient ĝη0
can be computed via the following (contravariant) transformation15,

where we assume Fτ (τ t) and the Jacobian
[
∇ητ

]∣∣∣
η=η0

are both non-singular

ĝη0
=
[
∇τη

]T
ĝτ t

∣∣∣
τ=τ t

=
[
∇ητ

]−T
ĝτ t

∣∣∣
η=η0

(26)

where the j-th entry of the natural gradient ĝη0 can be re-expressed as ĝη0j =
∑
i

[
∇τiηj

]
ĝτti when the Jacobian is

invertible.

Therefore, ĝη0
can be computed via a Jacobian-vector product used in forward-mode differentiation if ĝτ t is computed

beforehand and the Jacobian is invertible.

We will use the following lemmas to show that h(·) can replace the matrix exponential map used in the main text while still
keeping the natural-gradient computation tractable.

Lemma 6 Let h(M) = I + M + 1
2M2. If the matrix determinant |h(M)| > 0, we have the identity:

∇M log |h(M)| = I + C(M),

where ∇MijC(M)
∣∣∣
M=0

= 0 and Mij is the entry of M at position (i, j).

Lemma 7 Let Exp(M) := I +
∑∞
k=1

Mk

k! . We have a similar identity as Lemma 6:

∇M log |Exp(M)| = I + C(M),

where ∇Mij
C(M)

∣∣∣
M=0

= 0 and Mij is the entry of M at position (i, j).

12This is the component transform for a type (0, 2)-tensor in Riemannian geometry.
13We assume η and τ are vectors. For a matrix parameter, we could use the vector representation of the matrix via vec(·).
14τ t may stay in a constrained parameter space
15This is the component transform for a type (1, 0)-tensor in Riemannian geometry.
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Lemma 8 Let f(M) = h(M) or f(M) = Exp(M). We have the following expressions:

[
∇Mij f(M)

]
f(M)T =

[
(∇MijM) + 1

2M(∇MijM) + 1
2 (∇MijM)M + (∇MijM)MT

]
+O(M2)(∇MijM)

f(M)
[
∇Mij

f(M)T
]

=
[
(∇Mij

MT ) + 1
2MT (∇Mij

MT ) + 1
2 (∇Mij

MT )MT + M(∇Mij
MT )

]
+O(M2)(∇Mij

M)

Moreover, it is obvious that∇Mkl

[
O(M2)(∇MijM)

]
= 0, where Mkl is the entry of M at position (k, l).

C.1. Proof of Lemma 4

Proof SinceH(q(w|τ )) = −Eq(w|τ ) [log q(w|τ )], we can re-express∇τL(τ )
∣∣∣
τ=τ t

as

∇τL(τ )
∣∣∣
τ=τ t

= ∇τEq(w|τ ) [`(w) + γ log q(w|τ )]
∣∣∣
τ=τ t

= ∇τEq(w|τ ) [`(w) + γ log q(w|τ t)] + γEq(w|τ ) [∇τ log q(w|τ )]
∣∣∣
τ=τ t

(By the chain rule)

Note that

Eq(w|τ ) [∇τ log q(w|τ )]
∣∣∣
τ=τ t

=Eq(w|τ )

[
∇τ q(w|τ )

q(w|τ )

] ∣∣∣
τ=τ t

=∇τEq(w|τ ) [1]
∣∣∣
τ=τ t

=0 (27)

Therefore,

∇τL(τ )
∣∣∣
τ=τ t

= ∇τEq(w|τ )

[
`(w) + γ log q(w|

Constant︷︸︸︷
τ t )

]∣∣∣
τ=τ t

C.2. Proof of Lemma 5

Proof Let’s consider an entry of the FIM Fη(η0) at position (j, i).

Fηji(η0)︸ ︷︷ ︸
scalar

= Eq(w|η)

[[
∇ηj log q(w|η)

][
∇ηi log q(w|η)

]]∣∣
η=η0

= Eq(w|η)

[[
∇ηjτ︸ ︷︷ ︸

row vector

∇τ log q(w|τ )︸ ︷︷ ︸
column vector

][
∇ηiτ∇τ log q(w|τ )

]∣∣
η=η0

=
[
∇ηjτ

]︸ ︷︷ ︸
row vector

Eq(w|η)

[[
∇τ log q(w|τ )

][
∇τ log q(w|τ )

]T ] [∇ηiτ ]T︸ ︷︷ ︸
column vector

∣∣
η=η0

=
[
∇ηjτ

]
Eq(w|τ t)

[[
∇τ log q(w|τ )

][
∇τ log q(w|τ )

]T ][∇ηiτ ]T ∣∣η=η0

=
[
∇ηjτ

]
Fτ (τ t)

[
∇ηiτ

]T ∣∣∣
η=η0

Therefore, we have Fη(η0) =
[
∇ητ

]
Fτ (τ t)

[
∇ητ

]T ∣∣∣
η=η0

.
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The natural gradient ĝη0
can be computed as follows.

ĝη0
=
(
Fη(η0)

)−1
gη0

∣∣∣
η=η0

=
[
∇ητ

]−T (
Fτ (τ t)

)−1[∇ητ
]−1

gη0

∣∣∣
η=η0

=
[
∇τη

]T (
Fτ (τ t)

)−1[∇τη
]
gη0

∣∣∣
η=η0

=
[
∇τη

]T (
Fτ (τ t)

)−1
gτ t

∣∣∣
η=η0

=
[
∇τη

]T
ĝτ t

∣∣∣
τ=τ t

where Fτ (τ t) and ∇ητ are invertible by the assumption, and τ t = ψ ◦ φλt(η0).

C.3. Proof of Lemma 6

Proof We first consider the entry Mij of M. By matrix calculus, we have the following expression.

∇Mij log |h(M)|
=Tr

(
(h(M))−1∇Mij

h(M)
)

=Tr
(
(h(M))−1

[
(∇Mij

M) + 1
2M(∇Mij

M) + 1
2 (∇Mij

M)M
])

=Tr
(
(h(M))−1

[
1
2 (I + M)(∇MijM) + 1

2 (∇MijM)(I + M)
])

=Tr
(
(h(M))−1

[
1
2h(M)(∇MijM) + 1

2 (∇MijM)h(M)− 1

4

[
M2(∇MijM) + (∇MijM)M2

])
=Tr

(
(∇MijM)

)
− 1

4
Tr
(
(h(M))−1

[
M2(∇MijM) + (∇MijM)M2

])
Therefore, we can express the gradient in a matrix form.

∇M log |h(M)| = I− 1

4

(
M2
)T

h(M)−T − 1

4
h(M)−T

(
M2
)T

We will show − 1
4

(
M2
)T

h(M)−T − 1
4h(M)−T

(
M2
)T

is a C(M) function defined in our claim. We first show that

∇Mij

[
M2h(M)−1

]∣∣∣
M=0

= 0

By the product rule, we have

∇Mij

[
M2h(M)−1

]∣∣∣
M=0

=
[
∇MijM

]
M︸︷︷︸
=0

h(M)−1
∣∣∣
M=0

+ M︸︷︷︸
=0

[
∇MijM

]
h(M)−1

∣∣∣
M=0

+ M2︸︷︷︸
=0

[
∇Mijh(M)−1

]∣∣∣
M=0

= 0

Similarly, we can show

∇Mij

[(
M2
)T

h(M)−T
]∣∣∣
M=0

= 0; ∇Mij

[
h(M)−T

(
M2
)T ]∣∣∣

M=0
= 0

Finally, we obtain the result as ∇M log |h(M)| = I + C(M), where C(M) = − 1
4

(
M2
)T

h(M)−T − 1
4h(M)−T

(
M2
)T
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C.4. Proof of Lemma 7

Proof First of all, |Exp(M)| > 0 and (Exp(M))−1 = Exp(−M). We consider the following expressions.

Exp(−M) = I−M + O(M2)︸ ︷︷ ︸
remaining higher-order terms

Exp(M) = I + M + 1
2M2 + O(M3)︸ ︷︷ ︸

remaining higher-order terms

∇Mij
Exp(M) = (∇Mij

M) + 1
2M(∇Mij

M) + 1
2 (∇Mij

M)M + O(M2)(∇Mij
M)︸ ︷︷ ︸

remaining higher-order terms

By matrix calculus, we have the following expression.

∇Mij
log |Exp(M)|

=Tr
(
Exp(−M)∇Mij

Exp(M)
)

=Tr
(
Exp(−M)

[
(∇MijM) + 1

2M(∇MijM) + 1
2 (∇MijM)M +O(M2)(∇MijM)

])
=Tr

(
Exp(−M)

[
(∇Mij

M) + 1
2M(∇Mij

M) + 1
2 (∇Mij

M)M +O(M2)(∇Mij
M)
])

=Tr
((

I−M +O(M2)
)[

(∇Mij
M) + 1

2M(∇Mij
M) + 1

2 (∇Mij
M)M +O(M2)(∇Mij

M)
])

=Tr
(
(∇Mij

M)
)

+ Tr
(
− 1

2M(∇Mij
M) + 1

2 (∇Mij
M)M +O(M2)(∇Mij

M)
)

Therefore, we have

∇M log |Exp(M)| = I− 1
2MT + 1

2MT +O(M2) = I +O(M2)

Now, we show that the remaining O(M2) term is a C(M) function defined in our claim. Note that

∇MijO(M2)
∣∣∣
M=0

= Tr(O(M)︸ ︷︷ ︸
=0

[
∇MijM

]
)
∣∣∣
M=0

= 0

where O(M) contains at least the first order term of M.

Therefore, the remaining O(M2) term is a C(M) function.

C.5. Proof of Lemma 8

Proof

First note that

f(M)T = I + MT +O(M2)

f(M) = I + M + 1
2M2 +D(M3)

∇Mij
f(M) = (∇Mij

M) + 1
2M(∇Mij

M) + 1
2 (∇Mij

M)M +D(M2)(∇Mij
M)

where D(M3) = O(M3) and D(M2) = O(M2) when f(M) = Exp(M) while D(M3) = 0 and D(M2) = 0 when
f(M) = h(M).

We will show the first identity.[
∇Mij

f(M)
]
f(M)T

=
[
(∇Mij

M) + 1
2M(∇Mij

M) + 1
2 (∇Mij

M)M +D(M2)(∇Mij
M)
]
f(M)T

=
[
(∇MijM) + 1

2M(∇MijM) + 1
2 (∇MijM)M +D(M2)(∇MijM)

](
I + MT +O(M2)

)
=
[
(∇Mij

M) + 1
2M(∇Mij

M) + 1
2 (∇Mij

M)M + (∇Mij
M)MT

]
+O(M2)(∇Mij

M),

where M(∇Mij
M)MT , (∇Mij

M)MMT ∈ O(M2)(∇Mij
M).

Similarly, we can show the second expression holds.
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D. Gaussian Distribution
D.1. Gaussian with square-root precision structure

Let’s consider a global parameterization τ = {µ,S}, where S is the precision and µ is the mean. We use the following
parameterizations:

τ :=
{
µ ∈ Rp, S ∈ Sp×p++

}
λ :=

{
µ ∈ Rp, B ∈ Rp×p++

}
η :=

{
δ ∈ Rp, M ∈ Sp×p

}
.

and maps: {
µ
S

}
= ψ(λ) :=

{
µ

BB>

}
{
µ
B

}
= φλt(η) :=

{
µt + B−Tt δ
Bth(M)

}
.

Under this local parametrization, we can re-expressed the negative logarithm of the Gaussian P.D.F. as below.

− log q(w|η) = − log |Bth(M)|+ 1
2 (µt + B−Tt δ −w)TBth(M)h(M)TBT

t (µt + B−Tt δ −w) + C

where C is a constant number and λt = {µt,Bt} is the auxiliary parameterization evaluated at iteration t.

Lemma 9 Under this local parametrization η, Fη is block diagonal with two blocks–the δ block and the M block. The
claim holds even when M is not symmetric.

Proof Any cross term of Fη between these two blocks is zero as shown below.

− Eq(w|η)

[
∇Mij

∇δ log q(w|η)
]

=Eq(w|η)

[
∇Mij

(
h(M)h(M)TBT

t (µt + B−Tt δ −w)
)]

=∇Mij

(
h(M)h(M)T

)(
BT
t Eq(w|η)

[
(µt + B−Tt δ −w)︸ ︷︷ ︸

=0

])
=0

where Eq(w|η)

[
w
]

= µt + B−Tt δ and Mij denotes the element of the matrix M at (i, j).

Lemma 10 The FIM w.r.t. block δ denoted by Fδ is Iδ when we evaluate it at η0 = {δ0,M0} = 0. The claim holds even
when M is not symmetric.

Proof

Fδ(η0) = −Eq(w|η)

[
∇2
δ log q(w|η)

] ∣∣∣
η=0

= Eq(w|η)

[
∇δ
(
h(M)h(M)TBT

t (µt + B−Tt δ −w)
)] ∣∣∣

η=0

= Eq(w|η)

[
∇δ
(
δ + BT

t (µt −w)
)] ∣∣∣

η=0

= Iδ

where we use the fact that h(M) = I when M = 0 to move from step 2 to step 3.

Now, we discuss how to compute the FIM w.r.t. M, where the following expressions hold even when M is not symmetric
since we deliberately do not make use the symmetric constraint. The only requirement for M is |h(M)| > 0 due to Lemma
6.



Tractable Structured Natural-Gradient Descent Using Local Parameterizations

Let Z = BT
t (µt + B−Tt δ −w)(µt + B−Tt δ −w)TBt. By matrix calculus, we have the following expression.

1
2∇Mij

[
(µt + B−Tt δ −w)TBth(M)h(M)TBT

t (µt + B−Tt δ −w)
]

= 1
2∇MijTr

(
Zh(M)h(M)T

)
= 1

2Tr
(
Z
[
∇Mij

h(M)
]
h(M)T + Zh(M)∇Mij

[
h(M)T

])
By Lemma 8, we obtain a simplified expression.

1
2∇M

[
(µt + B−Tt δ −w)TBth(M)h(M)TBT

t (µt + B−Tt δ −w)
]

= 1
2

[
2Q + QMT + MTQ + 2QM

]
+O(M2)Z

=Z + (ZMT + MTZ)/2 + ZM +O(M2)Z

where Q = (ZT + Z)/2 = Z

By Lemma 6, we can re-express the gradient w.r.t. M as

−∇M log q(w|η) = −I− C(M)︸ ︷︷ ︸
−∇M log |h(M)|

+Z + (ZMT + MTZ)/2 + ZM +O(M2)Z (28)

Finally, we have the following lemma to compute the FIM w.r.t. M (denoted by FM ) evaluated at η0 = 0.

Lemma 11 −Eq(w|η)

[
∇Mij∇M log q(w|η)

] ∣∣∣
η=0

= ∇Mij

(
M + MT

)
. The claim holds even when M is not symmetric

as long as |h(M)| > 0 or | − h(M)| > 0.

Proof

− Eq(w|η)

[
∇Mij

∇M log q(w|η)
] ∣∣∣

η=0

=Eq(w|η)

[
∇Mij

(
− I− C(M) + Z + (ZMT + MTZ)/2 + ZM +O(M2)Z

)] ∣∣∣
η=0

(by Eq 28)

=
[
∇Mij

(
(MT + MT )/2 + M +O(M2)

)] ∣∣∣
η=0
−∇MijC(M)

∣∣∣
η=0︸ ︷︷ ︸

=0

=∇Mij

(
M + MT

)
+O(M)

∣∣∣
η=0

=∇Mij

(
M + MT

)
(29)

where we use the fact that Eq(w|η) [Z] = Eq(w|η)

[
BT
t (µt + B−Tt δ −w)(µt + B−Tt δ −w)TBt

]
= I evaluated at η = 0

to move from step 2 to step 3.

Now, we discuss the symmetric constraint in M ∈ Sp×p. The constraint is essential since the FIM can be singular without a
proper constraint.

D.1.1. SYMMETRIC CONSTRAINT Sp×p IN M

Instead of directly using the symmetric property of M to simplify Eq (29), we present a general approach so that we can
deal with asymmetric M discussed in Appendix J. The key idea is to decomposition M as a sum of special matrices so that
the FIM computation is simple. We also numerically verify the following computation of FIM by Auto-Diff.

First of all, we consider a symmetric constraint in M. We will show that this constraint ensures the FIM is non-singular,
which implies that we can use Lemma 11 in this case.

Lemma 12 When M is symmetric, |h(M)| > 0.
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Proof

h(M) = I + M + 1
2M2

= 1
2 (I + (I + M)(I + M))

= 1
2 (I + (I + M)(I + M)T ) ( since M is symmetric )

� 0 ( positive-definite )

Therefore, |h(M)| > 0.

Since M is symmetric, we can re-express the matrix M as follows.

M = Mlow + MT
low + Mdiag,

where Mlow contains the lower-triangular half of M excluding the diagonal elements, and Mdiag contains the diagonal
entries of M.

Mlow =


0 0 · · · 0

M21 0 · · · 0
· · · · · · · · · 0
Md1 Md2 · · · 0

 Mdiag =


M11 0 · · · 0

0 M22 · · · 0
· · · · · · · · · 0
0 0 · · · Mdd



By Eq. 28 and the chain rule, we have the following expressions, where i > j.

−∇Mlowij
log q(w|η) = −Tr

( [
∇Mlowij

M
]︸ ︷︷ ︸

Iij+Iji

[
∇M log q(w|η)

])
−∇Mdiagii

log q(w|η) = −Tr
( [
∇Mdiagii

M
]︸ ︷︷ ︸

Iii

[
∇M log q(w|η)

])

Therefore, we have

−∇Mlow log q(w|η) = −Low
(
∇M log q(w|η) +∇TM log q(w|η)

)
(30)

−∇Mdiag log q(w|η) = − 1
2Diag

(
∇M log q(w|η) +∇TM log q(w|η)

)
= −Diag

(
∇M log q(w|η)

)
(31)

where we define the Diag(·) function that returns a diagonal matrix with the same structure as Mdiag and the Low(·) function
that returns a lower-triangular matrix with the same structure as Mlow.

By Lemma 9, the FIM Fη is block-diagonal with two blocks—the δ block and the M block. We have the following lemma
for FM

Lemma 13 The M block of the FIM denoted by FM is also block-diagonal with two block— the diagonal block denoted by
non-zero entries in Mdiag, and the lower-triangular block denoted by non-zero entries in Mlow.

Proof We will prove this lemma by showing any cross term of the FIM between the non-zero entries in Mlow and the
non-zero entries in Mdiag is also zero.

Notice that we only consider non-zero entries in Mlow, which implies that i > j in the following expression. Therefore, any
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cross term can be expressed as below.

− Eq(w|η)

[
∇Mlowij

∇Mdiag log q(w|η)
] ∣∣∣

η=0
= −Eq(w|η)

[
∇Mlowij

Diag
(
∇M log q(w|η)

)]∣∣∣
η=0

( by Eq. 31 )

=− Eq(w|η)

[∑
k,l

[
∇Mlowij

Mkl

]
∇Mkl

Diag
(
∇M log q(w|η)

)]∣∣∣
η=0

=− Eq(w|η)

[ [
∇Mlowij

Mij

]︸ ︷︷ ︸
=1

∇MijDiag
(
∇M log q(w|η)

)
+
[
∇Mlowij

Mji

]︸ ︷︷ ︸
=1

∇MjiDiag
(
∇M log q(w|η)

)]∣∣∣
η=0

=− Eq(w|η)

[
∇Mij

Diag
(
∇M log q(w|η)

)
+∇Mji

Diag
(
∇M log q(w|η)

)] ∣∣∣
η=0

=−Diag
(
Eq(w|η)

[
∇Mij

∇M log q(w|η) +∇Mji
∇M log q(w|η)

] )∣∣∣
η=0

=Diag
(
∇Mij

(M + MT )︸ ︷︷ ︸
Iij+Iji

+∇Mji
(M + MT )︸ ︷︷ ︸
Iij+Iji

)
= 0 ( by Lemma 11)

where Mlowij denotes the entry of Mlow at position (i, j), we use M = Mlow + MT
low + Mdiag to move from step 2 to step

3, and obtain the last step since i > j and Diag(Iij) = 0

To compute the FIM w.r.t a symmetric M, we can consider the FIM w.r.t. the non-zero entries in both Mlow and Mdiag
separately due to the block-diagonal structure of the FIM. Now, we compute the FIM w.r.t. Mdiag and Mlow.

By the chain rule, we have

− Eq(w|η)

[
∇Mdiagii

∇Mdiag log q(w|η)
] ∣∣∣

η=0

=− Eq(w|η)

[
∇Mdiagii

Diag
(
∇M log q(w|η)

)] ∣∣∣
η=0

( by Eq. 31 )

=− Eq(w|η)

∑
j,k

[
∇Mdiagii

Mjk

]
∇Mjk

Diag
(
∇M log q(w|η)

) ∣∣∣
η=0

=− Eq(w|η)

[∇Mdiagii
Mii

]︸ ︷︷ ︸
=1

∇Mii
Diag

(
∇M log q(w|η)

) ∣∣∣
η=0

=−Diag
(
Eq(w|η) [∇Mii∇M log q(w|η)]

)∣∣∣
η=0

By Lemma 11, the FIM w.r.t. Mlow is

− Eq(w|η)

[
∇Mdiagii

∇Mdiag log q(w|η)
] ∣∣∣

η=0
= −Diag

(
Eq(w|η) [∇Mii

∇M log q(w|η)]
)∣∣∣

η=0
= Diag

(
∇Mii

(
M + MT

))
= 2Diag(Iii)

(32)

Now, we compute the FIM w.r.t. Mlow. By the chain rule, we have

− Eq(w|η)

[
∇Mlowij

∇Mlow log q(w|η)
] ∣∣∣

η=0

=− Eq(w|η)

[
∇Mlowij

Low
(
∇M log q(w|η) +∇TM log q(w|η)

)] ∣∣∣
η=0

( by Eq. 30 )
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We will first consider the following term.

− Eq(w|η)

[
∇Mlowij

Low
(
∇M log q(w|η)

)] ∣∣∣
η=0

=− Eq(w|η)

∑
k,l

[
∇Mlowij

Mkl

]
∇Mkl

Low
(
∇M log q(w|η)

) ∣∣∣
η=0

=− Eq(w|η)

[∇Mlowij
Mji

]︸ ︷︷ ︸
=1

∇Mji
Low

(
∇M log q(w|η)

)
+
[
∇Mlowij

Mij

]︸ ︷︷ ︸
=1

∇Mij
Low

(
∇M log q(w|η)

) ∣∣∣
η=0

=− Low
(
Eq(w|η)

[
∇Mji∇M log q(w|η) +∇Mij∇M log q(w|η)

] )∣∣∣
η=0

=Low
(
∇Mji

[
M + MT

]︸ ︷︷ ︸
=Iji+Iij

+∇Mij

[
M + MT

]︸ ︷︷ ︸
=Iij+Iji

)
= 2Iij (By Lemma 11)

where we obtain the last step by Eq 29 and the fact that M is symmetric.

Similarly, we can show

−Eq(w|η)

[
∇Mlowij

Low
(
∇TM log q(w|η)

)] ∣∣∣
η=0

= 2Iij (33)

Therefore, the FIM w.r.t. Mlow is

−Eq(w|η)

[
∇Mlowij

∇Mlow log q(w|η)
] ∣∣∣

η=0
= 4Iij (34)

.

Now, we discuss how to compute the Euclidean gradients. Recall that

µ = µt + B−Tt δ

S = Bth(M)h(M)TBT
t

Let L := Eq(w) [`(w)]− γH(q(w)). By the chain rule, we have

∇δiL =
[
∇δiµ

]T∇µL+ Tr
( =0︷ ︸︸ ︷[
∇δiS

]
∇SL)

=
[
∇δiδ

]T
B−1∇µL

∇MijL =
[
∇Mijµ

]T︸ ︷︷ ︸
=0

∇µL+ Tr
([
∇MijS

]
∇SL

)
= Tr

([
∇Mij

S
]
∇SL

)
= −Tr

([
∇Mij

S
]
Σ
[
∇ΣL

]
Σ
)

= −Tr
([

B
{[
∇Mijh(M)

]
h(M)T + h(M)

[
∇Mijh(M)T

]}
BT
]
Σ
[
∇ΣL

]
Σ
)

where Σ = S−1 and we use the gradient identity∇SL = −Σ
[
∇ΣL

]
Σ.

Therefore, when we evaluate the gradient at η0 = {δ0,M0} = 0, we have

∇δiL
∣∣
η=0

=
[
∇δiδ

]T
B−1
t ∇µL

∇Mij
L
∣∣
η=0

= −Tr
([

Bt

([
∇Mij

h(M)
]
h(0)T︸ ︷︷ ︸

=I

+ h(0)︸︷︷︸
=I

[
∇Mijh(M)T

])
BT
t

]
Σt︸︷︷︸

B−T
t B−1

t

[
∇ΣL

]
Σt

)
= −Tr

([
Bt

([
∇Mij

h(M)
]

+
[
∇Mij

h(M)T
])

BT
t

]
B−Tt B−1

t

[
∇ΣL

]
B−Tt B−1

t

)
= −Tr

(([
∇MijM

]
+
[
∇MijM

T
])

B−1
t

[
∇ΣL

]
B−Tt

)
= −Tr

([
∇Mij

(
M + MT

)]
B−1
t

[
∇ΣL

]
B−Tt

)
(35)
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where note that h(M) = I + M +O(M2) and its gradient evaluated at η = 0 can be simplified as

∇Mij
h(M)

∣∣
η=0

= ∇Mij
M +O(M)︸ ︷︷ ︸

=0

[
∇Mij

M
]∣∣

η=0
= ∇Mij

M

Let’s denote GM = −2B−1
t

[
∇ΣL

]
B−Tt . Therefore, we can show that

∇MdiagL
∣∣
η=0

= Diag(GM ); ∇MlowL
∣∣
η=0

= Low
(
GM + GT

M

)
= 2Low(GM )

The FIM is block-diagonal w.r.t. three blocks, the δ block, the Mdiag block, and the Mlow block

Recall that the FIM w.r.t. δ, Mdiag and Mlow are I, 2I, 4I, respectively. The above statement implies that Assumption 1 is
satisfied.

The natural gradients w.r.t. Mdiag and Mlow are 1
2Diag(GM ) and 1

2Low(GM ).

Therefore, the natural gradients w.r.t. δ and w.r.t. M are

ĝδ = B−1
t ∇µL, ĝM = 1

2GM = −B−1
t

[
∇ΣL

]
B−Tt (36)

Now, we show that Assumption 2 is also satisfied. We will use the inverse function theorem to show this.

Recall that we have shown that Assumption 1 is satisfied by using the lower-triangular half (i.e., Mlow and Mdiag) of M
since M is symmetric. Let’s consider the vector representation of the non-zero entries of the lower-triangular part of M
denoted by mvec. We consider the following function denoted by Mat(mvec) to obtain M given the vector. It is easy to
see that this function is linear and therefore it is C1-smooth w.r.t. mvec. Consider the vector representation of the local
parameter ηvec = {µ,mvec}. Assumption 1 implies that the FIM Fηvec

(0) is non-singular at η0 = 0.

Note that S is a symmetric positive-definite matrix and it can be represented by using a (lower-triangular) Cholesky factor
L such as S = LLT . We denote the vector representation of the non-zero entries of L denoted by vec(L). Moreover,
the length of mvec is the same as the length vec(L). Indeed, this length is the (effective) degrees of freedom of the local
parameter.

Now, consider a new global parameterization τ new = {µ, vec(L)} and the new map τ new = ψnew ◦ φλt(ηvec).[
µ

vec(L)

]
= ψnew ◦ φλt

( [ δ
mvec

] )
=

[
µt + B−Tt δ

vec(Chol(Bth(M)h(M)TBT
t ))

]
(37)

where M = Mat(mvec).

It is obvious that Jacobian matrix ∇ηvec
τ new is a square matrix. Moreover, since S = LLT , this new FIM under this

parameterization remains the same, denoted by Fηnew
(0). It is non-singular at ηvec = 0 due to Assumption 1.

By Lemma 5, we know that

Fηnew
(0) =

[
∇ηvec

τ new
][

Fτ new(τ newt)
][
∇ηvec

τ new
]T ∣∣∣

ηnew=0

Since Fηnew
(0) is non-singular and the Jacobian matrix ∇ηvec

τ new is a square matrix, the Jacobian matrix is non-singular at
ηvec = 0.

Notice that the Cholesky decomposition Chol(X) is C1-smooth w.r.t. X. The smoothness of the Cholesky decomposition is
used by Sun et al. (2009); Salimbeni et al. (2018). We can see that this map τ new = ψnew ◦ φλt(ηvec) is C1-smooth w.r.t.
ηvec.

By the inverse function theorem, we know that there exist a (local) inverse function of {µ, vec(L)} = ψnew ◦ φλt(ηvec) at
an open neighborhood of ηvec = 0, which is also C1-smooth.

Since S = LLT , we know that τ = {µ,S} and η = {δ,M} are locally C1-diffeomorphic at an open neighborhood of η0.
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D.1.2. CONNECTION TO NEWTON’S METHOD

In Eq (1), we consider the following problem.

min
q(w)∈Q

Eq(w) [`(w)]− γH(q(w))

Note that we assume γ = 0 in Eq (2) for simplicity.

By Eq (36), our update in the auxiliary parameter space with step-size β is

µt+1 ← µt + B−Tt (−β)B−1
t gµ = µt − β

S−1

t︷ ︸︸ ︷
B−Tt B−1

t gµ

Bt+1 ← Bth(βB−1
t

[
gΣ

]
B−Tt ) (38)

When γ ≥ 0, due to Stein’s identities, we have

gµ = Eq(w|µ,Σ) [∇w`(w)] , gΣ = 1
2

(
Eq(w|µ,Σ)

[
∇2
w`(w)

]
− γΣ−1

)
Let Gt = Eq

[
∇2
w`(w)

]
− γΣ−1

t = Eq
[
∇2
w`(w)

]
− γSt

Therefore, our update in S is

St+1 = Bt+1B
T
t+1 = Bth(βB−1

t

[
gΣt

]
B−Tt )h(βB−1

t

[
gΣt

]
B−Tt )TBT

t

= Bt

[
I + 2

(
βB−1

t

[
gΣt

]
B−Tt

)
+ 2
(
βB−1

t

[
gΣtB

−T
t

)2
+O(β3)

]
BT
t

= Bt

[
I + βB−1

t GtB
−T
t +

β2

2
B−1
t GtB

−T
t B−1

t GtB
−T
t +O(β3)

]
BT
t

= St + βGt +
β2

2
GtS

−1
t Gt +O(β3) (39)

where we use the following result when X is symmetric

h(X)h(X)T = h(X)h(X) = (I + X + 1
2X2)(I + X + 1

2X2) = I + 2X + 2X2 +O(X3)

When γ = 1, we obtain the update proposed by Lin et al. (2020) if we ignore the O(β3) term.

St+1 = St + βGt +
β2

2
GtS

−1
t Gt +O(β3)

= (1− β)St + βEq
[
∇2
w`(w)

]
+
β2

2
GS−1

t Gt +O(β3)

where Gt = Eq
[
∇2
w`(w)

]
− St

D.1.3. UNCONSTRAINED M

In Appendix D.1.1, we show that if M is symmetric, the FIM Fη(η0) is non-singular. Unfortunately, if M ∈ Rp×p is
unconstrained, the FIM is indeed singular. In this appendix, we consider the square-root case for the precision. It is easy to
show that the following result is also true for the square-root case of the covariance discussed in Appendix D.2.

To see why the FIM is indeed singular, we will use the vector representation of M as v = vec(M). Let’s consider these two
entries Mij and Mji, where i 6= j. Unlike the symmetric case, Mij and Mji are distinct parameters in the unconstrained
case. In our vector representation, we use vk1 and vk2 to uniquely represent Mij and Mji, respectively, where k1 6= k2 since
i 6= j.

First of all, since v = vec(M), we have the following identity.

−∇v log q(w|η) = vec(−∇M log q(w|η))
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Recall that FIM is block-diagonal with two blocks—the δ block and the M block. To show that the FIM is singular, we
will show that the M block contains two identical columns/rows. For simplicity, we will instead show that the FIM w.r.t. v
contains two identical columns/rows, where v is the vector representation of M.

Let’s consider the following row/column of the FIM for the M block.

− Eq(w|η)

[
∇vk1

(
∇v log q(w|η)

)] ∣∣∣
η=0

=− Eq(w|η)

[
∇vk1 vec

(
∇M log q(w|η)

)] ∣∣∣
η=0

=− Eq(w|η)

∑
l,m

[
∇vk1Mlm

]
∇Mlm

vec
(
∇M log q(w|η)

) ∣∣∣
η=0

=− Eq(w|η)

[∇vk1Mij

]︸ ︷︷ ︸
=1

∇Mij
vec
(
∇M log q(w|η)

) ∣∣∣
η=0

we obtain the last step since vk1 uniquely represents Mij .

Similarly, we can show

−Eq(w|η)

[
∇vk1

(
∇v log q(w|η)

)] ∣∣∣
η=0

= −Eq(w|η)

[∇vk2Mji

]︸ ︷︷ ︸
=1

∇Mjivec
(
∇M log q(w|η)

) ∣∣∣
η=0

According to Eq 29, we have

− Eq(w|η)

[
∇vk1

(
∇v log q(w|η)

)] ∣∣∣
η=0

=− Eq(w|η)

[∇vk1Mij

]︸ ︷︷ ︸
=1

∇Mijvec
(
∇M log q(w|η)

) ∣∣∣
η=0

=− vec
(
Eq(w|η)

[
∇Mij

∇M log q(w|η)
] )∣∣∣

η=0

=vec
(
∇Mij

(
M + MT

))
=vec

(
Iij + Iji

)
Similarly, we have

−Eq(w|η)

[
∇vk2

(
∇v log q(w|η)

)] ∣∣∣
η=0

= vec
(
∇Mji

(
M + MT

))
= vec

(
Iji + Iij

)
Therefore, the FIM of the M block contains two identical columns/rows and it must be singular.

D.2. Gaussian with square-root covariance structure

Let’s consider a global parameterization τ = {µ,Σ}, where Σ is the covariance and µ is the mean. We use the following
Parameterizations:

τ :=
{
µ ∈ Rp, Σ ∈ Sp×p++

}
λ :=

{
µ ∈ Rp, A ∈ Rp×p++

}
η :=

{
δ ∈ Rp, M ∈ Sp×p

}
.
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and maps:

{
µ
Σ

}
= ψ(λ) :=

{
µ

AA>

}
{
µ
A

}
= φλt(η) :=

{
µt + Atδ

AtExp( 1
2M)

}
.

Now, we will use the fact that that M is symmetric. Under this local parametrization, we can re-expressed the negative
logarithm of the Gaussian P.D.F. as below.

− log q(w|η) = log |AtExp( 1
2M)|+ 1

2 (µt + Atδ −w)TA−Tt Exp(−M)A−1
t (µt + Atδ −w) + C

where C is a constant number and λt = {µt,At} is the auxiliary parameterization evaluated at iteration t.

Like Sec D.1, we can show the FIM w.r.t. η is block-diagonal w.r.t. two blocks— the δ block and the M block.

Now, we show that the FIM w.r.t. block δ denoted by Fδ is Iδ when we evaluate it at η0 = {δ0,M0} = 0.

Fδ(η0) = −Eq(w|η)

[
∇2
δ log q(w|η)

] ∣∣∣
η=0

= Eq(w|η)

[
∇δ
(

Exp(−M)A−1
t (µt + Atδ −w)

)] ∣∣∣
η=0

= Eq(w|η)

[
∇δ
(
δ + A−1

t (µt −w)
)] ∣∣∣

η=0

= Iδ

where we use the fact that Exp(−M) = I when M = 0 to move from step 2 to step 3.

Now, we discuss how to compute the FIM w.r.t. M, where we explicitly use the fact that M is symmetric.

Let Z = A−1
t (µt + Atδ −w)(µt + Atδ −w)TA−Tt . By matrix calculus, we have the following expression.

1
2∇Mij

[
(µt + Atδ −w)TA−Tt Exp(−M)A−1

t (µt + Atδ −w)
]

= 1
2∇MijTr

(
ZExp(−M)

)
= 1

2Tr
(
Z∇Mij

(−M + 1
2M2 +O(M3))

)
Therefore, we have

1
2∇M

[
(µt + Atδ −w)TA−Tt Exp(−M)A−1

t (µt + Atδ −w)
]

= − 1
2Z +

1

4
(ZM + MZ) +O(M2)Z

By Lemma 7, we can re-express the gradient w.r.t. M as

−∇M log q(w|η) = 1
2 (I + C(M))︸ ︷︷ ︸
∇M log | 12 Exp(M)|

− 1
2Z +

1

4
(ZM + MZ) +O(M2)Z (40)

Finally, we have the following lemma to compute the FIM w.r.t. M (denoted by FM ) evaluated at η0 = 0.

Lemma 14 −Eq(w|η)

[
∇Mij

∇M log q(w|η)
] ∣∣∣

η=0
= 1

2∇Mij
M. The claim assumes M is symmetric.
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Proof

− Eq(w|η)

[
∇Mij

∇M log q(w|η)
] ∣∣∣

η=0

=Eq(w|η)

[
∇Mij

(
1
2 (I + C(M))− 1

2Z +
1

4
(ZM + MZ) +O(M2)Z

)] ∣∣∣
η=0

(by Eq 40)

=
[
∇Mij

(
1
2M +O(M2)

)] ∣∣∣
η=0

+ 1
2 ∇Mij

C(M)
∣∣∣
η=0︸ ︷︷ ︸

=0

= 1
2∇Mij

(
M
)

+O(M)
∣∣∣
η=0

= 1
2∇Mij

(
M
)

(41)

where we use the fact that Eq(w|η) [Z] = Eq(w|η)

[
A−1
t (µt + Atδ −w)(µt + Atδ −w)TA−Tt

]
= I evaluated at η = 0 to

move from step 2 to step 3.

Therefore, FM (η0) = 1
2IM .

Now, we discuss how to compute the Euclidean gradients. Recall that

µ = µt + Atδ

Σ = AtExp(M)AT
t

Let L := Eq(w) [`(w)]− γH(q(w)). By the chain rule, we have

∇δiL =
[
∇δiµ

]T∇µL+ Tr
( =0︷ ︸︸ ︷[
∇δiΣ

]
∇ΣL)

=
[
∇δiδ

]T
AT
t ∇µL

∇MijL =
[
∇Mijµ

]T︸ ︷︷ ︸
=0

∇µL+ Tr
([
∇MijΣ

]
∇ΣL

)
= Tr

([
∇Mij

Σ
]
∇ΣL

)
= Tr

(
At

[
∇MijExp(M)

]
AT
t ∇ΣL

)
Therefore, when we evaluate the gradient at η0 = {δ0,M0} = 0, we have

∇δiL
∣∣
η=0

=
[
∇δiδ

]T
AT
t ∇µL

∇Mij
L
∣∣
η=0

= Tr
(
At

[
∇Mij

Exp(M)
]
AT
t ∇ΣL

)∣∣
η=0

= Tr
(
At

[
∇Mij

M
]
AT
t ∇ΣL

)
where note that Exp(M) = I + M +O(M2) and its gradient evaluated at η = 0 can be simplified as

∇MijExp(M)
∣∣
η=0

= ∇MijM +O(M)︸ ︷︷ ︸
=0

[
∇MijM

]∣∣
η=0

= ∇MijM

Therefore,

∇δL
∣∣
η=0

= AT
t ∇µL

∇MijL
∣∣
η=0

= AT
t

[
∇ΣL

]
At
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Recall that the FIM w.r.t. δ and M are I and 1
2I, respectively. In other words,

Fη(η0) =

[
Iδ 0
0 1

2IM

]
,

which implies that Assumption 1 is satisfied.

Therefore, the natural gradient w.r.t. δ is ĝδ = AT
t ∇µL. The natural-gradient w.r.t. M as ĝM = 2AT

t

[
∇ΣL

]
At.

Therefore, our update in the auxiliary parameter space is

µt+1 ← µt − βS−1
t gµ

At+1 ← AtExp
(
− βAT

t gΣAt

)
(42)

recall that A = AtExp
(
− β 1

2 ĝM
)
.

Now, we show that Assumption 2 is also satisfied. Since {µ,Σ} = τ = ψ ◦φλt({δ,M}), where λt = {µt,At}, we have[
µ
Σ

]
= ψ ◦ φλt

( [ δ
M

] )
=

[
µt + Atδ

AtExp(M)AT
t

]

It is easy to see that ψ ◦ φλt(η) is C1-smooth w.r.t. η.

Since we have shown Assumption 1 is satisfied, we have Fη(η0) is non-singular. By Lemma 5, we know that both Fτ (τ t)
and the Jacobian matrix∇ητ evaluated at η0 are non-singular. By the inverse function theorem, we know that there exist a
(local) inverse function of ψ ◦ φλt(η) at an open neighborhood of η0, which is also C1-smooth.

Therefore, we know that {µ,Σ} = τ = ψ ◦ φλt({δ,M}) is locally C1-diffeomorphic at an open neighborhood of η0.

D.3. Our NG Updates for the 1-Dim Bayesian Logistic Regression

Now, we consider the following parameterization τ = {µ ∈ R, log σ ∈ R} for a Gaussian distribution q, where σ2 is the
variance and σ > 0. The FIM under this parameterization is

Fτ (τ ) =

[
σ−2 0

0 2

]

The standard NGD using this (global) parameterization τ with step-size β > 0 is

µ← µ− βσ2gµ

log σ ← log σ − β 1
2glog σ = log σ − β 1

2

glog σ︷ ︸︸ ︷
(2σ2gσ2) = log σ − βσ2gσ2

Recall that our local-parameter approach also includes the standard NGD as a special case shown in Appendix F. We can
also similarly show that the standard NGD on parameterization τ = {µ, log σ2} obtain an equivalent update.

For our local-parameter approach, consider the following parameterizations:

τ = {µ ∈ R, σ−2 > 0}
λ = {µ ∈ R, b ∈ R \ {0}}
η = {δ ∈ R,m ∈ R}[
µ
b

]
= φλt(η) =

[
µt + b−1

t δ
bt exp(m)

]
where σ2 = b−2 is the variance.
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Our NGD update (see (38)) under these parameterizations is

µ← µ− βb−2gµ = µ− βσ2gµ

b← b exp(βb−2gσ2) ⇐⇒ log b︸︷︷︸
− log σ

← log b+ βσ2gσ2 , we assume b > 0 for log(b) otherwise we use log(−b)

where we use the exponential map.

Consider another set of parameterizations for our approach:

τ = {µ ∈ R, σ2 > 0}
λ = {µ ∈ R, a ∈ R \ {0}}
η = {δ ∈ R,m ∈ R}[
µ
a

]
= φλt(η) =

[
µt + atδ

at exp( 1
2m)

]
where σ2 = a2 and the red term 1

2 appears since we use the same parameterizations as Glasmachers et al. (2010).

Our NGD update (see (12)) under these parameterizations is

µ← µ− βa2gµ = µ− βσ2gµ

a← a exp(−βa2gσ2) ⇐⇒ log(a)︸ ︷︷ ︸
log σ

← log a− βσ2gσ2 , we assume a > 0 for log(a) otherwise we use log(−a)

Therefore, we can see our NG updates including standard NGD in global parameterization τ = {µ, log σ2} in this univariate
case are all equivalent under these parameterizations and maps. We could also use map h(·) defined in Sec.3.5. As shown
in (16), this map matches the first two order and in practice, there is no difference between these two maps in terms of
performance.

For (Euclidean) gradient descent (GD), it is not invariant to these parameterizations. Let’s consider a unconstrained
parameterization {µ, log σ2}. The GD update under parameterization {µ, log σ2} with step size β > 0 is

µ← µ− βgµ
log σ2 ← log σ2 − βglog σ2 = log σ2 − β(σ2gσ2)

Now, we consider another unconstrained parameterization {µ, log σ}. The GD update with parameterization {µ, log σ} step
size β > 0 is

µ← µ− βgµ
log σ ← log σ − βglog σ = log σ − β(2σ2gσ2) ⇐⇒ log σ2 ← log σ2 − 4β(σ2gσ2)

Clearly, GD is not invariant to the change of parameterizations and its performance depends on the parameterization even in
this simple case.

D.4. Difficulties of the standard NGD involving structured covariance/precision

Before we discuss issues in structured cases, we first revisit cases with full covariance, where we have a Kronecker structure.
This Kronecker structure plays a key role for computational reduction. Unfortunately, this structure could be missing in
structured covariance/precision cases.

D.4.1. CASES WITH FULL COVARIANCE

Let’s consider the following parameterization τ = {µ, vec(Σ)}, where Σ is the covariance and µ is the mean The
negative-log Gaussian distribution is − log q(w|µ, vec(Σ)) = 1

2

[
log |Σ|+ Tr(Σ−1(w − µ)(w − µ)T )

]
. The FIM under
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this parameterization is

Fτ (τ ) = −Eq
[
∇2

τ log q(w|τ )
]

= Eq
[

Σ−1 ∇vec(Σ)Σ
−1(w − µ)

∇Tvec(Σ)Σ
−1(w − µ) 1

2∇
2
vec(Σ)

[
log |Σ|+ Tr(Σ−1(w − µ)(w − µ)T )

]]
=

[
Σ−1

[
∇vec(Σ)Σ

−1
]
Eq [(w − µ)][

∇Tvec(Σ)Σ
−1
]
Eq [(w − µ)] 1

2

([
∇2

vec(Σ) log |Σ|
]

+ Tr(
[
∇2

vec(Σ)Σ
−1
]
Eq
[
(w − µ)(w − µ)T

]
)
)]

=

[
Σ−1 0

0 Hess(f(Σ))

]
=

[
Fµ(τ ) 0

0 Fvec(Σ)(τ )

]
where V0 = Eq

[
(w − µ)(w − µ)T

]
= Σ is considered as a constant,

f(X) := 1
2

[
log |X|+ Tr(X−1V0)

]
Hess(f(Σ)) := ∇2

vec(Σ)f(Σ)

Similarly, let’s consider another parameterization τ = {µ, vec(S)}, where S is the precision. The FIM under this
parameterization is

Fτ (τ ) =

[
Fµ(τ ) 0

0 Fvec(S)(τ )

]
=

[
P 0

0 ∇2
vec(S)f(S−1)

]
where V0 is a constant used in function f(·) defined above and the value of V0 = S−1.

Let’s denote a Euclidean gradient of Eq [`(w)] w.r.t. Σ by GΣ, where `(w) is a model loss function and q(w) :=

N (w|µ,Σ). We also denote the corresponding natural-gradient w.r.t. Σ by ĜΣ.

Since the FIM is block-diagonal, we see the FIM block for the vector form of this precision vec(S) is

Fvec(S)(τ ) := ∇2
vec(S)f(S−1)

Note that this FIM block has a Kronecker form as Fvec(S)(τ ) = 1
2 (S−1 ⊗ S−1) for vec(S). The natural gradient for vec(S)

is

vec(ĜS) = ĝvec(S) =
(
Fvec(S)(τ )

)−1
vec(GS) = 2

(
S⊗ S

)
vec(GS)

where vec(GS) = gvec(S) is the Euclidean gradient w.r.t. vec(S).

Exploiting the Kronecker structure, we can convert this vector form of natural-gradient in a matrix form as

Mat(ĝvec(S)) = Mat(2
(
S⊗ S

)
vec(GS)) = 2S

(
GS

)
S (exploiting the Kronecker structure)

= −2GS−1 (using matrix calculus)
= −2GΣ

= −Eq(w)

[
∇2
w`(w)

]
(using Stein’s identity),

which is the natural-gradient for the precision matrix S.

D.4.2. ISSUE INVOLVING STRUCTURED CASES

In low-rank Gaussian cases, as an example, consider the following parameterization τ = {µ,α} where α :=

[
v
d

]
and

Σ := vvT + Diag(d2). The FIM under this parameterization is

Fτ (τ ) =

[
Σ−1 0

0 Hess(h(α))

]
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where V0 = Σ is considered as a constant, Σ is considered as a function of α, and

h(α) := f(Σ(α))

Hess(h(α)) := ∇2
αf(Σ(α))

There are several issues about NGD for structured Gaussian cases, which lead to a case-by-case derivation for structures.

• One issue is that Fα(τ ) can be singular for an arbitrary structure as shown in Appendix J.1.6.

• A critical issue in that Fα(τ ) = Hess(h(α)) may not have a Kronecker form exploited in full Gaussian cases. Without
the Kronecker from, a computational challenge is how to efficiently compute

ĝα =
(
Fα(τ )

)−1
gα = Hess(h(α))−1gα

• Note that gα depends on GΣ = 1
2Eq

[
∇2
w`(w)

]
. If we want to make use of second-order information via Stein’s

identity, another computational challenge is about how to re-express Hess(h(α))−1gα in terms of GΣ and how to
efficiently compute natural-gradients for α without computing the whole Hessian∇2

w`(w).

E. Wishart distribution with square-root precision structure
Let’s consider a global parameterization τ = {S, n}. The P.D.F. of a Wishart distribution under this parameterization is

q(W|τ ) = exp{− 1
2Tr(SW) +

n− p− 1

2
log |W| − np

2
log 2 +

n

2
log |S| − log Γp(

n

2
)}

where W is a p-by-p positive-definite matrix. The parameterization constraint for Wishart distribution is n > p− 1 and
S ∈ Sp×p++ , where Sp×p++ denotes the set of p-by-p positive-definite matrices.

We start by specifying the parameterization,

τ :=
{
n ∈ R, S ∈ Sp×p++ | n > p− 1

}
,

λ :=
{
b ∈ R, B ∈ Rp×p++

}
,

η :=
{
δ ∈ R, M ∈ Sp×p

}
,

and their respective maps defined at λt := {bt,Bt}{
n
S

}
= ψ(λ) :=

{
2f(b) + p− 1

(2f(b) + p− 1)BB>

}
,{

b
B

}
= φλt(η) :=

{
bt + δ

BtExp (M)

}
.

where f(b) = log(1 + exp(b)) is the soft-plus function.

For simplicity, we assume M is symmetric. We can also exploit structures in the Wishart case.

Under this local parameterization, we have the following result.

− log q(W|η) = (f(bt + δ) + c)Tr(BtExp(M)Exp(M)TBT
t W)− (f(bt + δ)− 1) log |W|

−(f(bt + δ) + c)p log(f(bt + δ) + c)− 2(f(bt + δ) + c)(log |Exp(M)|+ log |Bt|)
+ log Γp(f(bt + δ) + c)

where c = p−1
2 .

Lemma 15 Under this local parametrization η, Fη(η0) is block diagonal with two blocks–the δ block and the M block.
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Proof The cross term at η0 = 0 is

− Eq(W |η)

[
∇δ∇M log q(W|η)

]∣∣
η=0

=∇δ2(f(bt + δ) + c)Eq(w|η)

[
BT
t WBt − I

]∣∣
η=0

=∇δ2(f(bt + δ) + c)
[
I− I

]︸ ︷︷ ︸
=0

∣∣
η=0

=0

where we have the fact that Eq(W |η)

[
W
]∣∣

η=0
= B−Tt B−1

t .

Let Z = BT
t WBt First, we consider the following result.

∇Mij
Tr(BtExp(M)Exp(M)TBT

t W) = ∇Mij
Tr(ZExp(M)Exp(M)T )

= Tr
(
Z
[
∇MijExp(M)

]
Exp(M)T + ZExp(M)∇Mij

[
Exp(M)T

])
By Lemma 8, we obtain a simplified expression.

∇M
[
BtExp(M)Exp(M)TBT

t W
]

= 2Z + (ZMT + MTZ) + 2ZM + ZO(M2)

By Lemma 7, we have

−∇M log |Exp(M)| = −I− C(M) (43)

Now, we can compute the FIM w.r.t. block M as follows. Note that we also numerically verify the following computation
of FIM by Auto-Diff.

− Eq(W |η)

[
∇2
M log q(W|η)

]∣∣
η=0

=Eq(W |η)

[
(f(bt + δ) + c)∇M

[
2Z + (ZMT + MTZ) + 2ZM + ZO(M2)− 2I− 2C(M)

]]∣∣
η=0

=
[
(f(bt + δ) + c)∇M

[
2I + 2MT + 2M− 2I +O(M2)

]]∣∣
η=0
− 2
[
(f(bt + δ) + c)

]
∇M

[
C(M)

]∣∣
η=0︸ ︷︷ ︸

=0

=
[
(f(bt + δ) + c)∇M

[
2MT + 2M +O(M2)

]]∣∣
η=0

=2(f(bt) + c)∇M
(
MT + M

)
where we use the fact that Eq(W |η) [Z] = Eq(W |η)

[
BT
t WBt

]
= I evaluated at η = 0 to move from step 2 to step 3.

When M is symmetric, we have FM (η0) = 4(f(bt) + c)I = 2ntI.

Next, we discuss how to compute the FIM w.r.t. δ. Let z(δ) :=
[
Tr(BtExp(M)Exp(M)TBT

t W)− log |W|−p log(f(bt+

δ) + c)−p−2(log |Exp(M)|+ log |Bt|) +ψp(f(bt+ δ) + c)
]
, where ψp(x) := ∇x log Γp(x) is the multivariate digamma

function.

First, let’s observe that

−∇δ log q(W|η) = z(δ)
exp(bt + δ)

1 + exp(bt + δ)

Similarly, we have

−∇2
δ log q(W|η) = z(δ)

[
∇δ

exp(bt + δ)

1 + exp(bt + δ)

]
+
[
∇δz(δ)

] exp(bt + δ)

1 + exp(bt + δ)
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Let’s consider the first term in the above expression.

z(δ)
[
∇δ

exp(bt + δ)

1 + exp(bt + δ)

]
= −

[
∇δ log q(W|η)

]1 + exp(bt + δ)

exp(bt + δ)

[
∇δ

exp(bt + δ)

1 + exp(bt + δ)

]

Note that η0 = {M0, δ0} = 0. We have the following result.

Eq(W |η)

[
z(δ)

[
∇δ

exp(bt + δ)

1 + exp(bt + δ)

]∣∣
η=0

=− Eq(W |η)

[
∇δ log q(W|η)

]∣∣
η=0︸ ︷︷ ︸

=0 (see Eq (27))

(1 + exp(bt + δ)

exp(bt + δ)

[
∇δ

exp(bt + δ)

1 + exp(bt + δ)

])∣∣
η=0

=0

Now, we consider the second term. Note that

[
∇δz(δ)

]
=

exp(bt + δ)

1 + exp(bt + δ)

(
− p

f(bt + δ) + c
+Dψ,p

(
f(bt + δ) + c

))

where Dψ,p(x) = ∇ψp(x) is the multivariate trigamma function.

Therefore, we can compute the FIM w.r.t. δ as follows.

Fδ(η0) = −Eq(W |η)

[
∇2
δ log q(W|η)

]∣∣
η=0

=
( exp(bt)

1 + exp(bt)

)2(− 2p

2f(bt) + p− 1
+Dψ,p

(
f(bt) +

p− 1

2

))
=
( exp(bt)

1 + exp(bt)

)2(− 2p

nt
+Dψ,p

(nt
2

))

Now, we discuss how to compute the Euclidean gradients. First note that

n := 2(f(bt + δ) +
p− 1

2
)

V−1 := S = 2(f(bt + δ) +
p− 1

2
)BtExp(M)Exp(M)TBT

t

where we will evaluate n and V at δ = 0 and M = 0.

Let L := Eq(w) [`(w)]− γH(q(w)). By the chain rule, we have

∇δL := Tr(
[
∇V L

][
∇δV

]
) +

[
∇nL

][
∇δn

]
∇MijL := Tr(

[
∇V L

][
∇MijV

]
) +

[
∇nL

] =0︷ ︸︸ ︷[
∇Mijn

]
= Tr(

[
∇V L

][
∇MijV

]
)

= −Tr(
[
∇V L

]
V
[
∇Mij

V−1
]
V)
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Note that

∇δL
∣∣
η=0

:= Tr(
[
∇V L

][
∇δV

]
) +

[
∇nL

][
∇δn

]∣∣
η=0

=
−1

2(f(bt) + p−1
2 )2

exp(bt)

1 + exp(bt)
Tr(
[
∇V L

]
B−Tt B−1

t ) +
2 exp(bt)

1 + exp(bt)

[
∇nL

]
=

2 exp(bt)

1 + exp(bt)

( −1

4(f(bt) + p−1
2 )2

Tr(
[
∇V L

]
B−Tt B−1

t ) +
[
∇nL

])
=

2 exp(bt)

1 + exp(bt)

(−1

n2
t

Tr(
[
∇V L

]
B−Tt B−1

t︸ ︷︷ ︸
=ntVt

) +
[
∇nL

])

=
2 exp(bt)

1 + exp(bt)

(
−

Tr(
[
∇V L

]
Vt)

nt
+
[
∇nL

])
∇MijL

∣∣
η=0

:= −Tr(
[
∇V L

]
V
[
∇MijV

−1
]
V)
∣∣
η=0

= −ntTr(
[
∇V L

]
Vt

[
Bt∇Mij

(M + MT )BT
t

]
Vt)

= −ntTr(
[
∇V L

]
n−1
t B−Tt B−1

t︸ ︷︷ ︸
=Vt

[
Bt∇Mij (M + MT )BT

t

]
n−1
t B−Tt B−1

t︸ ︷︷ ︸
=Vt

)

= −n−1
t Tr(

[
∇V L

]
B−Tt

[
∇Mij

(M + MT )
]
B−1
t )

when M is symmetric, we have

∇ML
∣∣
η=0

:= − 2

nt
Tr(B−1

t

[
∇V L

]
B−Tt )

∇δL
∣∣
η=0

:=
2 exp(bt)

1 + exp(bt)

[−Tr(
[
∇V L

]
Vt)

nt
+
[
∇nL

]]
where we use the fact that

[
∇V L

]
is symmetric.

In the symmetric case, the FIM w.r.t. η at η0 is

Fη(η0) =

[
2ntIM 0

0
( exp(bt)

1+exp(bt)

)2(− 2p
nt

+Dψ,p

(
nt
2

))] ,
which implies that Assumption 1 is satisfied.

The natural gradients are

ĝM :=
1

2nt
G = − 1

n2
t

B−1
t

[
∇V L

]
B−Tt

ĝδ :=
2(1 + exp(bt))

exp(bt)

(
− 2p

nt
+Dψ,p

(nt
2

))−1[−Tr(
[
∇V L

]
Vt)

nt
+
[
∇nL

]]
where∇V L and∇nL can be computed by the implicit reparametrization trick in the following section.

Therefore, our update with step-size β is

Bt+1 ← BtExp(0− βĝM ) = BtExp(
β

n2
t

B−1
t

[
∇V L

]
B−Tt )

bt+1 ← bt + (0− βĝδ) = bt −
2β(1 + exp(bt))

exp(bt)

(
− 2p

nt
+Dψ,p

(nt
2

))−1[−Tr(
[
∇V L

]
Vt)

nt
+
[
∇nL

]]
(44)

We can similarly show that Assumption 2 is also satisfied by the inverse function theorem as discussed in Gaussian cases
(see Appendix D.1) since the soft-plus function f(b) and Exp(M) are both C1-smooth.
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E.1. Reparametrizable Gradients

Recall that we can generate a Wishart random variable W due to the Bartlett decomposition as shown below. W =
LΩΩTLT , where L is the lower-triangular Cholesky factor of S−1 = V and Ω is the random lower-triangular matrix
defined according to the Bartlett decomposition as follows

Ω =


c1 0 0 · · · 0
n21 c2 0 · · · 0
n31 n32 c3 · · · 0

...
...

...
. . .

...
nd1 nd2 nd3 · · · cd


where the square of diagonal entry c2i is independently generated from Gamma distribution with shape n−i+1

2 and rate 1
2 ,

and other non-zero entries nij are independently drawn from standard normal distribution.

Let L1 = Eq [`(W)]. According to this sampling scheme, we can clearly see that Wishart distribution is reparametrizable.
The gradient w.r.t. V can be computed as

∇V L1 = Eq(Ω)

[
∇W `(W)∇V

(
LΩΩTLT

)]
Since Gamma distribution is implicitly re-parametrizable, we can also compute the gradient ∇nL1 thanks to the implicit
reparametrization trick (Figurnov et al., 2018; Lin et al., 2019b) for Gamma distribution.

E.2. Riemannian Gradient Descent at U

min
Z∈Sp×p++

`(Z)

Instead of optimizing Z, we optimize U = Z−1. A Riemannian gradient (Hosseini & Sra, 2015; Lin et al., 2020) in the
manifold Sp×p++ is Ĝ = U

(
∇U `

)
U. The RGD update with retraction and step-size β1 is

U← U− β1Ĝ+
β2

1

2
Ĝ(U)−1Ĝ.

Due to matrix calculus, we have ∇Z` = −U
(
∇U `

)
U. We can re-express the RGD update as

U← U + β1∇Z`+
β2

1

2

[
∇Z`]U−1

[
∇Z`].

E.3. Gradients Evaluated at the Mean

Recall that the mean of the Wishart distribution as Z = Eq [W] = nS−1 = nV. We can approximate the Euclidean
gradients as below.

∇VijEq(W ) [`(W)] ≈ Tr
(
∇Z`(Z)∇Vij

(
nV
))

= n∇Zij `(Z)

∇nEq(W ) [`(W)] ≈ Tr
(
∇Z`(Z)∇n

(
nV
))

= Tr(∇Z`(Z)V)

where Z = nV.

Therefore,

GVt ≈ nt∇`(Zt), gnt ≈ Tr [∇`(Zt)Vt]
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F. Standard NGD is a Special Case
The standard NGD in a global parameter τ is a special case of using a local parameter η. For simplicity, we assume τ is
unconstrained and the FIM is non-singular for τ ∈ Ωτ . In this case, we choose the auxiliary parameter λ to be the same as
τ . The map ψ ◦ φλt(η) is chosen to be

τ = ψ(λ) := λ; λ = φλt(η) := λt + η.

Theorem 1 Let Fη and Fτ be the FIM under the local parameter η and the global parameter τ , respectively.

Fη(η0) = Fη(0) = Fτ (τ t)

It is obvious that Assumption 2 is satisfied since the map is linear. Since Fτ (τ t) is non-singular, we know that Assumption
1 is satisfied due to Theorem 1. Since τ = ψ ◦ φλt(η) = λt + η, by the chain rule, we have gη0

=
[
∇ητ

]
gτ t = gτ t

Therefore, the NGD update with step-size β in this local parameterization is

ηnew = 0− βFη(0)−1gη0
= −βFτ (τ t)

−1gτ t

Finally, we re-express the update in the global parameter as:

τ t+1 = ψ ◦ φλt(η
new) = τ t + ηnew = τ t − βFτ (τ t)

−1gτ t

which is exactly the NGD update in τ .

F.1. Proof of theorem 1

Note that τ = ψ ◦ φλt(η) = λt + η = τ t + η. Now, we will show that the FIM under the local parameter η can be
computed as

Fη(0) = −Eq(w|η)

[
∇2

η log q(w|η)
]∣∣

η=0

= −Eq(w|η)

[
∇η

[
∇ητ︸︷︷︸

I

∇τ log q(w|τ )
]]∣∣

η=0

= −Eq(w|η)

[
∇η

[
∇τ log q(w|τ )

]]∣∣
η=0

= −Eq(w|η)

[[
∇ητ

]
∇τ

[
∇τ log q(w|τ )

]]∣∣
η=0

= −Eq(w|η)

[
∇τ

[
∇τ log q(w|τ )

]]∣∣
η=0

= −Eq(w|τ )

[
∇τ

[
∇τ log q(w|τ )

]]∣∣
τ=τ t

= Fτ (τ t)

G. Univariate Minimal Exponential Family Distributions
Using Lemma 5, we can generalize the indirect method of Salimbeni et al. (2018) to compute natural-gradients for univariate
minimal EF distributions using a local parameterization. Salimbeni et al. (2018) only consider the method for multivariate
Gaussian cases using a global parameterization.

Note that the main issue to perform the standard NGD update in the global parameter space is that the NGD update in τ
may violate a parameter constraint. However, we can perform a NGD update in an unconstrained space (e.g., the auxiliary
space of λ ) if the natural gradient computation in the space of unconstrained space of λ is simple. Salimbeni et al. (2018)
suggest using the indirect method to compute natural gradients via Auto-Differentiation (Auto-Diff).

For univariate minimal EF distributions, we can also use this indirect method to compute natural gradients. We consider a
class of univariate EF distributions. We make the following assumptions for the class of distributions: (A) Each distribution
in the class contains separable natural parameter blocks so that each parameter constraint only appears once in a block and
each block only contains a scalar parameter. (B) The natural gradient w.r.t. the natural parameterization is easy to compute.
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We choose the natural parameterization as a global parameterization τ with K blocks: q(w|τ ) = B(w) exp(〈T(w), τ 〉 −
A(τ )), where B(w) is the base measure, A(τ ) is the log partition function16, and T(w) is the sufficient statistics. A
common parameter constraint in τ is the scalar positivity constraint denoted by S1

++. For simplicity, we assume S1
++

is the only parameter constraint. Common univariate EF distributions such as Bernoulli, exponential, Pareto, Weibull,
Laplace, Wald, univariate Gaussian, Beta, and Gamma distribution all satisfy Assumption A. Assumption B is also valid
for these univariate EF distributions since we can either compute the natural gradient ĝτ t via the Euclidean gradient w.r.t.
the expectation parameter (Khan & Lin, 2017) or use the direct natural gradient computation when K is small (K < 3 in
common cases).

Given a distribution in the class, we consider the following parameterizations:

τ :=

 τ1 ∈ S1
++

· · ·
τK ∈ S1

++

 , λ :=

λ1

· · ·
λK

 ∈ RK , η :=

 η1

· · ·
ηK

 ∈ RK

and maps:

τ = ψ(λ) :=

 f(λ1)
· · ·

f(λK)

 , λ = φλt(η) := λt + η =

 λ1,t + η1

· · ·
λK,t + ηK


where f(b) := log(1 + exp(b)) is the soft-plus function17 and τ is the natural parameterization.

In this case, we can easily compute the Jacobian, where∇f(b) := exp(b)
1+exp(b) .

∇ητ
∣∣∣
η=η0=0

= Diag
(∇f(λ1,t)

· · ·
∇f(λK,t)

)

By Lemma 5, we have

ĝη0
=
[
∇ητ

]−T
ĝτ t

∣∣∣
η=0

where natural-gradient ĝτ t can be computed via the Euclidean gradient w.r.t. its expectation parameter or via direct inverse
FIM computation as below

ĝτ t =
(
Fτ (τ t)

)−1
gτ t

=
(
∇τm

)−1
gτ t

= gm

where m = Eq [T(w)] = ∇τA(τ ) is the expectation parameter and Fτ (τ t) = ∇2
τA(τ t) is the FIM which is non-singular

due to the minimality of the distribution.

Our update in the auxiliary parameter space is

λt+1 ← λt + (−βĝη0
) (45)

Since λ = φλt(η) = λt + η, we can easily show that ĝη0
= ĝλt . In other words, our update recovers the standard NGD

update in an unconstrained space of λ.

λt+1 ← λt − βĝλt ,

which recovers the method proposed by Salimbeni et al. (2018) in multivariate Gaussian cases.

Therefore, by choosing λ = φλt(η) = λt + η, Lemma 5 generalizes the indirect method proposed by Salimbeni et al.
(2018).

16 exp(·) is the scalar exponential function and do not confuse it with the matrix exponential function Exp(·). A(τ ) is C2-smooth
w.r.t. τ as shown in Johansen (1979).

17We use the soft-plus function instead of the scalar exponential map for numerical stability.
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G.1. Discussion about the Indirect Method

Salimbeni et al. (2018) propose an indirect method to compute natural-gradients via Auto-Differentiation (Auto-Diff) for
multivariate Gaussian with full covariance structure via a unconstrained parameter transform. We have shown that this
method is a special case of our approach by using a particular local parameterization and have extended it to univariate
minimal EF distributions by using Lemma 5.

The indirect approach requires us to first define one parameterization τ so that natural-gradient ĝτ is easy to compute under
this parameterization. To compute natural-gradient in a new parameterization η, the indirect method avoids computing
the FIM Fη(η) by computing the Jacobian

[
∇τη

]
instead. Unfortunately, the Jacobian matrix computation can be very

complicated when it comes to a matrix parameter. Salimbeni et al. (2018) suggest using Auto-Diff to track non-zero terms
in the Jacobian matrix

[
∇τη

]
(e.g., η can be a Cholesky factor of S and τ = S is the precision matrix in Gaussian cases

with a constant mean) and to perform the Jacobian-vector product as shown in Lemma 5.

However, this indirect method has several limitations when it comes to a structured matrix parameter η such as structured
Gaussian and Wishart cases.

• The parameterization transform used in this indirect approach often requires the Jacobian matrix
[
∇τη

]
to be square

and invertible (see Lemma 5). For a new structured parameter η, the Jacobian between τ and η can be a non-square
matrix and therefore the classical parameter transform rule fails (e.g., Lemma 5). Furthermore, it is difficult to
automatically verify whether the Jacobian is invertible or not even when the Jacobian is a square matrix.

• The existing Auto-Diff implementation of the Jacobian-vector product requires us to compute a dense natural-gradient
ĝτ (e.g., gΣ has to compute the Hessian matrix in Gaussian cases with a constant mean) beforehand, which is not
efficient for a sparse structured parameter η.

• For a structured Gaussian NGD with second-order information, the Auto-Diff system has to first record non-zero entries
in the Jacobian matrix from a structured parameterization η to the precision τ = S and then query the corresponding
entries of natural gradient ĝτ for the precision (which can be expressed in terms of GS−1 = 1

2Eq
[
∇2
w`(w)

]
via Stein’s

identity (Khan et al., 2018)). Since Auto-Diff does not know how to organize the required entries in GS−1 in a compact
and structural way, Auto-Diff may perform too many Hessian-vector products to obtain the entries in GS−1 even when
we allow Auto-Diff to compute ĝτ on the fly.

• It is also unclear whether the Jacobian matrix
[
∇τη

]
is sparse even when the parameter η is sparse.

• As demonstrated by Lin et al. (2020), the indirect method via Auto-Diff could be inefficient and numerically unstable
for matrix parameters such as multivariate Gaussian cases with full precision τ = S.

The flexibility of our approach allows us to freely use either the indirect method (see Eq (26)) or the direct method (Eq
(7)) to compute natural gradients. By using a proper local parameterization, we can directly compute the natural-gradient
Fη(η0)−1ĝη0

without computing the Jacobian matrix. As shown in the main text, our update recovers the direct method
suggested by Lin et al. (2020). Moreover, we can easily exploit a sparse structure in a matrix parameter as discussed in Sec.
4 of the main text. Our structured updates also reduce the number of Hessian-vector products.

The indirect method is also related to the Riemannian trivialization method (Lezcano Casado, 2019), where the unconstrained
transform is considered as a push-forward map. In the trivialization method, the authors suggest doing a unconstrained
transform and then performing Euclidean gradient descent in the trivialized (unconstrained) space. Unfortunately, the
update via a trivialization (e.g., Euclidean gradient descent in a unconstrained space) can converge very slowly as shown in
our experiments (see Figure 3a in the main text). In variational inference, the Riemannian trivialization method is known
as the black-box variational inference (Ranganath et al., 2014). Khan & Lin (2017); Lin et al. (2019a) demonstrate that
natural-gradient variational inference converges faster than block-box variational inference.

The Riemannian trivialization method is different from the natural-gradient transform method suggested by Salimbeni et al.
(2018). In the method of Salimbeni et al. (2018), the authors suggest using a unconstrained global parameterization and then
performing natural gradient descent in the unconstrained space. As shown in this paper, our approach contains the method
of Salimbeni et al. (2018) as a special case.
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H. Finite Mixture of Gaussians
In this appendix, we consider the following Gaussian mixture distribution q with K components.

q(w|τ ) =
1

K

K∑
k=1

N (w|µk,S
−1
k )

where τ = {µk,Sk}K=1
k=1 and Sk is the precision matrix of the k-th Gaussian component.

As discussed in Lin et al. (2019a), the FIM of q(w|η) can be singular. Therefore, Assumption 1 is not satisfied.

We define λzk = log( πkπK ) = 0, where πk = 1
K . However, we can consider the Gaussian mixture as the marginal distribution

of the following joint distribution such that
∫
q(w, z|τ )dz = q(w|τ ).

q(w, z|τ ) = q(z|λz)q(w|z, τ )

q(z|λz) = exp(

K−1∑
k=1

I(z = k)λzk −Az(λz))

q(w|z, τ ) = exp
( K∑
k=1

I(z = k)
[
− 1

2wTSkw + wTSkµk
]
−Aw(τ , z)

)
where B(µk,Sk) = 1

2

[
µTk Skµk − log |Sk/(2π)|

]
, Aw(τ , z) =

∑K
k=1 I(z = k)B(µk,Sk), Az(λz) = log(1 +∑K−1

k=1 exp(λzk)).

As discussed in Lin et al. (2019a), the FIM of the joint distribution q(w, z|τ ) is not singular. To solve a variational inference
problem, Lin et al. (2019a) consider the following problem with γ = 1 in Eq (1).

min
q(w,z)∈Q

Eq(w,z) [`(w)]− γH(q(w)),

where we use the entropy of the marginal distribution q(w). This approach has been studied by Agakov & Barber (2004).

This formalization allows us to relax Assumption 1 and use the joint FIM instead. Lin et al. (2019a) further show that the
joint FIM is block-diagonal for each component.

Therefore, we use the following parameterizations:

τ :=
{
µk ∈ Rp, Sk ∈ Sp×p++

}K
k=1

λ :=
{
µk ∈ Rp, Bk ∈ Rp×p++

}K
k=1

η :=
{
δk ∈ Rp, Mk ∈ Sp×p

}K
k=1

.

and maps are defined as

ψ(λ) = {ψk(λk)}Kk=1

φλt(η) =
{
φk,λt(ηk)

}K
k=1{

µk
Sk

}
= ψk(λk) :=

{
µk

BkB
>
k

}
{
µk
Bk

}
= φk,λt(ηk) :=

{
µk,t + B−Tk,t δk
Bk,th(Mk)

}
.

where Bk,t denotes the value of Bk at iteration t and λt =
{
µk,t,Bk,t

}K
k=1

.

We can show that Assumption 2 is also satisfied as discussed in Gaussian cases (see Appendix D.1).

Natural gradients w.r.t. δk and Mk can be computed as below, which is similar to (36).

ĝδk =
1

πk
B−1
k,t∇µkL, ĝMk

= − 1

πk
B−1
k,t

[
∇ΣkL

]
B−Tk,t (46)
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where L := Eq(w,z) [`(w)]− γH(q(w)) and πk = 1
K .

Therefore, our update for the k Gaussian component is

µk,t+1 ← µk,t −
β

πk
B−Tk,t B−1

k,t∇µkL

Bk,t+1 ← Bk,th(
β

πk
B−1
k,t

[
∇ΣkL

]
B−Tk,t ) (47)

where πk = 1
K .

Euclidean gradients ∇µkL and ∇ΣkL can be computed as suggested by Lin et al. (2019a), where we use second-order
information to compute ∇ΣkL. Lin et al. (2020) also show that we can compute ∇ΣkL by first-order information if
second-order information is not available.

∇µkL = Eq(w)[πkδk∇wb(w)]

∇ΣkL = 1
2Eq(w)

[
πkδk∇2

wb(w)
]

= 1
2Eq(w)

[
πkδkSk(w − µk)∇Twb(w)

]
where δk := N (w|µk,Sk)/

∑K
c=1 πcN (w|µc,Sc), b(w) := `(w) + γ log q(w|τ ).

I. Matrix Gaussian for Matrix Weights in Deep Learning
In this appendix, we consider a matrix Gaussian for layer-wise matrix weights in a neural network, where a precision form
will be used.

MN (W|E,S−1
U ,S−1

V ) := N (vec(W)|vec(E),S−1)

where the precision S = SV ⊗ SU has a Kronecker form, W ∈ Rd×p is a matrix, SV ∈ Sp×p++ , SU ∈ Sd×d++ , and ⊗ denotes
the Kronecker product.

In this case, Assumption 1 is not satisfied since the FIM of a matrix Gaussian is singular due to the cross terms between
SU and SV in the FIM. However, a block-diagonal approximation for the FIM is non-singular. This approximation has
been used in many works such as Tran et al. (2020); Glasmachers et al. (2010); Lin et al. (2019a). Therefore, we relax
Assumption 1 and use the block-diagonal approximation of the FIM instead. The update is known as simultaneous block
coordinate (natural-gradient) descent in optimization.

We consider the following optimization problem for NNs with L2 regularization.

min
τ∈Ωτ

Eq(W|τ )

[
`(W) +

α

2
Tr(WTW)

]
− γH(q(W|τ ))

where q(W) =
∏
l q(Wl) and for each layer l, q(Wl) is a matrix Gaussian distribution with precision matrix Sl =

Sl,V ⊗ Sl,U .

For simplicity, we only consider one layer and drop the layer index l.

Let’s consider a global parameterization τ = {E,SU ,SV }We use the following parameterizations:

τ :=
{

E ∈ Rd×p, SV ∈ Sp×p++ , SU ∈ Sd×d++

}
λ :=

{
E ∈ Rd×p, A ∈ Rp×p++ , B ∈ Rd×d++

}
η :=

{
∆ ∈ Rd×p, M ∈ Sp×p, N ∈ Sd×d

}
.
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and maps:  E
SV
SU

 = ψ(λ) :=


E

AA>

BB>

 E
A
B

 = φλt(η) :=

 Et + B−Tt ∆A−1
t

Ath(M)
Bth(N)

 .

Thanks to this parameterization, it is also easy to generate samples from a matrix GaussianMN (W|E,S−1
U ,S−1

V ) as

W = E + B−TMat(z)A−1

where z ∼ N (z|0, I).

The block-diagonal approximation of the FIM under the local parameterization η is given below. Note that we also
numerically verify the following computation of FIM by Auto-Diff.

Fη(η0) =

I∆ 0 0
0 2dIM 0
0 0 2pIN

 (48)

where the red terms are set to be zero due to the block-diagonal approximation while the black terms are obtained from the
exact FIM.

Thanks to the block-diagonal approximation of the FIM, we can show that Assumption 2 is satisfied for each parameter
block by holding the remaining blocks fixed.

Now, we discuss how to compute Euclidean gradients w.r.t. local parameterization η. Since each matrix Gaussian
MN (W|E,S−1

U ,S−1
V ) can be re-expressed as a vector Gaussian N (w|µ,S−1), The Euclidean gradients w.r.t. global

parameter τ vec = {µ,S} of the vector Gaussian are

gµ = αµ+ EN (w|τ vec) [∇w`(w)]

gΣ = 1
2

(
αIΣ + EN (w|τ vec)

[
∇2
w`(w)

]
− γS

)
where w = vec(W), µ = vec(E), Σ = S−1 = S−1

V ⊗ S−1
U .

To avoid computing the Hessian ∇2
w`(w), we use the per-example Gauss-Newton approximation (Graves, 2011; Osawa

et al., 2019a) as

gΣ ≈ 1
2

(
αIΣ + EN (w|τ vec)

[
∇w`(w)∇Tw`(w)

]
− γS

)
Recall that

E = Et + B−Tt ∆A−1
t

SV = Ath(M)h(M)TAT
t

SU = Bth(N)h(N)TBT
t

Let’s denote g = ∇w`(w) and G = ∇W `(W), where w = vec(W) and g = vec(G). By matrix calculus, we have

g∆

∣∣∣
η=0

= B−1
t Mat(gµ)A−Tt = B−1

t

(
αE + Eq(W|τ ) [∇W `(W)]

)
A−Tt = B−1

t

(
αE + Eq(W|τ ) [G]

)
A−Tt

Now, we discuss how to compute a Euclidean gradient w.r.t. M. By the chain rule, we have

gMij

∣∣∣
η=0

= Tr
([
∇Mij

Σ
]
gΣ

)
= −2Tr

([
(A−Tt

[
∇Mij

M
]
A−1
t )⊗ (B−Tt B−1

t )
]
gΣ

)
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where Mij is the entry of M at position (i, j).

By the Gauss-Newton approximation of the Hessian, we have

gMij

∣∣∣
η=0
≈ −Tr

([
(A−Tt

[
∇MijM

]
A−1
t )⊗ (B−Tt B−1

t )
](
αIΣ + EN (w|τ vec)

[
∇w`(w)∇Tw`(w)

]
− γSt

))
Let’s consider the first term in the approximated gΣ.

−Tr
([

(A−Tt
[
∇MijM

]
A−1
t )⊗ (B−Tt B−1

t )
]
αIΣ

)
= −αTr(B−Tt B−1

t )Tr(A−1A−T
[
∇MijM

]
)

Now, we consider the second term in the approximated gΣ.

− Tr
([

(A−Tt
[
∇Mij

M
]
A−1
t )⊗ (B−Tt B−1

t )
]
EN (w|τ vec)

[
∇w`(w)∇Tw`(w)

] )
=− EN (w|τ vec)

[
Tr
(
gT
[
(A−Tt

[
∇MijM

]
A−1
t )⊗ (B−Tt B−1

t )
]
g
)]

=− Eq(w|τ )

[
Tr
(
vec(G)T

[
(A−Tt

[
∇MijM

]
A−1
t )⊗ (B−Tt B−1

t )
]
vec(G)

)]
Using the identity (BT ⊗A)vec(X) = vec(AXB), we can simplify the above expression as

− Tr
([

(A−Tt
[
∇Mij

M
]
A−1
t )⊗ (B−Tt B−1

t )
]
EN (w|τ vec)

[
∇w`(w)∇Tw`(w)

] )
=− Eq(w|τ )

[
Tr
(
vec(G)T

[
(A−Tt

[
∇MijM

]
A−1
t )⊗ (B−Tt B−1

t )
]
vec(G)

)]
=− Eq(w|τ )

[
Tr
(
vec(G)Tvec

[
(B−Tt B−1

t )G(A−Tt
[
∇MijM

T
]
A−1
t )
])]

=− Eq(w|τ )

[
Tr
(
GT (B−Tt B−1

t )G(A−Tt
[
∇MijM

T
]
A−1
t )
)]

=− Eq(w|τ )

[
Tr
(
A−1
t GTB−Tt B−1

t GA−Tt
[
∇MijM

T
])]

=− Eq(w|τ )

[
Tr
(
A−1
t GTB−Tt B−1

t GA−Tt
[
∇MijM

])]
( since Tr(CD) = Tr(CTDT ))

where C := A−1
t GTB−Tt B−1

t GA−Tt , D := ∇Mij
MT and CT = C.

Finally, we consider the last term in the approximated gΣ.

− Tr
([

(A−Tt
[
∇Mij

M
]
A−1
t )⊗ (B−Tt B−1

t )
]
(−γSt)

)
=γTr

([
(A−Tt

[
∇MijM

]
A−1
t )⊗ (B−Tt B−1

t )
]
St
)

=γTr
([

(A−Tt
[
∇Mij

M
]
A−1
t )⊗ (B−Tt B−1

t )
][

(AtA
T
t )⊗ (BtB

T
t )
])

=γTr
([

(A−Tt
[
∇Mij

M
]
A−1
t (AtA

T
t ))⊗ (B−Tt B−1

t (BtB
T
t )
])

=γTr
([

(A−Tt
[
∇MijM

]
AT
t )⊗ IB

])
=γTr

([
(A−Tt

[
∇Mij

M
]
AT
t )
)
Tr
(
IB
)

=γdTr
([
∇Mij

M
])

Therefore, we have the following expression due to the Gauss-Newton approximation.

gMij

∣∣∣
η=0
≈ −αTr(B−Tt B−1

t )Tr(A−1A−T
[
∇Mij

M
]
)− Eq(w|τ )

[
Tr
(
A−1
t GTB−Tt B−1

t GA−Tt
[
∇MijM

])]
+ γdTr

([
∇MijM

])
We can re-express it in a matrix form as

gM

∣∣∣
η=0
≈ −αTr(B−Tt B−1

t )A−1
t A−Tt − Eq(w|τ )

[
A−1
t GTB−Tt B−1

t GA−Tt

]
+ γdIM
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Similarly, we can show

gN

∣∣∣
η=0
≈ −αTr(A−Tt A−1

t )B−1B−T − Eq(w|τ )

[
B−1
t GA−Tt A−1

t GTB−Tt

]
+ γpIN

Our update in terms of the auxiliary parameterization is

Et+1 ← Et − β

S−1

U︷ ︸︸ ︷
B−Tt B−1

t

[
αEt + Eq(W|τ t) [G]

)] S−1

V︷ ︸︸ ︷
A−Tt A−1

t

At+1 ← Ath
[ β
2d

{
−dγIA + αTr((BtB

T
t )−1)A−1

t A−Tt + Eq(w|τ t)
[
A−1
t GT (BtB

T
t )−1GA−Tt

]} ]
Bt+1 ← Bth

[ β
2p

{
−pγIB︸ ︷︷ ︸

from the entropy

+αTr((AtA
T
t )−1)B−1

t B−Tt︸ ︷︷ ︸
from the regularization

+Eq(w|τ t)
[
B−1
t G(AtA

T
t )−1GTB−Tt

]
︸ ︷︷ ︸

from the NN loss

}]
(49)

By adding a natural momentum term Z (Khan et al., 2018) and an exponential weighted step-size βt =
1−ct2
1−ct1

, we can obtain
the following update for DNN with the Gauss-Newton approximation.

Zt ← (1− c1)
[
αEt + Eq(W|τ t) [G]

)]
+ c1Zt−1

Et+1 ← Et − βtB−Tt B−1
t ZtA

−T
t A−1

t

At+1 ← Ath
[ βt
2d

{
−dγIA + αTr((BtB

T
t )−1)A−1

t A−Tt + Eq(w|τ t)
[
A−1
t GT (BtB

T
t )−1GA−Tt

]} ]
Bt+1 ← Bth

[βt
2p

{
−pγIB + αTr((AtA

T
t )−1)B−1

t B−Tt + Eq(w|τ t)
[
B−1
t G(AtA

T
t )−1GTB−Tt

]} ]
(50)

where G = ∇W `(W), c1 and c2 are fixed to 0.9 and 0.999, respectively, as the same used in the Adam optimizer.

The time complexity for our update above is O(d3 + p3), which is the same as noisy-KFAC (Zhang et al., 2018). In our
approach, the update for A (SV ) and B (SU ) blocks use the exact FIM block. It can be shown that the corresponding
updates for SV = AAT and SU = BBT blocks also use the exact FIM block and our update ensures that SV and SU are
always non-singular. Our approach is different from noisy-KFAC (Zhang et al., 2018). In noisy-KFAC, the FIM of SV and
SU are approximated by KFAC. The authors have to use additional damping to ensure that SV and SU are non-singular.

I.1. Complexity Reduction

A nice property of our update in (50) is that we can easily incorporate extra structures to reduce the time and space
complexity. As shown in Appendix J, we can further exploit group-structures both in A and B so that the precision
S = SV ⊗ SU = (AAT ) ⊗ (BBT ) = (A ⊗ B)(A ⊗ B)T has a low-rank Kronecker structure to further reduce the
computational complexity. Note that the Kronecker product of two matrix groups such as A⊗B is also a matrix group
closed under the matrix multiplication. Therefore, A⊗B is a Kronecker product group when A and B are matrix groups.

Recall that the time complexity of Adam for a matrix weight W ∈ Rd×p is linear O(dp). If a block triangular group
structure (see Appendix J.1) is exploited in both A and B, the time complexity of our update reduces to O(kdp) from
O(d3 + p3), where 0 < k < min(d, p) is a sparsity parameter for the group defined in Appendix J. In this case, our update
has a linear time complexity like Adam, which is much faster than noisy-KFAC. Although we present the update based on
the Gauss-Newton approximation of the Hessian, our update with the triangular group structure can be easily applied to the
case with Hessian information if each Hessian has a Kronecker form such as a example about layer-wise weight matrices in
a NN discussed in the next section.

Notice that our update can be automatically parallelized by Auto-Diff since our update only use basic linear algebra
operations (i.e., matrix multiplication, low-rank matrix solve, and the Einstein summation) , which is more efficient than
Newton-CG type updates, where a sequential conjugate-gradient (CG) step is used at each iteration.

I.2. A Layer-wise Hessian and its Approximation

We consider the following loss function parameterized by a MLP/CNN evaluated at one data point. We will show that a
layer-wise Hessian of matrix weights has a Kronecker form. This result has been exploited in Dangel et al. (2020); Chen
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et al. (2019). For simplicity, we only consider the matrix weight W at the input layer of a MLP. It is easy to extend this
computation to other layers and CNN.

`(W) = c(f(Wx))

where x is a single data point with shape p× 1, c(·) is a function that returns a scalar output, and W is the matrix weight at
the input layer with shape d× p.

We assume f(z) is an element-wise C2-smooth activation function (e.g., the tanh function). Let u := Wx and v :=
f(u) = f(Wx)

By the chain rule, it is easy to check that

∇W `(W) =
[
∇v`

][
∇Wv]

=
[ [
∇v`

]︸ ︷︷ ︸
d×1

� f ′(u)︸ ︷︷ ︸
d×1

]
xT︸︷︷︸
1×p

where � denotes the element-wise product.

Let Wi,: denotes the i-th row of the matrix W. We know that the shape of Wi,: is 1× p.

Now, we can show that the Hessian is a Kronecker product.

∇Wi,:∇Wk,:
`(W) = I(i == k)

[
∇vi`

]
f ′′(ui)xxT +

[
∇vi∇vj `

]
f ′(uk)f ′(ui)xxT

=
(
I(i == k)

[
∇vi`

]
f ′′(ui) +

[
∇vi∇vk`

]
f ′(uk)f ′(ui)

)
︸ ︷︷ ︸

a scalar

xxT

We assume vec uses the row-major order. Therefore, if we use w = vec(W) to denote a vector representation of W, the
Hessian w.r.t. w = vec(W) with shape dp× 1 is

∇2
w` = A︸︷︷︸

d×d

⊗︸︷︷︸
Kronecker Product

(xxT )︸ ︷︷ ︸
p×p

where A is a symmetric matrix with entry Aik = I(i == k)
[
∇vi`

]
f ′′(ui) +

[
∇vi∇vk`

]
f ′(uk)f ′(ui).

Now, we discuss the Gauss-Newton approximation of the Hessian. Note that

∇Wi,:
`(W) =

[[
∇vi`

]
f ′(ui)

]︸ ︷︷ ︸
a scalar

xT

where � denotes the element-wise product.

∇TWk,:
`(W)

[
∇Wi,:

`(W)
]

=
[
∇vi`

]
f ′(ui)

[
∇vk`

]
f ′(uk)︸ ︷︷ ︸

a scalar

xxT

Therefore, the Gauss-Newton approximation in term of w can be re-expressed as

B⊗
(
xxT

)
where B is a symmetric matrix with entry Bik =

[
∇vi`∇vk`

]
f ′(uk)f ′(ui).

From the above expression, we can clearly see that the Gauss-Newton approximation ignores diagonal terms involving
f ′′(ui) and approximates

[
∇vi∇vk`

]
by
[
∇vi`∇vk`

]
.

J. Group Structures
In this section, we use the Gaussian example with square-root precision form to illustrate group structures.
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J.1. Block Triangular Group

J.1.1. PROOF OF LEMMA 1

Proof Now, we show that Bup(k) is a matrix group.

Bup(k) =
{[BA BB

0 BD

] ∣∣∣BA ∈ Rk×k++ , BD ∈ Dd0×d0++

}
(0) It is clear that matrix multiplication is an associate product.

(1) It is obvious that I =

[
IA 0
0 ID

]
∈ Bup(k) since IA ∈ Rk×k++ and ID ∈ Dd0×d0++ .

(2) For any B ∈ Bup(k), we have

B−1 =

[
B−1
A −B−1

A BBB−1
D

0 B−1
D

]
∈ Bup(k)

since B−1
A ∈ R

k×k
++ and B−1

D ∈ D
d0×d0
++ .

(3) For any B,C ∈ Bup(k), the matrix product is

BC =

[
BA BB

0 BD

] [
CA CB

0 CD

]
=

[
BACA BACB + BBCD

0 BDCD

]
∈ Bup(k)

since BACA ∈ Rk×k++ and BDCD ∈ Dd0×d0++ .

J.1.2. PROOF OF LEMMA 2

Proof For any M ∈Mup(k), we have

M =

[
MA MB

0 MD

]
,

where MA is symmetric and MD is diagonal. Therefore,

h(M) = I + M + 1
2M2

=

[
IA + MA MB

0 ID + MD

]
+ 1

2

[
MA MB

0 MD

] [
MA MB

0 MD

]
=

[
IA + MA MB

0 ID + MD

]
+ 1

2

[
M2

A MAMB + MBMD

0 M2
D

]
=

[
IA + MA + 1

2M2
A MB + 1

2 (MAMB + MBMD)

0 ID + MD + 1
2M2

D

]
∈ Bup(k)

Since MA is symmetric, we have IA + MA + 1
2M2

A = 1
2

(
IA + (IA + MA)(IA + MA)T

)
� 0 is invertible and symmetric.

Similarly, ID + MD + 1
2M2

D is diagonal and invertible.

Thus, h(M) ∈ Bup(k). Moreover, the determinant |h(M)| > 0

J.1.3. PROOF OF LEMMA 3

Proof we consider the following parametrization for the Gaussian N (w|µ,S−1), where the precision S belongs to a
sub-manifold of Sp×p++ , auxiliary parameter B belongs to Bup(k), and local parameter M belongs toMup(k),

τ :=
{
µ ∈ Rp, S = BBT ∈ Sp×p++ | B ∈ Bup(k)

}
,

λ := {µ ∈ Rp, B ∈ Bup(k)} ,
η := {δ ∈ Rp, M ∈Mup(k)} .
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The map ψ ◦ φλt(η) at λt := {µt,Bt} is chosen as below, which is the same as (23)

[
µ
S

]
= ψ ◦ φλt

( [ δ
M

] )
=

[
µt + B−Tt δ

Bth(M)h(M)TBT
t

]
As shown in Appendix J.1.4, the FIM is non-singular. Therefore, Assumption 1 is satisfied.

In Appendix J.1.4, we show that M can be decomposed as

M = Mdiag + Mup + MT
up + Masym

Let Iup, Idiag, Iasym be the index set of the non-zero entries of Mup, Mdiag, and Masym respectively.

Now, we can show that Assumption 2 is also satisfied. This proof is similar to the one at (37). The key idea is to use an
effective representation to represent τ and η.

Now, let’s consider the global matrix parameter. Let S1 = {BBT |B ∈ Bup(k)}, which represents the parameter space of
the global matrix parameter. Consider another set

S2 = {UUT |U =

[
UA UB

0 UD

]
}, (51)

where UA ∈ Rk×k is an upper-triangular and invertible matrix, UD is an invertible and diagonal matrix and U has positive
diagonal entries. We will first show that S1 = S2 and therefore, S2 represents the sub-manifold. The key reason is that U
can be used as a global parameter while B does not. Recall that in B is used as an auxiliary parameter, which could be
over-parameterized. Note that a global parameter should have the same degree of freedoms as a local parameter. It is easy to
verify that S2 andMup(k) both have (k + 1)k/2 + (p− k)k + (p− k) = (k + 1)(p− k/2) degrees of freedom.

We will see that U is indeed the output of the upper-triangular version of the Cholesky method (Lin, 2021), denoted by
CholUP. In other words, if S = U1U

T
1 ∈ S2 and U2 = CholUP(S), we will show U1 = U2. This Cholesky algorithm

takes a positive-definite matrix X as an input and returns an upper-triangular matrix W with positive diagonal entries so
that X = WWT (e.g., W = CholUP(X)). Like the original Cholesky method, this method gives a unique decomposition
and is C1-smooth w.r.t. its input X when X is positive-definite.

Now, We show that S1 = S2. It is obvious that S2 ⊂ S1 since by construction U ∈ Bup(k). Now, we show that S1 ⊂ S2.
Consider any S ∈ S1, it can be expressed as

S =

[
BA BB

0 BD

] [
BA BB

0 BD

]T
=

[
BABT

A + BBBT
B BBBD

BDBT
B B2

D

]

Since BD is an invertible and diagonal matrix, d := abs(diag(BD))� diag−1(BD) is a vector with entries whose value is
either 1 or -1. Let UA := CholUP(BABT

A) be an upper-triangular matrix as an output by the upper-triangular version of
the Cholesky method. Consider the following upper-triangular matrix U

U =

[
UA BBDiag(d−1)
0 Diag(d)BD

]
We can show that this U has positive diagonal entries. Moreover, UUT ∈ S2. Note that BD is a diagonal matrix. We can
show UUT = S since

UUT =



BABT

A︷ ︸︸ ︷
UAUT

A +BB

I︷ ︸︸ ︷
Diag(d−2) BT

B BBBD

Diag(d)BDDiag(d−1)︸ ︷︷ ︸
BD

BT
B Diag(d)BDDiag(d)BD︸ ︷︷ ︸

B2

D

 = S ∈ S2
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Therefore, S1 = S2 and we now show that U can be used as a global parameterization to represent the sub-manifold. Since
S1 = S2, we can use S2 to denote the sub-manifold. Furthermore, U is indeed an upper-triangular and invertible matrix with
positive diagonal entries, which implies that U is a (upper-triangular) Cholesky factor of S ∈ S2. Note that the Cholesky
decomposition gives a unique representation. Therefore, for any S = UUT ∈ S2, we have U2 = CholUP(S).

For the local parameter, since M ∈Mup(k), we have

M =

[
MA MB

0 MD

]
Since MA is symmetric, we can consider the upper-triangular part of MA, denoted by triu(MA). Therefore, the upper-
triangular part of M is

triu(M) =

[
triu(MA) MB

0 MD

]
Consider the vector representation of the non-zero entries of triu(M) denoted by mvec. Similarly, consider the vector
representation of the non-zero entries of U denoted by vec(U). The length of mvec is the same as the length of vec(U).
Therefore, we can use these two vector representations to represent the global parameter and the local parameter in the
structured spaces. Moreover, they have the same degree of freedoms. The remaining proof can be found at (37) by using the
inverse function theorem and Assumption 1, where we need to use the result that if S = UUT ∈ S2 and U2 = CholUP(S),
then U = U2 and S ∈ S1. Moreover, for any positive-definite matrix X, CholUP(X) is C1-smooth w.r.t. X, which is as
smooth as the original Cholesky method.

J.1.4. NATURAL GRADIENT COMPUTATION FOR STRUCTURED M

we use a similar technique discussed in Appendix D.1.1 to deal with the FIM computation w.r.t. an asymmetric M. The
main idea is to decomposition M as a sum of special matrices so that the FIM computation is simple. We also numerically
verify the following computation of FIM by Auto-Diff.

Since

M =

[
MA MB

0 MD

]
∈Mup(k),

by Lemma 2, h(M) is invertible for any M ∈Mup(k). Moreover, by the structure of M, |h(M)| > 0.

Since MA is symmetric, we can re-express the matrix MA as follows. We use a similar decomposition in Appendix D.1.1.

MA = MAup + MT
Aup

+ MAdiag ,

where MAup contains the upper-triangular half of MA excluding the diagonal elements, and MAdiag contains the diagonal
entries of MA.

We will decompose the M as follows

M = Mdiag + Mup + MT
up + Masym

where Mdiag is a diagonal matrix, Masym is an asymmetric matrix, and Mlow is a upper-triangular matrix with zero diagonal
entries.

Mdiag =

[
MAdiag 0

0 MD

]
Masym =

[
0 MB

0 0

]
Mup =

[
MAup 0

0 0

]

Note that Mdiag, Masym, and Mlow respectively contain the diagonal entries of M, the asymmetric entries of M, the
upper-triangular half of the symmetric part of M excluding the diagonal entries.

Recall that the FIM Fη(η0) is block-diagonal with two blocks—the δ block and the M block. We will can show that the M
block of the FIM is also block-diagonal with three blocks, where each block represents the non-zero entries in Mup, Mdiag,
and Masym, respectively.
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Now, we will show that any cross term of the FIM between any two of these blocks is zero. We have three cases. Let Iup,
Idiag, Iasym be the index set of the non-zero entries of Mup, Mdiag, and Masym respectively.

Case 1: For a cross term of the FIM between Mup and Mdiag, it is zero since this is the case shown in the symmetric case
(see Lemma 13 in Appendix D.1.1 for details).

Case 2: For a cross term of the FIM between Masym and Mdiag, we can compute it as follows.

By Eq. 28 and the chain rule, we have the following expressions, where j > i.

−∇Masymij
log q(w|η) = −Tr

( [
∇Masymij

M
]︸ ︷︷ ︸

Iij

[
∇M log q(w|η)

])
−∇Mdiagii

log q(w|η) = −Tr
( [
∇Mdiagii

M
]︸ ︷︷ ︸

Iii

[
∇M log q(w|η)

])

Therefore, we have

−∇Masym log q(w|η) = −Asym
(
∇M log q(w|η)

)
−∇Mdiag log q(w|η) = −Diag

(
∇M log q(w|η)

)
where we define the Diag(·) function that returns a diagonal matrix with the same structure as Mdiag and the asym(·)
function that returns a (upper) triangular matrix with the same structure as Masym.

Notice that we only consider non-zero entries in Masym, which implies that j > i and (i, j) ∈ Iasym in the following
expression. Therefore, any cross term can be expressed as below.

− Eq(w|η)

[
∇Masymij

∇Mdiag log q(w|η)
] ∣∣∣

η=0
= −Eq(w|η)

[
∇Masymij

Diag
(
∇M log q(w|η)

)] ∣∣∣
η=0

=− Eq(w|η)

∑
k,l

[
∇Masymij

Mkl

]
∇Mkl

Diag
(
∇M log q(w|η)

) ∣∣∣
η=0

=− Eq(w|η)

[∇Masymij
Mij

]︸ ︷︷ ︸
=1

∇Mij
Diag

(
∇M log q(w|η)

) ∣∣∣
η=0

=− Eq(w|η)

[
∇Mij

Diag
(
∇M log q(w|η)

)] ∣∣∣
η=0

=−Diag
(
Eq(w|η)

[
∇Mij

∇M log q(w|η)
] )∣∣∣

η=0

=Diag
(
∇Mij

(M + MT )︸ ︷︷ ︸
Iij+Iji

)
= 0

where we obtain the last step since j > i and Diag(Iij) = 0 since (i, j) ∈ Iasym and (i, j) 6∈ Idiag.

Case 3: Now, we show that any cross term of the FIM between Masym and Mup is zero. Let’s denote a Up(·) function that
returns a upper-triangular part of an input matrix with the same (non-zero) structure as Mup. Similarly, we can define a
Asym(·) function.

It is obvious see that the intersection between any two of these index sets are empty.

For any i < j, where (i, j) ∈ Iup, we have (i, j) 6∈ Iasym and Asym
(
Iij
)

= Asym
(
Iji
)

= 0.
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In this case, let (i, j) ∈ Iup. The cross term can be computed as follows.

− Eq(w|η)

[
∇Mupij

∇Masym log q(w|η)
] ∣∣∣

η=0
= −Eq(w|η)

[
∇Mupij

Asym
(
∇M log q(w|η)

)] ∣∣∣
η=0

=− Eq(w|η)

∑
k,l

[
∇Mupij

Mkl

]
∇Mkl

Asym
(
∇M log q(w|η)

) ∣∣∣
η=0

=− Eq(w|η)

[∇Mupij
Mij

]︸ ︷︷ ︸
=1

∇MijAsym
(
∇M log q(w|η)

)
+
[
∇Mupij

Mji

]︸ ︷︷ ︸
=1

∇MjiAsym
(
∇M log q(w|η)

) ∣∣∣
η=0

=− Eq(w|η)

[
∇MijAsym

(
∇M log q(w|η)

)
+∇MjiAsym

(
∇M log q(w|η)

)] ∣∣∣
η=0

=−Asym
(
Eq(w|η)

[
∇Mij∇M log q(w|η) +∇Mji∇M log q(w|η)

] )∣∣∣
η=0

=Asym
(
∇Mij (M + MT )︸ ︷︷ ︸

Iij+Iji

+∇Mji(M + MT )︸ ︷︷ ︸
Iij+Iji

)
= 0

where we use M = Mdiag +Mup +MT
up +Masym to move from step 2 to step 3, and obtain the last step since Asym

(
Iij
)

=

Asym
(
Iji
)

= 0.

Now, we compute the FIM w.r.t. Mdiag, Masym and Mup separately.

Like Eq (34) in Appendix D.1.1 , the FIM w.r.t. the upper-triangular block is

−Eq(w|η)

[
∇Mupij

∇Mup log q(w|η)
] ∣∣∣

η=0
= 4Iij

.

Like Eq (33) in Appendix D.1.1 , the FIM w.r.t. the diagonal block is

−Eq(w|η)

[
∇Mdiagij

∇Mdiag log q(w|η)
] ∣∣∣

η=0
= 2Iij

.

By the chain rule, the FIM w.r.t. Masym can be computed as follows, where (i, j) ∈ Iasym.

− Eq(w|η)

[
∇Masymij

∇Masym log q(w|η)
] ∣∣∣

η=0

=− Eq(w|η)

[
∇Masymij

Asym
(
∇M log q(w|η)

)] ∣∣∣
η=0

=− Eq(w|η)

∑
k,l

[
∇Masymij

Mkl

]
∇Mkl

Asym
(
∇M log q(w|η)

) ∣∣∣
η=0

=− Eq(w|η)

[∇Masymij
Mij

]︸ ︷︷ ︸
=1

∇Mij
Asym

(
∇M log q(w|η)

) ∣∣∣
η=0

=−Asym
(
Eq(w|η)

[
∇Mij

∇M log q(w|η)
] )∣∣∣

η=0

=Asym
(
∇Mij

[
M + MT

]︸ ︷︷ ︸
=Iij+Iji

)
(By Lemma 11)

=Iij

where we obtain the last step since that Asym(Iji) = 0 when i < j since (i, j) ∈ Iasym and (j, i) 6∈ Iasym. Therefore, the
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FIM w.r.t. the asymmetric block is

−Eq(w|η)

[
∇Masymij

∇Masym log q(w|η)
] ∣∣∣

η=0
= Iij

.

Like the symmetric case (see Eq (35) Appendix D.1.1) when we evaluate gradients at η0 = {δ0,M0} = 0, we have

∇δiL
∣∣
η=0

=
[
∇δiδ

]T
B−1
t ∇µL

∇MijL
∣∣
η=0

= −Tr
([
∇Mij

(
M + MT

)]
B−1
t

[
∇ΣL

]
B−Tt

)
Let’s denote GM = −2B−1

t

[
∇ΣL

]
B−Tt . Therefore, we can show that Euclidean gradients are

GMdiag = Diag(GM ); GMup = Up
(
GM + GT

M

)
= 2Up(GM ); GMasym = Asym(GM ); gδ = B−1

t ∇µL

The natural gradients w.r.t. Mdiag, Mup, and Masym are 1
2Diag(G), 1

2Up(G), and Asym(G) respectively. The natural
gradient w.r.t. δ is B−1

t ∇µL.

Natural gradients can be expressed as in the following compact form:

ĝ
(t)
δ0

= B−1
t ∇µL

ĝ
(t)
M0

= Cup � κup
(
− 2B−1

t

[
∇ΣL

]
B−Tt

)
where

Cup =

[
1
2JA JB
0 1

2ID

]
∈Mup(k)

Therefore, our update is

µt+1 ← µt − βB−Tt B−1
t gµt

Bt+1 ← Bth
(
βCup � κup

(
2B−1

t gΣtB
−T
t

))
(52)

J.1.5. INDUCED STRUCTURES

When B ∈ Bup(k), we can show that the covariance matrix Σ = (BBT )−1 has a low rank structure. The update is like the
DFP update in the quasi-Newton family. This structure is useful for posterior approximation

Notice that the precision matrix S = BBT is a block arrowhead matrix as shown below.

S = BBT

=

BABT
A + BBBT

B BBBD

BDBT
B B2

D


Now, we can show that the covariance matrix Σ = P−1 admits a rank-k structure.

Σ =

 B−TA B−1
A −B−TA B−1

A BBB−1
D

−B−1
D BT

BB−TA B−1
A B−1

D BT
BB−TA B−1

A BBB−1
D + B−2

D


= UkU

T
k +

[
0

B−2
D

]
where Uk is a p-by-k matrix as shown below and Uk is a rank-k matrix since B−TA is full k rank (invertible).

Uk =

 −B−TA

B−1
D BT

BB−TA





Tractable Structured Natural-Gradient Descent Using Local Parameterizations

J.1.6. A SINGULARITY ISSUE OF THE FIM

In Appendix J.1.5, we know that when B ∈ Bup(k) takes the block upper triangular structure, the covariance is a low-rank
matrix.

Σ = (BBT )−1

= UkU
T
k +

[
0 0

0 B−2
D

]
As shown in Appendix J.1.4, the FIM Fη(η0) is non-singular. Equivalently, we can use auxiliary parameterization
A ∈ Blow(k) for the covariance Σ = AAT if we choose to use the covariance as a global parameterization τ = {µ,Σ}.

In fact, the zero block (the k-by-k matrix) highlighted in red ensures the FIM Fη(η0) is non-singular when k > 0. The
group structure contains such a zero block so that the FIM is non-singular. It is tempting to use a non-zero block to replace
the zero block in the above expression to get a more flexible structure. Unfortunately, the FIM Fη(η0) may become singular
by doing so.

Th singularity issue also appears even when we use a common (global) parameterization τ for a low-rank (e.g., rank-one)
Gaussian (Tran et al., 2020; Mishkin et al., 2018; Sun et al., 2013) such as Σ = vvT + Diag(d2), where v,d ∈ Rp are both
learnable parameters. For illustration, let’s consider a rank-one structure in the covariance matrix Σ ∈ Sp×p++ of Gaussians,
which is a case considered in Tran et al. (2020), where the global parameterization is chosen to be τ = {µ,v,d} so that the
covariance Σ = vvT + Diag(d2) has a rank-one structure. We will give two examples to show that the FIM Fτ is singular
when τ = {µ,v,d}, where µ,v,d ∈ Rp are all learnable vectors. To avoid the singularity issue, Tran et al. (2020) have to
use a block approximation of the FIM Fτ . Mishkin et al. (2018) also consider a rank-one matrix in the precision matrix S of
Gaussians, where an additional approximation is used to fix this singularity issue. Sun et al. (2013) reduce the degree of
freedom in a p-dimensional low-rank Gaussians such as Σ = vvT + d2I to avoid this issue18, where d is chosen to be a
learnable scalar instead of a vector. However, the covariance used in Sun et al. (2013) is less flexible than the covariance
induced by our group structures since the degree of freedom for the covariance used in Sun et al. (2013) is p+ 1 while the
degree of freedom for the covariance induced by the block triangular group with k = 1 is 2p− 1.

Now, we give two examples to illustrate the singularity issue in a rank-one p-dimensional Gaussian with constant mean and
the covariance structure Σ = vvT + Diag(d2), where τ = {v,d} and v,d ∈ Rp are all learnable vectors.

Example (1): First of all, in 2-dimensional (p = 2) Gaussian cases with constant mean, we know that the degree of freedom
of the full covariance Σ is 3 since Σ ∈ S2×2

++ is symmetric. It is easy to see when τ = {v,d}, the degree of freedom in the
rank-one Gaussian case with constant mean is 4, which implies the FIM is singular since the maximum degree of freedom is
3 obtained in the full Gaussian case.

Example (2): This issue also appears in higher dimensional cases. We consider an example in a 3-dimensional (p = 3)

rank-one Gaussian with constant zero mean. Let’s consider the following case where v =

1
0
0

, and d =

1
1
1

 so that

Σ := vvT + Diag(d2). Let α =

[
d
v

]
∈ R6. The FIM in this case is denoted by Fτ (α), where the global parameter is

τ = {v,d}. In this case, Fτ (α) computed by Auto-Diff is given below.

Fτ (α) =


0.5 0 0 0.5 0 0
0 2 0 0 0 0
0 0 2 0 0 0

0.5 0 0 0.5 0 0
0 0 0 0 0.5 0
0 0 0 0 0 0.5


where α =

[
1 1 1 1 0 0

]T
when d =

[
1 1 1

]T
and v =

[
1 0 0

]T
.

It is easy to see that Fτ (α) is singular. Therefore, the FIM Fτ under the global parameterization τ = {v,d} for the
rank-one Gaussian can be singular.

18When p = 1, the FIM of the low-rank Gaussian considered by Sun et al. (2013) is still singular.



Tractable Structured Natural-Gradient Descent Using Local Parameterizations

Even when we allow to learn the mean µ in the rank-one Gaussian cases, the FIM Fτ is still singular where τ = {µ, v,d︸︷︷︸
α

}

since Fτ =

[
Fτ (µ) 0

0 Fτ (α)

]
is block-diagonal and Fτ (α) is singular at µ = 0.

J.1.7. COMPLEXITY ANALYSIS AND EFFICIENT COMPUTATION

When B ∈ Bup(k) is a p-by-p invertible matrix, it can be written as

B =

[
BA BB

0 BD

]
where BA is a k-by-k invertible matrix and BD is a diagonal and invertible matrix.

To generate samples, we first compute the following matrix.

B−T =

[
B−TA 0

−B−TD BT
BB−TA B−TD

]

Given B−T is known, for variational inference, we can easily generate a sample in O(k2p) as w = µ + B−T ε, where
ε ∼ N (0, I). Similarly, S−1gµ = B−TB−1gµ can be computed in O(k2p).

Since M ∈Mup(k), it can be written as

M =

[
MA MB

0 MD

]
where MA is a k-by-k symmetric matrix and MD is a diagonal matrix.

We can compute h(M) in O(k2p) when M ∈Mup(k)

h(M) := I + M + 1
2M2 =

[
IA + MA + 1

2M2
A MB + 1

2

(
MAMB + MBMD

)
0 ID + MD + 1

2M2
D

]

Similarly, we can compute the matrix product Bh(M) in O(k2p).

Now, we discuss how to compute κup
(
2B−1

t gΣB−Tt
)

We assume gΣ can be expressed as the following form.

gΣ = 1
2

[
H11 H12

H21 H22

]
where H21 = HT

12.

2B−1gΣB−T =

[
E− FTBT

BB−TA −B−1
A BBF + B−1

A BBB−1
D H22B

−T
D BT

BB−TA FT −B−1
A BBB−1

D H22B
−T
D

F−B−1
D H22B

−T
D BT

BB−TA B−1
D H22B

−T
D

]
where E = B−1

A H11B
−T
A and F = B−1

D H21B
−T
A

Therefore, we have

κup
(
2B−1

t gΣB−Tt
)

=

[
E− FTBT

BB−TA −B−1
A BBF + B−1

A BBB−1
D H22B

−T
D BT

BB−TA FT −B−1
A BBB−1

D H22B
−T
D

0 Diag
(
B−1
D H22B

−T
D

) ]

Notice that by Stein’s identity , we have

gΣ = 1
2Eq(w)

[
∇2
wf(w)

]
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where w = µ+ B−T ε and ε ∼ N (0, I).

For a k-rank approximation, if we can compute O(k) Hessian-vector products, let’s consider the following product.[
v1

v2

]
=

[
H11B

−T
A −H12B

−T
D BT

BB−TA
H21B

−T
A −H22B

−T
D BT

BB−TA

]
= Eq(w)

[ [ ∇2
w1
f(w1,w2) ∇w1

∇w2
f(w1,w2)

∇w2
∇w1

f(w1,w2) ∇2
w2
f(w1,w2)

] [
B−TA

−B−TD BT
BB−TA

] ]
Therefore, we have

κup
(
2B−1

t gΣB−Tt
)

=

[(
B−1
A v1 −B−1

A BBB−1
D v2

) (
B−1
D v2

)T
0 B−1

D Diag
(
H22

)
B−TD

]
(53)

We can compute this in O(k2p) since BD is diagonal, where we assume we can efficiently compute O(k) Hessian-vector
products and compute/approximate diagonal entries of the Hessian Diag

(
H22

)
.

J.1.8. BLOCK LOWER-TRIANGULAR GROUP

Similarly, we can define a block lower-triangular group Blow(k) and a local parameter spaceMlow(k).

Blow(k) =
{[

BA 0
BC BD

] ∣∣∣BA ∈ Rk×k++ , BD ∈ Dd0×d0++

}
; Mlow(k) =

{[
MA 0
MC MD

] ∣∣∣ MA ∈ Sk×k, MD ∈ Dd0×d0
}

we consider the following parametrization for the Gaussian N (w|µ,S−1), where the precision S belongs to a sub-manifold
of Sp×p++ , auxiliary parameter B belongs to Blow(k), and local parameter M belongs toMlow(k),

τ :=
{
µ ∈ Rp, S = BBT ∈ Sp×p++ | B ∈ Blow(k)

}
,

λ := {µ ∈ Rp, B ∈ Blow(k)} ,
η := {δ ∈ Rp, M ∈Mlow(k)} .

The map ψ ◦ φλt(η) at λt := {µt,Bt} is chosen as below, which is the same as (23){
µ
S

}
= ψ(λ) :=

{
µ

BB>

}
{
µ
B

}
= φλt(η) :=

{
µt + B−Tt δ
Bth(M)

}
.

We can show Assumption 1 and 2 are satisfied similar to Appendix J.1.3.

Our update over the auxiliary parameters is

µt+1 ← µt − βB−Tt B−1
t gµt

Bt+1 ← Bth
(
βClow � κlow

(
2B−1

t gΣtB
−T
t

))
(54)

where

Clow =

[
1
2JA 0
JC

1
2ID

]
∈Mlow(k)

where J denotes a matrix of ones and factor 1
2 appears in the symmetric part of Clow. � denotes the element-wise product,

κlow(X) extracts non-zero entries ofMlow(k) from X so that κlow(X) ∈Mlow(k). We can compute this update in O(k2p).

When B ∈ Blow(k), we show that the precision matrix S = BBT has a low rank structure. This update is like the BFGS
update in the quasi-Newton family. This structure is useful for optimization.
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The precision matrix S admits a rank-k structure as shown below.

S = BBT =

BABT
A BABT

C

BCBT
A BCBT

C + B2
D

 = VkV
T
k +

[
0

BD

]
; Vk =

BA

BC


where Vk is a d-by-k matrix and Vk is a rank-k matrix since BA is full k rank.

Similarly, we can show that the covariance matrix Σ = S−1 is a block arrowhead matrix.

Σ =

B−TA −B−TA BT
CB−1

D

0 B−1
D

 B−1
A 0

−B−1
D BCB−1

A B−1
D


=

B−TA B−1
A + B−TA BT

CB−2
D BCB−1

A −B−TA BT
CB−2

D

−B−2
D BCB−1

A B−2
D


Now, we discuss how to compute κlow

(
2B−1

t gΣB−Tt
)
.

Similarly, we assume gΣ can be expressed as the following form.

gΣ = 1
2

[
H11 H12

H21 H22

]
where H21 = HT

12.

Therefore, we have

κlow
(
2B−1gΣB−T ) =

 F 0

−B−1
D BCF + B−1

D E2 B−1
D Diag

[
BCFBT

C + H22 −BCET
2 −E2B

T
C

]
B−1
D


where E1

E2

 :=

H11 HT
21

H21 H22

B−TA

0

 =

H11B
−T
A

H21B
−T
A


F := B−1

A E1 = B−1
A H11B

−T
A

Note that we have the following identity.

Diag(AB) = Diag(BTAT ) = Sum(A�BT , column)

where Sum(X, column) returns a column vector by summing X over its columns.

Using this identity, we can further simplify the term as

κlow
(
2B−1gΣB−T ) =

 F 0

−B−1
D BCF + B−1

D E2 B−1
D

[
Diag(H22) + Sum(BC � (BCF− 2E2), column)

]
B−1
D


J.2. Alternative Structures Inspired by the Heisenberg Group

First of all, the Heisenberg group is defined as follows.

B =

1 aT c
0 I b
0 0 1


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where a and b are column vectors while c is a scalar.

We construct the following set inspired by the Heisenberg group, where 1 < k1 + k2 < p and d0 = p− k1 − k2.

Bup(k1, k2) = {


k1-by-k1︷︸︸︷

BA

BB︷ ︸︸ ︷
BB1

BB2

0 BD1 BD2

0 0 BD4︸ ︷︷ ︸
k2-by-k2

 |BA ∈ Rk1×k1++ ,BD1 ∈ D
d0×d0
++ ,BD4 ∈ R

k2×k2
++ }

We can re-express the structure as follows

Bup(k1, k2) =
{[

BA BB

0 BD

] ∣∣∣BD =

[
BD1 BD2

0 BD4

]}
where BA ∈ Rk1×k1++ , BD1

∈ Dd0×d0++ , BD4
∈ Rk2×k2++ .

We can show that Bup(k1, k2) is a matrix group, which is more flexible than the block triangular group.

Similarly, we define a local parameter spaceMup(k1, k2) as

Mup(k1, k2) =
{MA MB1

MB2

0 MD1 MD2

0 0 MD4

 ∣∣∣MA ∈ Sk1×k1 , MD1
∈ Dd0×d0 , MD4

∈ Sk2×k2
}

Likewise, we consider the following parametrization for the Gaussian N (w|µ,S−1), where the precision S belongs to a
sub-manifold of Sp×p++ , auxiliary parameter B belongs to Bup(k1, k2), and local parameter M belongs toMup(k1, k2),

τ :=
{
µ ∈ Rp, S = BBT ∈ Sp×p++ | B ∈ Bup(k1, k2)

}
,

λ := {µ ∈ Rp, B ∈ Bup(k1, k2)} ,
η := {δ ∈ Rp, M ∈Mup(k1, k2)} .

The map ψ ◦ φλt(η) at λt := {µt,Bt} is chosen as below, which is the same as (23){
µ
S

}
= ψ(λ) :=

{
µ

BB>

}
{
µ
B

}
= φλt(η) :=

{
µt + B−Tt δ
Bth(M)

}
.

We can show Assumption 1 and 2 are satisfied similar to Appendix J.1.3. Our update over the auxiliary parameters is

µt+1 ← µt − βB−Tt B−1
t gµt

Bt+1 ← Bth
(
βCup � κup

(
2B−1

t gΣtB
−T
t

))
(55)

where � denotes the element-wise product, κup(X) extracts non-zero entries ofMup(k1, k2) from X so that κup(X) ∈
Mup(k1, k2), Cup is a constant matrix defined below, J denotes a matrix of ones and factor 1

2 appears in the symmetric part
of Cup.

Cup =

 1
2JA JB1

JB2

0 1
2ID1

JD2

0 0 1
2JD4

 ∈Mup(k1, k2)

We can also efficiently implement this update by using Hessian-vector products.

Similarly, we can define a lower version of this group denoted by Blow(k1, k2) and derive our update for this structure.

Blow(k1, k2) =
{[BA 0

BC BD

] ∣∣∣BD =

[
BD1

0
BD3 BD4

]}
where BA ∈ Rk1×k1++ , BD1

∈ Dd0×d0++ , BD4
∈ Rk2×k2++ .


