Tractable Structured Natural-Gradient Descent Using Local Parameterizations

Appendices

Outline of the Appendix:

2 and Table 1.

Appendix B contains more experimental results.

A. Summary of Parameterizations Used in This Work

Appendix A summarizes parameterizations and updates used in this work, which gives a road-map of the appendix.

Appendix C contains some useful results used in the remaining sections of the appendix.

The rest of the appendix contains proofs of the claims and derivations of our update for examples summarized in Table

q(w) Name Our update in auxiliary space A
N(wlu,X) (App. D.2) Gaussian with covariance See Eq (42)
N(w|p,S™1) (App. D.1) Gaussian with precision See Eq (38) for a full structure;

See Eq (52) and (54) for a block triangular structure

See Eq (55) for a block Heisenberg structure

Wp(W|[S,n) (App. E)

Wishart with precision

See Eq (44)

MN (WIE, Sgl, S‘_,l) (App. 1) Matrix Gaussian with Kronecker | See Eq (49)
structure in precision form

+ Zle N(w|py,, Sy ") (App. H) Gaussian Mixture with precision | See Eq (47)

B(w) exp ((T(w), ) — A(T)) (App. G) | Univariate Exponential Family | See Eq (45)

Table 1. Summary of our updates. See Table 2 for the parameterizations used in our updates.

q(w) global T auxiliary A local i
N(w|p, =) (App. D.1) Sl = v = | K M| =oxm) = A‘t‘égéﬂ)
1 I p ] ] , + B0

N(w|p,S77) (App. D.2) s| =¥ = |gp7| B| == "B ny

n 2(f(b) + ¢ b b+ 6
W, (WIS.n) (App. E ) & =0 = o amer| | 8] = = |

c= I’Tfl, (b) = log(1 + exp(b))

general ¢(w|7) (App. F) T=9A)=A A=drmM=X+n n

E B E E.+ B, TAA,
MN(WIE,S;', 87 = Sv| =v(A) = |AAT Al =¢x(n) = Ah(M)

Su | BB” B B;h(N)
N (vec(W)|vec(E), S;* @ S;;t)
Kronecker structure (App. )

K ¢ ¢
% Sy N (Wl Sp ) T = “k] SO = {e) ey | A= {Hk} s O (1) = { Bk, (M) ey
[Sk] o1 Bl B-Ts k=1

259 | M K| _ _ |MEe T By Ok
(App.- H) [Sk:| - wk(Ak) = |:BkB£:| |:Bk:| = (rzsk’,)\t, (nk) = |: Bk,th(f/[tk) :|
univariate EF g(w|7) (App. G) | 7 =9¥(A) = f(A) A=0ox(m=A+n n
B(w) exp ((T(w), 7) — A(T)) | f(A) =log(1 + exp(A))

Table 2. Summary of the parameterizations
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Figure 5. The performances of our updates for optimization of a CNN model on CIFAR-100 using layer-wise matrix Gaussian with
low-rank structures in a Kronecker-precision form, where our updates (O(k|w|)) have a linear iteration cost like Adam (O(|w|)) in terms
of time. For dataset “CIFAR-100", we train the model with mini-batch size 120. Our updates achieve higher test accuracy (55.2% on
“CIFAR-100”) than Adam (53.3% on “CIFAR-1007).
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Figure 6. Comparison results of structured Gaussian mixtures to fit a 80-Dim mixture of Student’s t distributions with 10 components.
The first 9 marginal dimensions obtained by our updates is shown in the figure, where we consider the full covariance structure and the
diagonal structure.
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Figure 7. Comparison results of structured Gaussian mixtures to fit a 80-Dim mixture of Student’s t distributions with 10 components.
The first 9 marginal dimensions obtained by our updates is shown in the figure, where we consider the upper triangular structure and the
lower triangular structure in the precision form. The upper triangular structure performs comparably to the full covariance structure with
lower computational cost.
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Figure 8. Comparison results of structured Gaussian mixtures to fit a 80-Dim mixture of Student’s t distributions with 10 components.
The first 9 marginal dimensions obtained by our updates is shown in the figure, where we consider the upper Heisenberg structure and the
lower Heisenberg structure in the precision form. The upper triangular structure performs comparably to the full covariance structure with
lower computational cost.
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C. Fisher information matrix and Some Useful Lemmas

The Fisher information matrix (FIM) F.(7) of a parametric family of probability distributions {¢, } is expressed by
F, (1) = Covg, (Vsloggr(w),V,loggr(w)). Under mild regularity conditions (i.e., expectation of the score is
zero and interchange of integrals with gradient operators), we have F (1) = E, [V, log¢,(w)(V,loggr(w))"| =
~E,, [V2 log gr(w)].

Lemma 4 In a general case, Eq (1) can be expressed as:

L(7) := Eqwir) [l(w)] = 7H(g(w|T))

We have the following result:

gr, T VTE(T) = V‘l']Eq(w\‘l') [E(W) + Vlog Q(W‘Tl,)]

T=T¢

T=T¢

, where T highlighted

T=T¢

Therefore, we could re-define £(w) to include ~ylog q(w|T;) when we compute gradient V . L(T)

in red is considered as a constant.

The following lemma gives us an indirect approach to compute natural gradients. See Appendix G for the indirect approach
and Appendix G.1 for its limitation.

Lemma 5 (Indirect Natural-gradient Computation) If T = ) o ¢y, (n) is Cl-smooth w.r.t. m, we have the following

(covariant) transformationlz.

T

Fp(no) = [VnT] [Fr(Tt)} [VnT] ‘
n="no

where we use a layout so that V., T and NV, 7; are a row vector and a column vector'3, respectively.

If g, is easy to compute'®, the natural gradient g,,o can be computed via the following (contravariant) transformation',

where we assume ¥ (1) and the Jacobian [V,,T] ‘ are both non-singular
Mn="mo

= (7] a2, @)

T=T4

N T,
g"lo = [VTT]] g-, n=m,
where the j-th entry of the natural gradient g, —can be re-expressed as gnoj =>, [VTZ, 77j] G,, when the Jacobian is
invertible.

Therefore, g,,o can be computed via a Jacobian-vector product used in forward-mode differentiation if §.,., is computed
beforehand and the Jacobian is invertible.

We will use the following lemmas to show that h(-) can replace the matrix exponential map used in the main text while still
keeping the natural-gradient computation tractable.

Lemma 6 Leth(M) =1+ M + %MQ. If the matrix determinant |h(M)| > 0, we have the identity:
Vi log h(M)| =1+ C(M),

where VMUC(M)‘]W = 0 and M, is the entry of M at position (i, j).
-0 -

k

Lemma 7 Let Exp(M) =1+ 77, I\ZI—, We have a similar identity as Lemma 6:
Vi log [Exp(M)| =1+ C(M),

= 0 and M;j is the entry of M at position (i, j).
M=0

">This is the component transform for a type (0, 2)-tensor in Riemannian geometry.

¥We assume 7 and T are vectors. For a matrix parameter, we could use the vector representation of the matrix via vec(-).
14, may stay in a constrained parameter space

'5This is the component transform for a type (1, 0)-tensor in Riemannian geometry.

where V 1, C(M)
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Lemma 8 Let f(M) = h(M) or (M) = Exp(M). We have the following expressions:

[Var, f V)] E(M)T = [(Var, M) + $M(Vag, M) + 2(Var, MM + (Var, M)M” ] + O(M?)(V p,, M)
f(M) [leyf(M)T] = [(v]\ﬁj MT) + %MT(VM” MT) + %(vl\/fz‘jMT)MT + M(VMH MT)] + O(MQ)(VM”M)

Moreover, it is obvious that V yy,, [O(Mz)(VMm M)| = 0, where My, is the entry of M at position (k,1).
C.1. Proof of Lemma 4

Proof Since H(q(w|T)) = —Eywn [log ¢(w|T)], we can re-express V. L(T) as

T=T¢

VoLlr)| = VB W) + yloga(wir))|
= VrEqwir) [U(w) +710g g(W|Te)] +1Eq(wir) [V logg(wlT)] | (By the chain rule)
Note that
Eq(wh’) [v‘r 1Og Q(W|T)]
T=T¢
=K V.,-q(w|7-)
—Lq(wlT) _
q(wiT) | lr=r,
=VrEq(wir) [1] ‘T:T
-0 (27)
Therefore,
Constant
~—~
v‘rﬁ(T) —r = V7'}Eq(w|‘r') K(W) +'710gQ(W| Tt ):| —
C.2. Proof of Lemma 5
Proof Let’s consider an entry of the FIM F,,(n,) at position (j, ).
Fy,.(19) = Byl [ [V, log a(wlm)] [V, log a(wm)]] [, _,
——
scalar
= Eywin) H Vo, T Vilog q(w|7‘)] [Vm.TV.,- log q(wh‘)} |77:"70
—— ——
row vector column vector
T T
= [V, 7] Eywin [V log g(w|m)] [V log g(w|T)] ] [V 7] | _
—— ——
row vector column vector
T T
— [V, 7Bt [V log alw})] [V dog gl )] 7] (V7] 7,
= [V, T|Fr(70)[Vy, T] T’
n="no

Therefore, we have Fy,(ny) = [V, |Fr(74)[Vy 7] T‘

n="mno
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The natural gradient g,,o can be computed as follows.

N —1
g"lo = (F'fl(no)) g’r]O n=nq

= [Vor] T (Fr(r0))
= (V-] (Fr(10) ' [Von]gy,

= [V.n]" (Fr(11) g,

[leT} o g"]o

n="no

n="mno

n="7o
= [VTT]] Tg‘l't

Tt

where F,(7;) and V,,7 are invertible by the assumption, and 7; = 1) o ¢, ().

C.3. Proof of Lemma 6

Proof We first consider the entry M;; of M. By matrix calculus, we have the following expression.

Vi, log [h(M))|

=Tr((h(M)) ™' Var,,h(M))

(h(M)) ™' [(Var,, M) + $M(V,, M) + £(Vay,, M)M])
(h(M)) ' [2(T+ M)(Va,,M) + 3(Vas,, M I+M})
(h(M))

M)+ 1V M [M2 + (Var, M)M?])

=Tr((Var,, M) = 3 Tr((h(M)) ™ [M2(VMUM) + (VMUM)MQ])
Therefore, we can express the gradient in a matrix form.

Vs log|h(M)| =1 — i(MQ)Th(M)‘T - ih(M)‘T(MQ)T

We will show — (Mz)Th(M)_T — th(M)~7 (MQ)T is a C'(M) function defined in our claim. We first show that

Var, MPROD ]| =0
By the product rule, we have
2 -1
Vg [M h(M) HZ\/]:O
=[Var,M] \NLh(M)il ’M:O +\1\£’ [V, M}h(M)il‘ o Mj/ [vM”'h(M)il} ’M:O =0

-0 =0 =0

Similarly, we can show
T _ _ T
Vs, [(M2) h(M)~7] ’MZO —0; Vg, [h(M)T(M?) ]\MZO =0

T

Finally, we obtain the result as V 57 log [h(M)| = T + C(M), where C(M) = —1(M?) (M)~ — 1h(M)~T (M?)

NI
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C.4. Proof of Lemma 7

Proof First of all, [Exp(M)| > 0 and (Exp(M))~! = Exp(—M). We consider the following expressions.

Exp(—-M)=1-M + O(M?)
N——

remaining higher-order terms

Exp(M) =I+M + iM* + O(M?)
N—_——
remaining higher-order terms

vMij EXP(M) = (v]\/[ij M) + %M(v]\ﬁjM) + %(VMW M)M + O(Mz)(szJ M)
—_———
remaining higher-order terms
By matrix calculus, we have the following expression.

Vo, log [Exp(M))|

=Tr(Exp(—M)V s, Exp(M))
=Tr (Exp(—M) [(Var,, M) + iM(V 7, M) + 1 (Var, MM + O(M?)(Var,,M)])
=Tt (Exp(—M) [(Var,; M) + $M(V i, M) + 3(Var,, M)M + O(M?)(V yr,,M)])
r((I M+0O M2)) [( M) : M(sz‘j M) §(vMij M)M + O(M2)(VMij M)D
=Tr((Var,,M)) + Tr(— $M(Var,, M) + 2(Var,, M)M + O(M?)(V s, M))

Therefore, we have
Vi log |[Exp(M)| =I - IM" + IM" + O(M?) =1+ O(M?)

Now, we show that the remaining O(M?) term is a C'(M) function defined in our claim. Note that

Var, O(M?) =Tr(0M) [Var, M])‘M:O =0

=0
where O(M) contains at least the first order term of M.

Therefore, the remaining O(M?) term is a C'(M) function.

C.5. Proof of Lemma 8
Proof
First note that
fM)T =1+ M" + O0(M?)
f(M) =I+M+ iM? + D(M?)
Vi, £ (M) = (Var, M) + 3M(Var, M) + 2(Var,, M)M + D(M?)(Var,, M)

where D(M?®) = O(M?) and D(M?) = O(M?) when f(M) = Exp(M) while D(M?) = 0 and D(M?) = 0 when
f(M) = h(M).

We will show the first identity.
[Var, £(M)]£(M) "
=[(Var, M) + §M(Var,, M) + §(Var, M)M + D(M?)(Var,, M)] £(M)”
=[(Var, M) + $M(V 1, M) + 3(Var, M)M + D(M?)(V i, M)] (I+M" + O(M?))
:[(VMUM) + %M(VMUM) §(vMu M+ (Vi M)MT] + O(MQ)(VMU M),
where M(V 7, MM, (Va, M)MM” € O(M?)(V s, M).

Similarly, we can show the second expression holds.
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D. Gaussian Distribution
D.1. Gaussian with square-root precision structure

Let’s consider a global parameterization 7 = {u, S}, where S is the precision and p is the mean. We use the following
parameterizations:

T:={peR’, SesYr
A::{uERP, BGRﬁip
n:= {5 €R?, Me 8"},

and maps:

Under this local parametrization, we can re-expressed the negative logarithm of the Gaussian P.D.F. as below.
~logq(w|n) = —log [B(M)| + 5(p, +B; "6 — w)"Bh(M)h(M)" B (4, + B; 76 —w) + C
where C'is a constant number and Ay = {p,, B;} is the auxiliary parameterization evaluated at iteration ¢.

Lemma 9 Under this local parametrization 1), ¥, is block diagonal with two blocks—the § block and the M block. The
claim holds even when M is not symmetric.

Proof Any cross term of F,, between these two blocks is zero as shown below.

— Equin [V, Vslog g(win)]
=Ey(win) {VMU (h(M)h(M)TBtT(ut +B; 75— w))}
:vMij (h(M)h(M)T) (BtTEq<w|n> [ (Nt + Bt_T‘s -w) D

=0

=0
where E, () [W] = p, + B; "6 and M;; denotes the element of the matrix M at (i, 5).

Lemma 10 The FIM w.r.t. block § denoted by F'5 is 15 when we evaluate it at 1, = {89, Mo} = 0. The claim holds even
when M is not symmetric.

Proof

F5(n9) = —Equim [V3logq(w|n)] ’

= Eq(w\n) [V5 (h(M)h(M)TBfT(:U’t + B;T(s N W))} ‘

n=0

n=0
= Eqwin [W (5 + B/ (1 — W))] ’

::[5

n=0

where we use the fact that h(IM) = I when M = 0 to move from step 2 to step 3.

Now, we discuss how to compute the FIM w.r.t. M, where the following expressions hold even when M is not symmetric
since we deliberately do not make use the symmetric constraint. The only requirement for M is |h(M)| > 0 due to Lemma
6.
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LetZ =B (pu, +B; 76 —w)(u, + B; 76 — w)"B,. By matrix calculus, we have the following expression.

Vs, (e + B 76 — w) ' Bh(M)h(M) B (1, + B; 76 — w)]
=1V, Tr(Zh(M)h(M)T)
=3 Tr(Z[Var, AOM)]h(M)” + ZR(M)Var,, [0(M)"])

By Lemma 8, we obtain a simplified expression.
1Var[( + By T8 — w)"Ba(M)R(M)BY (1, + B; 75— w)]

=1[2Q+QM" + M"Q +2QM] + O(M*)Z

=7 + (ZM” + M*Z)/2 + ZM + O(M*)Z
where Q = (27 +2)/2 =17
By Lemma 6, we can re-express the gradient w.r.t. M as

—Vulogg(win) = —1—-C(M) +Z+ (ZM” + M*Z)/2 + ZM + O(M*)Z (28)
——
—Var log [h(M))|

Finally, we have the following lemma to compute the FIM w.r.t. M (denoted by F ) evaluated at n, = 0.

Lemma 11 —E ., [VMUVM log q(w|77)] ‘ =V, (M + MT>. The claim holds even when M is not symmetric
n=0
as long as |h(M)| > 0 or | — h(M)| > 0.

Proof
— Eytuin [Vaz,; Varlog g(win)] ’nzo
“Euio) [V, (1= COM) + Z+ (ZM" + M72)/2+ ZM + OM)Z)] | (by Eq28)
_ [VMM (<MT +MT)/2+M + O(M2))] ‘n:O — VM”.C(M)’T’:O
=0
=V, (M + MT) +0(M) ’n:O
=V, (M + M) =

where we use the fact that E, ) [Z] = Eyu [BtT(ut +B; 16 —w)(u, +B; o - W)TBt:| =T evaluatedatn = 0
to move from step 2 to step 3.

Now, we discuss the symmetric constraint in M € SP*P. The constraint is essential since the FIM can be singular without a
proper constraint.
D.1.1. SYMMETRIC CONSTRAINT SP*P IN M

Instead of directly using the symmetric property of M to simplify Eq (29), we present a general approach so that we can
deal with asymmetric M discussed in Appendix J. The key idea is to decomposition IM as a sum of special matrices so that
the FIM computation is simple. We also numerically verify the following computation of FIM by Auto-Diff.

First of all, we consider a symmetric constraint in M. We will show that this constraint ensures the FIM is non-singular,
which implies that we can use Lemma 11 in this case.

Lemma 12 When M is symmetric, |h(M)| > 0.
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Proof
h(M) =1+M + iM?
=3I+ (I+M)(I+M))
=1I+@+M)I+M)") (since M is symmetric )
> 0 ( positive-definite )
Therefore, |h(M)| > 0.

Since M is symmetric, we can re-express the matrix M as follows.
T
M = Mlow + Mlow + Mdiaga

where M|,y contains the lower-triangular half of M excluding the diagonal elements, and My;,e contains the diagonal
entries of IM.

0 0 0 My 0 - 0
M. 0 0 0 My --- 0

Miow = 21 0 Muiag = 22 0
My Mg 0 0 0 -+ Mg

By Eq. 28 and the chain rule, we have the following expressions, where ¢ > j.

= V My, J0g g(W[n) = =Tr( [Vag,,,, M] [Varlog g(w(n)])
~——

Iij+Ijz
- vJWdiug“ log Q(W\n) = 7T1“( l:demg“M] [VM 1Og (I(W\n)])
—_———
Therefore, we have
— Vs, Jog g(w|n) = —Low (Vs log ¢(w|n) + Vi, log ¢(w|n)) (30)
— V My, l0g g(w|n) = —$Diag(V s log g(win) + Vi, log g(wln)) = —Diag(V s log g(w|n)) (31)

where we define the Diag(-) function that returns a diagonal matrix with the same structure as Mgi,e and the Low (-) function
that returns a lower-triangular matrix with the same structure as Mgy, .

By Lemma 9, the FIM F, is block-diagonal with two blocks—the & block and the M block. We have the following lemma
for F s

Lemma 13 The M block of the FIM denoted by F s is also block-diagonal with two block— the diagonal block denoted by
non-zero entries in Mi,e, and the lower-triangular block denoted by non-zero entries in M.

Proof We will prove this lemma by showing any cross term of the FIM between the non-zero entries in M|, and the
non-zero entries in Mi, 18 also zero.

Notice that we only consider non-zero entries in M}y, which implies that ¢ > 7 in the following expression. Therefore, any
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cross term can be expressed as below.

— Eqtuln) [V Mg, V M 108 g(W]1)] ‘n:o = —Eyuim [V Mo, Diag (Vs log g(w(n)) ] ’n:o (by Eq. 31)

= — Eypuim [ D [V i, Mit] Vs, Diag(Vas log g(wn))] ‘
k,l
=— Eq(wm)[ [VMWU Mij] VMijDiag(VM log q(w|17)) + [VMWU Mji] VMﬂDiag(VM log q(w|n))} ’
=1 =1

n=0

n=0

n=0

= — Diag(Eq(upm) [V, Vrlogg(wln) + Vg, Vs log g(wn)] )‘nzo

=Diag( Vs, M+M") +Vy,,(M+M")) =0 (byLemma 11)

Iij +Iji IijJrIji

where Miqy;; denotes the entry of M,y at position (i,7), we use M = My, + M%W + Mgiag to move from step 2 to step
3, and obtain the last step since ¢ > j and Diag(I;;) =0

To compute the FIM w.r.t a symmetric M, we can consider the FIM w.r.t. the non-zero entries in both Moy, and Mgiae
separately due to the block-diagonal structure of the FIM. Now, we compute the FIM w.r.t. Mg;,e and Moy,

By the chain rule, we have

— Equin) [V e, V My 108 ¢(W7)] ’

= — Eyuim [V My, Diag (Vs log g(wn))] ‘n:o (by Eq. 31)

= —EBowin) | D, [V Muw,, Mjk] Vs, Diag(Var log g(w|n)) ’
_j7k:

n=0

= Eq(w\n) [deiagiiMii] V1anDlag(VM IOg Q(W|77)) ’
——

n=0

=1

= — Diag (Ey(uim) [V, Vi og g(wl)] )|

n=0
By Lemma 11, the FIM w.r.t. M), is

By [Vt Vot loga(wim)] | = ~Ding(Eyuin) [Var, Varloga(wln)] )| = Ding(Var, (M +M")) = 2Ding (L)
(32)

Now, we compute the FIM w.r.t. M. By the chain rule, we have

— Eqqwm) [leowiij“’W log q(W\n)] ‘nzo

= —Eywim [VMIUW”LOW(VM log g(w|n) + V7, log g(wn))] ’":0 (by Eq. 30)
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We will first consider the following term.

— Equin) [V i, Low (Var log g(w]n))] ’

n=0

=~ Eypuln) | D [V, Mit]| Vg, Low (Vs log g(win)) ‘
k,l

n=0

= — Eq(“,m) [VJWIOWU Mﬂ] VJuﬁLOW(VJW IOg q(w\n)) + [VMMW” Mlj] VMiJ LOW(VM log q(W|’l7)) ‘
—_——— —_———

=1 =1

= - LOW(Eq(wln) [VMWVM IOg Q(W‘n) + VM” VM IOg Q(W‘TI)] )‘1}:0

=Low(Vaz,, [M+M"]+Vy,, [M+M"]) =2I; (ByLemma ll)

=L;;+L; =L;+1;;
where we obtain the last step by Eq 29 and the fact that M is symmetric.

Similarly, we can show

“Eqwin [V Miwi, Low (Vi log g(win))] ‘n=0 = 2I;;

Therefore, the FIM w.r.t. My is

~Equwin) [V Mg, Vi, 108 g(W]1)] ‘n: o = M

Now, we discuss how to compute the Euclidean gradients. Recall that
m=p,+ B, s
S = B;h(M)h(M)TB}

Let £ := E, ) [¢(w)] — vH(g(w)). By the chain rule, we have

, =0
Vaiﬁ = [V&,H] Vﬂﬁ + Tl"( [V&.S] Vsﬁ)
— [V56]"B7'V,L
Var, £ = [Var, i) VL + Te([Var,S] VL)
=0
= TI‘( [VM” S] VS,C)
= —Tr([Var,,S]B[VsL]E)

= —Tr([B{[Var,,h(M)|h(M)” + h(M) [V, h(M)" ]} BT |2 [V L] %)
where ¥ = S~ and we use the gradient identity V£ = -2 [V L] .
Therefore, when we evaluate the gradient at 9, = {90, Mo} = 0, we have

v5i£|n=0 = [Vg,;(s]T

B, 'V,.L

vMij£|r,=0 = _Tr([Bt([sz‘jh(M)] h(O)T +£(2)/ [sz‘jh(M)T])Bﬂ \E’t, [Vzﬁ] Et)

=1 =1 B,"B,!
= —Tr([B¢([Var,h(M)] + [Var,,h(M)T])B{ |B; "B; ' [VsL]B; "B )
= ~Tr(([Var,M] + [Var, M']) B [VaL] B, )
= _Tr([sz‘j (M + MT)}Bt_l [qu Bt_T)

n=0

(33)

(34)

(35)
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where note that h(M) = I + M + O(M?) and its gradient evaluated at 7 = O can be simplified as

Var, h{M)|, o = Var,, M+ OM) [Var, M]|, _ = Var, M

=0

Let’s denote Gy = —2B; ' [V £]B; " Therefore, we can show that

Vit Ll,_o = Diag(Gar); Vi, L], _o = Low (G + Ghy) = 2Low(Gy)

The FIM is block-diagonal w.r.t. three blocks, the § block, the Myiag block, and the M, block

Recall that the FIM w.r.t. §, Mgiae and My, are I, 21, 41, respectively. The above statement implies that Assumption 1 is
satisfied.

The natural gradients w.r.t. Mise and Mo, are 3Diag(G ) and $Low(Gy).

Therefore, the natural gradients w.r.t. § and w.r.t. M are

G5 =B;'V,.L, gy = %GM =-B;! [VEE]B;T (36)

Now, we show that Assumption 2 is also satisfied. We will use the inverse function theorem to show this.

Recall that we have shown that Assumption 1 is satisfied by using the lower-triangular half (i.e., Moy and Mgiag) of M
since M is symmetric. Let’s consider the vector representation of the non-zero entries of the lower-triangular part of M
denoted by my... We consider the following function denoted by Mat(my,.) to obtain M given the vector. It is easy to
see that this function is linear and therefore it is C''-smooth w.r.t. m,... Consider the vector representation of the local
parameter 7)., = {4, My }. Assumption 1 implies that the FIM F,, (0) is non-singular at n, = 0.

Note that S is a symmetric positive-definite matrix and it can be represented by using a (lower-triangular) Cholesky factor
L such as S = LL”. We denote the vector representation of the non-zero entries of L denoted by vec(L). Moreover,
the length of my,. is the same as the length vec(L). Indeed, this length is the (effective) degrees of freedom of the local
parameter.

Now, consider a new global parameterization Tnew = { g, vec(L)} and the new map Thew = Yoy © P, (Myec)-

) u,+B; T8

{vegL)} = Yo 0 O ( {m] )= {vec(Chol(Bth(M)h(M)TBtT)) 7

where Ml = Mat (mye,).

It is obvious that Jacobian matrix V,, Tyew is a square matrix. Moreover, since S = LL”, this new FIM under this
parameterization remains the same, denoted by F,,  (0). It is non-singular at 1. = 0 due to Assumption 1.

By Lemma 5, we know that

T

Fn,. (0) = [Vo Toew] [Fro (Trew,)] [V Toew] o0

Since F,,  (0) is non-singular and the Jacobian matrix V,, T ey is a square matrix, the Jacobian matrix is non-singular at
nVCC = 0

Notice that the Cholesky decomposition Chol(X) is C'*-smooth w.r.t. X. The smoothness of the Cholesky decomposition is
used by Sun et al. (2009); Salimbeni et al. (2018). We can see that this map Thew = Wy © Py, (Myee) is C*-smooth w.r.t.

nVCC N

By the inverse function theorem, we know that there exist a (local) inverse function of {, vec(L)} = 1., © @x, (1) at
an open neighborhood of 7, = 0, which is also C'*-smooth.

Since S = LL”, we know that 7 = {1, S} and ) = {8, M} are locally C''-diffeomorphic at an open neighborhood of 7.
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D.1.2. CONNECTION TO NEWTON’S METHOD

In Eq (1), we consider the following problem.

q(rvxvl)igg Eqw) [((W)] — vH(q(w))

Note that we assume v = 0 in Eq (2) for simplicity.

By Eq (36), our update in the auxiliary parameter space with step-size 3 is

S—l
-7 -1 7Tt )
My < py+ B (=8)By g, =m— BB, "B, g,
B.y1 + Bh(8B; ' [gg|B; ") (38)

When v > 0, due to Stein’s identities, we have

8. = Egwinn) [VulW)], g5 = 5 (Bgwins) [Val(w)] —7271)

Let G, = E,[V24(w)] — 72" = E,[V24(w)] —7S:
Therefore, our update in S is
Si+1 = BB}, = B:h(8B; ' [gs,|B; ")h(8B; '[gs,|B; ") B/
= B[1+2(5B; '[g5,]B; ") +2(6B; '[g5,B; ") + 0(5*)|B]
ﬁ2

=B,[I+6B;'G,B; " + ?BgthBfTBgthB;T +0(8%)B]

2
=80+ 5G, + G816, +0() (39)
where we use the following result when X is symmetric

h(X)h(X)" = h(X)h(X) = I+ X + iX*)(I+ X + 1X?) =T+ 2X + 2X* + O(X?)
When v = 1, we obtain the update proposed by Lin et al. (2020) if we ignore the O(33) term.

2
Sit1 =S¢+ 6G; + %Gtsglct +0(8%)
2
= (1= B)S. + 08, [V3(w)] + 268Gy + 0(5)
where G; = E,[V2{(w)] — S,

D.1.3. UNCONSTRAINED M

In Appendix D.1.1, we show that if M is symmetric, the FIM F,,(n,) is non-singular. Unfortunately, if M € RP*? is
unconstrained, the FIM is indeed singular. In this appendix, we consider the square-root case for the precision. It is easy to
show that the following result is also true for the square-root case of the covariance discussed in Appendix D.2.

To see why the FIM is indeed singular, we will use the vector representation of M as v = vec(M). Let’s consider these two
entries M;; and Mj;, where ¢ # j. Unlike the symmetric case, M;; and M; are distinct parameters in the unconstrained
case. In our vector representation, we use v, and vy, to uniquely represent M;; and M;, respectively, where k1 # ko since

i ]

First of all, since v = vec(M), we have the following identity.

—Vy log g(w|n) = vec(—V s log g(w|n))
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Recall that FIM is block-diagonal with two blocks—the & block and the M block. To show that the FIM is singular, we
will show that the M block contains two identical columns/rows. For simplicity, we will instead show that the FIM w.r.t. v
contains two identical columns/rows, where v is the vector representation of IM.

Let’s consider the following row/column of the FIM for the M block.

By [Vou, (T logalwim)] |

= — Eqwin) [Vor, vee(Var logg(wn))]| ‘

a(wlm) Z[VvklMlm]VMlmvec(VMlogq(w\n)) ‘

l,m

n=0

=—E

n=0

= - Eq(w\n) [vvk Mlj] VMijVeC(VM IOg CI(W‘TI)) ‘

N—_—— n=0

we obtain the last step since vy, uniquely represents M.
Similarly, we can show

~Equwim [Vor, (Vv logg(w(n))] ‘ = ~Eoquim) | [Vor, Mji] Var,vec(Varlog g(wln))
——

=1

7n=0 ‘n:O

According to Eq 29, we have

- Eq(w\n) [Vvkl (Vv log Q(W|77))} ’n:O

= — Eqywim) [le Mij] VM”vec(VM log q(w\n)) ‘
—_——

=1

n=0

= — VQC(Eq(u,vm) I:VJ\/IUVM 10g q(W|T])] )‘nzo
=vec(Va, (M + MT))

zvec(I,»j + Iji)

Similarly, we have

—Eqwin) [V% (Vv log q(w|n))} ‘ = Vec(VMji (M + MT)) = vec(Iji + Iij)

Therefore, the FIM of the M block contains two identical columns/rows and it must be singular.

D.2. Gaussian with square-root covariance structure
Let’s consider a global parameterization 7 = {u, X}, where X is the covariance and g is the mean. We use the following
Parameterizations:

T ={peR’, ZesP?

A= {p,ERp, AERZJ:ZFP

n:={6 €RP, M e S*?}.
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and maps:

b=vn={ e

b= ={ Ll iy |

Now, we will use the fact that that M is symmetric. Under this local parametrization, we can re-expressed the negative
logarithm of the Gaussian P.D.F. as below.

—
>T MT

—log g(w|n) = log |A;Exp(AM)| + L (p, + A — w)TA; TExp(-M)A; (g, + Ad — w) + C

where C'is a constant number and Ay = {p,, A;} is the auxiliary parameterization evaluated at iteration .
Like Sec D.1, we can show the FIM w.r.t. 7 is block-diagonal w.r.t. two blocks— the & block and the M block.

Now, we show that the FIM w.r.t. block § denoted by F; is I5 when we evaluate it at 5, = {89, Mo} = 0.
Fs5(19) = —Eqquim [V3log q(win)] ‘
= Eqwim [W (EXP(—M)At_l(#t + A — W))} ‘

i [ (5 AT - )] |
=1

n=0
n=0

n=0

where we use the fact that Exp(—M) = I when M = 0 to move from step 2 to step 3.
Now, we discuss how to compute the FIM w.r.t. M, where we explicitly use the fact that M is symmetric.

LetZ = A, (u, + A6 — w)(p, + Ad — w)T AT, By matrix calculus, we have the following expression.

3Var, (e + Ard — w)TATTExp(-M)A; (11, + Ard — w)]
=3V, Tr(ZExp(—M))
=1Tr(ZV, (M + IM? + O(M?)))

Therefore, we have

1
IV [(py + Ad — wW)TAT T Exp(-M)A; (1, + Ad —w)] = —1Z + 1(ZM + MZ) + O(M?)Z

By Lemma 7, we can re-express the gradient w.r.t. M as

—Vulogg(win) = 1(I+CM)) —3Z+ i(ZM +MZ) + O(M*)Z (40)
N———

1
V u log |5 Exp(M)|

Finally, we have the following lemma to compute the FIM w.r.t. M (denoted by F ) evaluated at 7, = O.

Lemma 14 —E ) [V, Varlog g(wn)] ‘ = 1V, M. The claim assumes M is symmetric.
n=0
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Proof

q(w|n) I:VJM VM IOgQ(W|77)] ‘7]:0

o [VM (3 com) - 12+ 1M+ M2 - OMZ) || byEa0)

n=

— [VM” (3M+om?))] ‘n:o +3Va, COM)|
=0

i (o) o],

e, ()

where we use the fact that E ) [Z] = Eq () [At_l(ut + A0 —w)(p, + A6 —w)TA;T| =Tevaluated at n =

move from step 2 to step 3.
Therefore, F/(170) = 21

Now, we discuss how to compute the Euclidean gradients. Recall that

B=p,+ A
> = AExp(M)AT

Let £ := E, ) [{(w)] — vH(g(w)). By the chain rule, we have

=0
Vs. L = [V(sip, Vﬂﬁ + TI‘( [V&.Z] Vzﬁ)
— [V5,6] ATV,L

VM.,.CZ [V]w”/,ll} \Y% ,C-i-TI‘([V]uijz]]Vzﬁ)
———

}T

= Tr(A¢[Var, Exp(M)]A{ VL)

Therefore, when we evaluate the gradient at 7, = {89, Mo} = 0, we have

VoLl o= [V5,6] ATV L
Var, L], _o = Tr(A¢ [Var, Exp(M)] AT VL),

where note that Exp(M) = I + M + O(M?) and its gradient evaluated at 17 = 0 can be simplified as

VJ\/[”. EXp(M)‘n:O = VMUM + O(M) [VMU M} ’7]:0 = V]y[ijM

=0

Therefore,

VL], o =A{V.L
Vi, £l,_o = Al [V=L]A

(41)

0to
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Recall that the FIM w.r.t.  and M are I and %I, respectively. In other words,

I o
Fn(’?o) - |:0 §I]VI:| )
which implies that Assumption 1 is satisfied.
Therefore, the natural gradient w.r.t. § is g5 = A; V,,£. The natural-gradient w.r.t. M as §,; = 2A] [VsL]A,.

Therefore, our update in the auxiliary parameter space is
Mgy S By — BS;lg#
Aiiq + AExp(— BA] ggAy) (42)

recall that A = AtExp( - 6%§M).
Now, we show that Assumption 2 is also satisfied. Since {u, X} = 7 = ¢ o ¢, ({6, M}), where A; = {1, A}, we have

= veon (b = [asimin

It is easy to see that 1) o ¢y, (1) is C*-smooth w.r.t. n.

Since we have shown Assumption 1 is satisfied, we have F,,(n,) is non-singular. By Lemma 5, we know that both F-(7;)
and the Jacobian matrix V,, T evaluated at 1), are non-singular. By the inverse function theorem, we know that there exist a
(local) inverse function of 4 o ¢y, () at an open neighborhood of 7, which is also C 1_smooth.

Therefore, we know that {p1, £} = 7 = 1 o ¢, ({8, M}) is locally C'*-diffeomorphic at an open neighborhood of 7.

D.3. Our NG Updates for the 1-Dim Bayesian Logistic Regression

Now, we consider the following parameterization 7 = {; € R, log o € R} for a Gaussian distribution g, where o2 is the
variance and o > 0. The FIM under this parameterization is

o2 0
Fr(r) = [ 0 2
The standard NGD using this (global) parameterization T with step-size 8 > 0 is

4 p— Bog,

Jlog o
logo < logo — ﬂ%gloga =logo — 5% (20%g,2) = logo — Bo?g,e

Recall that our local-parameter approach also includes the standard NGD as a special case shown in Appendix F. We can
also similarly show that the standard NGD on parameterization 7 = {, log o} obtain an equivalent update.
For our local-parameter approach, consider the following parameterizations:

T={peR o %2>0}

A={peRbeR\{0}}

n={0 eR,meR}

= onm = ]

where 02 = b2 is the variance.
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Our NGD update (see (38)) under these parameterizations is

p4= =B 2g, = p — Bog,
b+ bexp(Bb2g,2) <= logbh « logh+ Bo%g,>, weassumeb > 0 for log(b) otherwise we use log(—b)
~—~—
—logo
where we use the exponential map.

Consider another set of parameterizations for our approach:

T ={uecR,0?>0}
A={peR,acR\{0}}
n={eR,meR}

] =i =] e |

asexp(im)

2

where 02 = a? and the red term % appears since we use the same parameterizations as Glasmachers et al. (2010).

Our NGD update (see (12)) under these parameterizations is
2 2
W p— fBa g,u*,ufﬂa 9u
a + aexp(—Ba’g,2) <= log(a) + loga — Bo*g,2, we assume a > 0 for log(a) otherwise we use log(—a)
——

logo

Therefore, we can see our NG updates including standard NGD in global parameterization 7 = {1, log o} in this univariate
case are all equivalent under these parameterizations and maps. We could also use map h(-) defined in Sec.3.5. As shown
in (16), this map matches the first two order and in practice, there is no difference between these two maps in terms of
performance.

For (Euclidean) gradient descent (GD), it is not invariant to these parameterizations. Let’s consider a unconstrained
parameterization {u, log 02}. The GD update under parameterization {, log o2} with step size 8 > 0 is

= p— Bgu
log o2 « logo? — BYiog o2 = log 02 — B(0%g,2)

Now, we consider another unconstrained parameterization {y, log o }. The GD update with parameterization {y, log o} step
size 3 > 01is

= — Bgy
log o < logo — Bgiog s = logo — B(20%g,2) <= logo? < logo? — 48(c%g,2)

Clearly, GD is not invariant to the change of parameterizations and its performance depends on the parameterization even in
this simple case.
D.4. Difficulties of the standard NGD involving structured covariance/precision

Before we discuss issues in structured cases, we first revisit cases with full covariance, where we have a Kronecker structure.
This Kronecker structure plays a key role for computational reduction. Unfortunately, this structure could be missing in
structured covariance/precision cases.

D.4.1. CASES WITH FULL COVARIANCE

Let’s consider the following parameterization 7 = {u, vec(X)}, where X is the covariance and p is the mean The
negative-log Gaussian distribution is — log ¢(w|g, vec(X)) = 1 [log | 2| + Tr(Z ™" (w — p)(w — p)7)]. The FIM under
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this parameterization is

F,(m) = -E, [Vf_ log q(w|7')]

_E, { »! Viee) S (w ( — 1) ]
Vi) ® “w—p) 3 Viees) log 2]+ Tr(2~ Yw — p)(

B I >t [Viee(s) B~ ]]E [( N)]
[V B Bl = )] 3 ([P Log 8] + Te([P )27 B, [(w = ) (w — w)7))
= 0
|0 Hess(f(E))}
_ _F;L(T) 0
. 0 Fvec(E)(T):|

where Vo = E, [(w — p)(w — p)T] = 3 is considered as a constant,
F(X) =1 [log |X|+ Tr(X~'Vy)]
Hess(f( )) Vvec(E f(z)

Similarly, let’s consider another parameterization T = {p, vec(S)}, where S is the precision. The FIM under this
parameterization is

F,(r 0
Fr(r) = { #é ) Fiec(s) (7')]
P 0
B [0 vzec@f(Sl)]
where V is a constant used in function f(-) defined above and the value of Vj = S~

Let’s denote a Euclidean gradient of E, [¢/(w)] w.r.t. 3 by Gy, where £(w) is a model loss function and ¢(w) :=
N (W], X). We also denote the corresponding natural-gradient w.r.t. ¥ by Gy,

Since the FIM is block-diagonal, we see the FIM block for the vector form of this precision vec(S) is
Fuec(s)(T) i= Viee(s) (871
Note that this FIM block has a Kronecker form as Feo(5)(T) = %(S_1 ® S~ 1) for vec(S). The natural gradient for vec(S)
is
vee(Gs) = Byee(s) = (Fvec(S)(T))ilveC(GS) =2(S ® S)vec(Gy)
where vec(Gs) = 8yec(s) is the Euclidean gradient w.r.t. vec(S).
Exploiting the Kronecker structure, we can convert this vector form of natural-gradient in a matrix form as
Mat(§yec(s)) = Mat(2 (S ® S)vec(Gg)) =2S(Gs)S  (exploiting the Kronecker structure)

= —2Gg-1 (using matrix calculus)
= —-2Ggx
= —Eqyw) [Vil(w)] (using Stein’s identity),

which is the natural-gradient for the precision matrix S.
D.4.2. ISSUE INVOLVING STRUCTURED CASES

In low-rank Gaussian cases, as an example, consider the following parameterization 7 = {u, a} where o := [Z] and
% := vvT + Diag(d?). The FIM under this parameterization is

»! 0

Fr(m) = 0 Hess(h(a))
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where Vj = X is considered as a constant, X is considered as a function of «, and

he) = f(Z())
Hess(h(a)) := V2, f(2(e))

There are several issues about NGD for structured Gaussian cases, which lead to a case-by-case derivation for structures.

e One issue is that F', (7) can be singular for an arbitrary structure as shown in Appendix J.1.6.

e A critical issue in that F, (7) = Hess(h(a)) may not have a Kronecker form exploited in full Gaussian cases. Without
the Kronecker from, a computational challenge is how to efficiently compute
g, = Hess(h(a)) g,

e Note that g, depends on Gy = %Eq [V%UE(W)]. If we want to make use of second-order information via Stein’s
identity, another computational challenge is about how to re-express Hess(h(a))~'g,, in terms of Gy and how to
efficiently compute natural-gradients for e without computing the whole Hessian V2 ¢(w).

E. Wishart distribution with square-root precision structure

Let’s consider a global parameterization 7 = {S,n}. The PD.F. of a Wishart distribution under this parameterization is

n —

-1
A(W|T) = exp{ =3 Te(SW) + L — log W] — = log 2 + 7 log S| — log T, ()}

where W is a p-by-p positive-definite matrix. The parameterization constraint for Wishart distribution is n > p — 1 and
S € S7F, where SV, denotes the set of p-by-p positive-definite matrices.
We start by specifying the parameterization,
T:={neR, SeSYP | n>p-1},
— PXp
A:={beR, BeRyY
n:={0eR, MeS?},

and their respective maps defined at A; := {b;, B;}

[3)-w00-{ o2 )

{ ]g } = ¢y, (n) = { Btgltx;(&M) }

where f(b) = log(1 + exp(b)) is the soft-plus function.
For simplicity, we assume M is symmetric. We can also exploit structures in the Wishart case.
Under this local parameterization, we have the following result.
~1og q(W|n) = (f(b: + 8) + ) Te(B:Exp(M)Exp(M)" Bf W) — (f(b; + ) — 1) log |[W]|
—(f (bt +6) + c)plog(f (be + 6) + ¢) = 2(f (b + ) + ¢)(log [Exp(M)]| + log [By|)
+log Ty (f (b +0) + ¢)

p—1

where ¢ = 5 -

Lemma 15 Under this local parametrization 1, ¥, () is block diagonal with two blocks—the & block and the M block.
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Proof The cross term at 17y = 0 is

~Eywim) [VsVar loga(Win)]|, g
=Vs2(f (bt + 6) + ©)Equim [Bf WB; — 1|
=Vs2(f(by+6) +c) [I-1] |

N——

=0

n=0

n=0
=0
where we have the fact that E, |, [W] |77:0 =B, "B; ..
Let Z = Bl WB; First, we consider the following result.
V r,, Tr(B,Exp(M)Exp(M)"B{ W) = V1, Tr(ZExp(M)Exp(M)7)
= Tr(Z [V u,,Exp(M) | Exp(M)” + ZExp(M)V y,, [Exp(M)])
By Lemma 8, we obtain a simplified expression.

Vr [B:Exp(M)Exp(M)"B}{ W] = 2Z + (ZM" + M"Z) + 2ZM + ZO(M?)

By Lemma 7, we have

—Vy log [Exp(M)| = ~I - C(M) “3)

Now, we can compute the FIM w.r.t. block M as follows. Note that we also numerically verify the following computation
of FIM by Auto-Diff.

—Eywin) [V?w log Q(W|17)] |,7:0
=Eywim [(f(be +8) + )V [2Z + (ZM"T + M"Z) + 2ZM + ZO(M?) — 21 — 2C(M)]] |
=[(f(be +8) + ) Var 21+ 2M” + 2M — 21 + O(M?)]]|

n=0
—2[(f(be +6) + )] Vi [C(M)] |n:o

—_— ——————
=0

n=0

=[(f(br +0) + Vi [2M" +2M + OM?)]]], _,
=2(f(bs) + ¢)Var (M + M)

where we use the fact that E ) [Z] = Eyqvn) {BfWBt} = I evaluated at 7 = 0 to move from step 2 to step 3.
When M is symmetric, we have F (1) = 4(f(b:) + ¢)I = 2n,1L.

Next, we discuss how to compute the FIM w.r.t. 8. Let z(8) := [Tr(B;Exp(M)Exp(M)"B{ W) —log |W|—plog(f(b; +
§)+c) —p—2(log |[Exp(M)| +log [By|) + ¢, (f (b +8) + ¢)], where ¢, (z) := V, log ', () is the multivariate digamma
function.

First, let’s observe that

exp(b; + 0
—V;log g(Wn) = 2(5)He)£pf(bt+)6)

Similarly, we have

exp(bs + 9)

] exp(b; +9)
"1+ exp(b, +9)

~Vilogg(Wn) = 2(5) [V T+ exp(by + 0)

+ [Vs2(0)]
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Let’s consider the first term in the above expression.

exp(b + 0) ]

1+ exp(b; + 9) [ exp(b; +9) ]
"1+ exp(by + 0)

29[V exp(b +0) "1+ exp(by +9)

= —[Vslog q(W|n)]

Note that 5, = {My, do} = 0. We have the following result.

exp(b; + 0) ]
T+ exp(b; + 0)- 'm=0

B 1+ exp(b; +9) exp(by +9)
=~ Eyovin [Vslogd(Win)] |, ( exp(bs + 9) Vo1 + exp(b + 5)D =
=0 (see Eq (27))

Eqwim [2(0) [V

Now, we consider the second term. Note that

[ng(é)] ~exp(by +9) P

~ 1+exp(b +0) (- f(by+0) +c + Dy (f(by +8) +¢))

where Dy, ,(x) = Vb, (z) is the multivariate trigamma function.
Therefore, we can compute the FIM w.r.t. § as follows.
Fs(n) = ~Eyim [V3loga(Win)]|, _, = V(= s
e n=0 1+ exp(by) 2f(be) +p—1

— (R (- 24Dy, ()

Dy, (100 + 200)

Now, we discuss how to compute the Euclidean gradients. First note that

ne=2(f(b+5) + 250

V=8 =2(f(b +0) + %)BtEXp(M)EXp(M)TBtT

where we will evaluate n and V at § = 0 and M = 0.

Let £ := E, ) [{(w)] — vH(gq(w)). By the chain rule, we have

Vsl :=Te([VvL][VsV]) + [V L] [Vsn]
VM”[, = TI"( [V\/ﬁ] [V]uijV]) + [Vnﬁ] [VMU’II]
=Tr([VvL] [V, V])
= —Tr([VvL] V[V, V']V)
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Note that

VsL|,_o = Te([VvL][VsV]) + [VaL] [Ven]], _,

_ -1 exp(by) . e
C2(f(be) + B5)2 1+ exp(bt)T ([VvL]B "B ) +

2 exp(by)
1+ exp(bt) [7:£]

~ 2exp(by) -1 . I
1+ exp(by) 4(f(b) + E)zT ([VvL]B, "B ) + [VaL])
_ 2exp(by) 1.

T Ttexp(by) ' n (= T ([VvL]B . T+ [VaL))
 senb) |, T(VVEVY

N 1+exp(bt)(_ ny + [Vnﬁ])

Vi, £, o = ~T([Vv LV [Var, VTIV)|,
= —nTr([Vv L]V [B:Vay, ( MJrMT)BT]Vt)
= —nTe([Vv L] ny ' By "B, [B;Var,, (M +M")B] | n; 'B;"B; )
%,_/ N———
-V, -V,
= —n, ' Te([VyL]|B; " [V, M +M") B )

when M is symmetric, we have

2 -1 -T
vMﬁ\n:O = —Eﬂ(Bt [VvL|B; )
2exp(by) —Tr([VvL]Vy)
VsL = VL
J |n:0 1+ exp(b:) [ ny +1 ]
where we use the fact that [Vy L] is symmetric.
In the symmetric case, the FIM w.r.t. n at 1, is
2’[’LtIM 0
F (T’ ) = exp(bt 2 2 ng )
i 0 (&) (= 2+ Dup())
which implies that Assumption 1 is satisfied.
The natural gradients are
. 1 | -T
N 2(1 +exp(by)) . 2p ng -1~ T ([Vv L] Vy)
= (— — 4+ Dy ,(— _ nL
gs exp(bt) ( ny + "/Jvl”( 2 )) [ ng + [V ]]

where VL and V,, £ can be computed by the implicit reparametrization trick in the following section.

Therefore, our update with step-size /3 is

Bt+1 < BfEXp(O — BgM) = BfEXp(%B;l [VV,C] B;T)

t

2ﬁ(1—|—exp(bt))( 2p (nt))_l[—Tr([Vvﬁ]Vt) V]

bt+1 < bt + (0 — ﬁg(;) = bt — exp(bt) VL (44)

We can similarly show that Assumption 2 is also satisfied by the inverse function theorem as discussed in Gaussian cases
(see Appendix D.1) since the soft-plus function f(b) and Exp(M) are both C''-smooth.
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E.1. Reparametrizable Gradients

Recall that we can generate a Wishart random variable W due to the Bartlett decomposition as shown below. W =
LOQQ'L”, where L is the lower-triangular Cholesky factor of S~ = V and € is the random lower-triangular matrix
defined according to the Bartlett decomposition as follows

c1 0 0 0

n21 Co 0 0

Q= [n31 m32 c3 0
ng1 Md2 Nd3 "' Cq

where the square of diagonal entry ¢? is independently generated from Gamma distribution with shape % and rate %,
and other non-zero entries 7;; are independently drawn from standard normal distribution.

Let £ = E, [¢(W)]. According to this sampling scheme, we can clearly see that Wishart distribution is reparametrizable.
The gradient w.r.t. V can be computed as

VL = By [V (W) (LOQTLT) |

Since Gamma distribution is implicitly re-parametrizable, we can also compute the gradient V,, £; thanks to the implicit
reparametrization trick (Figurnov et al., 2018; Lin et al., 2019b) for Gamma distribution.

E.2. Riemannian Gradient Descent at U

min ¢(Z)

PXp
Zesh

Instead of optimiz{ng Z, we optimize U = Z~'. A Riemannian gradient (Hosseini & Sra, 2015; Lin et al., 2020) in the
manifold 81" is G = U(Vy () U. The RGD update with retraction and step-size 31 is

2
U+ U-BG+ %G(U)*G.

Due to matrix calculus, we have V z{ = fU(VUé) U. We can re-express the RGD update as
B -1
E.3. Gradients Evaluated at the Mean

Recall that the mean of the Wishart distribution as Z = E,[W] = nS™' = n'V. We can approximate the Euclidean
gradients as below.

Vv, Egw) [6(W)] = Tr(V20(Z) Vv, (nV)) = nV z,,((Z)
VnEq) [((W)] = Tr(VZU(Z)Vn(nV)) = Te(VZU(Z)V)

where Z = n'V.

Therefore,

Gv, ® nVUZy),  gn, = Tr[VUZ:) V]

t
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F. Standard NGD is a Special Case

The standard NGD in a global parameter 7 is a special case of using a local parameter 0. For simplicity, we assume T is
unconstrained and the FIM is non-singular for 7 € €2 . In this case, we choose the auxiliary parameter X to be the same as
7. The map 1) o ¢, (n) is chosen to be

T=PA) =X A=, M) =X +n.
Theorem 1 Let F,, and ¥, be the FIM under the local parameter 1) and the global parameter T, respectively.

Fpn(no) = Fn(0) = Fr (1)

It is obvious that Assumption 2 is satisfied since the map is linear. Since F.-(7;) is non-singular, we know that Assumption
1 is satisfied due to Theorem 1. Since T = 9 o @, (1) = A¢ + 7, by the chain rule, we have g,, = [VoTlg., =8,

Therefore, the NGD update with step-size 3 in this local parameterization is
n"" =0 — gF,(0)"'g, = —BF. (1) 'g,,
Finally, we re-express the update in the global parameter as:

Tip1 =Yooy, (M) =1+ 0" =7 — BF. (1) 'g,,

which is exactly the NGD update in 7.

F.1. Proof of theorem 1

Note that 7 = v o ¢x,(n) = At + n = 7+ + 1. Now, we will show that the FIM under the local parameter 1 can be
computed as

F(0) = —Equim [V loga(wn)] |, _,
= —Eqywin) [V [ VT Vi log g(w|7)]]|
I

n=0

il e
= q(w\mH nT| Ve [Vr 10ng(W\T)H|
[ ]]
[ J]

Eqwim |V [V log g(w|T)

= ~Eywim) [V [V loga(w|T)]] |, _,
= q(w‘.,-) V,- [V logq W|T |
=Fr(74)

T=T¢

G. Univariate Minimal Exponential Family Distributions

Using Lemma 5, we can generalize the indirect method of Salimbeni et al. (2018) to compute natural-gradients for univariate
minimal EF distributions using a local parameterization. Salimbeni et al. (2018) only consider the method for multivariate
Gaussian cases using a global parameterization.

Note that the main issue to perform the standard NGD update in the global parameter space is that the NGD update in 7
may violate a parameter constraint. However, we can perform a NGD update in an unconstrained space (e.g., the auxiliary
space of A ) if the natural gradient computation in the space of unconstrained space of A is simple. Salimbeni et al. (2018)
suggest using the indirect method to compute natural gradients via Auto-Differentiation (Auto-Diff).

For univariate minimal EF distributions, we can also use this indirect method to compute natural gradients. We consider a
class of univariate EF distributions. We make the following assumptions for the class of distributions: (A) Each distribution
in the class contains separable natural parameter blocks so that each parameter constraint only appears once in a block and
each block only contains a scalar parameter. (B) The natural gradient w.r.t. the natural parameterization is easy to compute.
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We choose the natural parameterization as a global parameterization T with K blocks: ¢(w|7) = B(w) exp({(T(w), T) —
A(T)), where B(w) is the base measure, A(T) is the log partition function'®, and T(w) is the sufficient statistics. A
common parameter constraint in 7 is the scalar positivity constraint denoted by Si .. For simplicity, we assume Si 4
is the only parameter constraint. Common univariate EF distributions such as Bernoulli, exponential, Pareto, Weibull,
Laplace, Wald, univariate Gaussian, Beta, and Gamma distribution all satisfy Assumption A. Assumption B is also valid
for these univariate EF distributions since we can either compute the natural gradient §.., via the Euclidean gradient w.r.t.
the expectation parameter (Khan & Lin, 2017) or use the direct natural gradient computation when K is small (X < 3 in
common cases).

Given a distribution in the class, we consider the following parameterizations:

meSi, A1 m
T = , A= |---| eRE, n:i=/1-: e RX
TK € SiJr AK K
and maps:
f(A) A +m
T=9pA) = | o |, A=¢5 (M) =A+n=
f(k) Akt + 1K
where f(b) := log(1 + exp(b)) is the soft-plus function!” and 7 is the natural parameterization.
In this case, we can easily compute the Jacobian, where V f(b) := 1?;2;17()17) .
V(Aie)
Vn‘l" = Diag( e )
n=n0=0 ViAk.)
By Lemma 5, we have
~ =T .
9n, = [VTIT] 9-, n=0

where natural-gradient §.., can be computed via the Euclidean gradient w.r.t. its expectation parameter or via direct inverse
FIM computation as below

g‘rt = (FT(Tt))_lth
= (v_’_m)flg-’_t
= 8m

where m = E, [T (w)] = V,A(7) is the expectation parameter and F(7;) = VZA(7;) is the FIM which is non-singular
due to the minimality of the distribution.

Our update in the auxiliary parameter space is
A1 < Ao + (=B, (45)

Since A = ¢,,(n) = A + 1, we can easily show that 9y, = 9x,- In other words, our update recovers the standard NGD
update in an unconstrained space of .

Air1 < A — B3Ga,,
which recovers the method proposed by Salimbeni et al. (2018) in multivariate Gaussian cases.

Therefore, by choosing A = ¢y, (1) = A; + 1, Lemma 5 generalizes the indirect method proposed by Salimbeni et al.
(2018).

16 exp(-) is the scalar exponential function and do not confuse it with the matrix exponential function Exp(-). A(T) is C2-smooth
w.r.t. 7 as shown in Johansen (1979).
"We use the soft-plus function instead of the scalar exponential map for numerical stability.
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G.1. Discussion about the Indirect Method

Salimbeni et al. (2018) propose an indirect method to compute natural-gradients via Auto-Differentiation (Auto-Diff) for
multivariate Gaussian with full covariance structure via a unconstrained parameter transform. We have shown that this
method is a special case of our approach by using a particular local parameterization and have extended it to univariate
minimal EF distributions by using Lemma 5.

The indirect approach requires us to first define one parameterization 7 so that natural-gradient g.. is easy to compute under
this parameterization. To compute natural-gradient in a new parameterization 7, the indirect method avoids computing
the FIM F,,(n) by computing the Jacobian [V,. 77] instead. Unfortunately, the Jacobian matrix computation can be very
complicated when it comes to a matrix parameter. Salimbeni et al. (2018) suggest using Auto-Diff to track non-zero terms
in the Jacobian matrix [V,.n] (e.g., m can be a Cholesky factor of S and 7 = S is the precision matrix in Gaussian cases
with a constant mean) and to perform the Jacobian-vector product as shown in Lemma 5.

However, this indirect method has several limitations when it comes to a structured matrix parameter 1) such as structured
Gaussian and Wishart cases.

e The parameterization transform used in this indirect approach often requires the Jacobian matrix [V,.n] to be square
and invertible (see Lemma 5). For a new structured parameter 7, the Jacobian between 7 and 1) can be a non-square
matrix and therefore the classical parameter transform rule fails (e.g., Lemma 5). Furthermore, it is difficult to
automatically verify whether the Jacobian is invertible or not even when the Jacobian is a square matrix.

e The existing Auto-Diff implementation of the Jacobian-vector product requires us to compute a dense natural-gradient
g, (e.g., gy, has to compute the Hessian matrix in Gaussian cases with a constant mean) beforehand, which is not
efficient for a sparse structured parameter 7.

e For a structured Gaussian NGD with second-order information, the Auto-Diff system has to first record non-zero entries
in the Jacobian matrix from a structured parameterization 7} to the precision 7 = S and then query the corresponding
entries of natural gradient g, for the precision (which can be expressed in terms of Gg-1 = %Eq [Vfuf (w)} via Stein’s
identity (Khan et al., 2018)). Since Auto-Diff does not know how to organize the required entries in Gg-1 in a compact
and structural way, Auto-Diff may perform too many Hessian-vector products to obtain the entries in G g-1 even when
we allow Auto-Diff to compute g, on the fly.

e It is also unclear whether the Jacobian matrix [VTn] is sparse even when the parameter 7 is sparse.

e As demonstrated by Lin et al. (2020), the indirect method via Auto-Diff could be inefficient and numerically unstable
for matrix parameters such as multivariate Gaussian cases with full precision 7 = S.

The flexibility of our approach allows us to freely use either the indirect method (see Eq (26)) or the direct method (Eq
(7)) to compute natural gradients. By using a proper local parameterization, we can directly compute the natural-gradient
Fy(no)~! gno without computing the Jacobian matrix. As shown in the main text, our update recovers the direct method
suggested by Lin et al. (2020). Moreover, we can easily exploit a sparse structure in a matrix parameter as discussed in Sec.
4 of the main text. Our structured updates also reduce the number of Hessian-vector products.

The indirect method is also related to the Riemannian trivialization method (Lezcano Casado, 2019), where the unconstrained
transform is considered as a push-forward map. In the trivialization method, the authors suggest doing a unconstrained
transform and then performing Euclidean gradient descent in the trivialized (unconstrained) space. Unfortunately, the
update via a trivialization (e.g., Euclidean gradient descent in a unconstrained space) can converge very slowly as shown in
our experiments (see Figure 3a in the main text). In variational inference, the Riemannian trivialization method is known
as the black-box variational inference (Ranganath et al., 2014). Khan & Lin (2017); Lin et al. (2019a) demonstrate that
natural-gradient variational inference converges faster than block-box variational inference.

The Riemannian trivialization method is different from the natural-gradient transform method suggested by Salimbeni et al.
(2018). In the method of Salimbeni et al. (2018), the authors suggest using a unconstrained global parameterization and then
performing natural gradient descent in the unconstrained space. As shown in this paper, our approach contains the method
of Salimbeni et al. (2018) as a special case.
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H. Finite Mixture of Gaussians

In this appendix, we consider the following Gaussian mixture distribution ¢ with K components.
W|T Z N W‘/J’ka )

where 7 = {;,, S }5! and Sy, is the precision matrix of the k-th Gaussian component.

As discussed in Lin et al. (2019a), the FIM of ¢(w|n) can be singular. Therefore, Assumption 1 is not satisfied.

We define \,, = 1og(7’:—}’i) = 0, where 7, = i . However, we can consider the Gaussian mixture as the marginal distribution

of the following joint distribution such that f q(w, z|T)dz = q(w|T).

q(w, 2[7) = q(z[A:)q(wlz, 7)
K-1

q(z|Az) = eXp(Z I(z = k))\zk —A.(A2))
k=1

M=

q(wlz, T) = exp ( I(z =k) [—%WTSICW + WTSk[,Lk] — Ay(T, z))

k=1

where B(py,,Si) = 3 [pESkpy, —1og|Sk/(21)]], Aw(T,2) = S Iz = k)B(py, Sk), A-(A.) = log(1 +
o exp(Any)-

As discussed in Lin et al. (2019a), the FIM of the joint distribution ¢(w, z|7) is not singular. To solve a variational inference
problem, Lin et al. (2019a) consider the following problem with v = 1 in Eq (1).

i E W,z Z - )
e Sroe ()] = M)

where we use the entropy of the marginal distribution ¢(w). This approach has been studied by Agakov & Barber (2004).

This formalization allows us to relax Assumption 1 and use the joint FIM instead. Lin et al. (2019a) further show that the
joint FIM is block-diagonal for each component.

Therefore, we use the following parameterizations:
7:={p;, € R?, SkESpo}k .
Ai={p, eRP, By ¢€ R’jri”}k:l
n:={6, €R?, M, € prf’}sz1
and maps are defined as
BN = {$ )
®x, (1) = {Prx, (M }k 1

M o Ky
-7
By | ) me By ok
{ Bk: } - ¢k,)\t (nk) L { Bk@th(Mk:) .
where By, ; denotes the value of By, at iteration ¢ and Ay = { g}, ;, B¢ }le.

We can show that Assumption 2 is also satisfied as discussed in Gaussian cases (see Appendix D.1).

Natural gradients w.r.t. 5 and M}, can be computed as below, which is similar to (36).

1 R 1 _
95, = ;kBk,}fv#k£3 gy, = _aBké [kaﬁ]Bk,? (46)
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where £ := Eyw,) [((W)] — vH(g(w)) and ), = +.

Therefore, our update for the £ Gaussian component is

B e
My o1 < Mg — aBk,tTBk.;vukﬁ

By i+1 < Bi¢h( b

Tk

B[V, L]B]) (47)

where 7, = %

Euclidean gradients V,,, £ and Vy, £ can be computed as suggested by Lin et al. (2019a), where we use second-order
information to compute Vs, £. Lin et al. (2020) also show that we can compute Vy, £ by first-order information if
second-order information is not available.

Vi £= Equ) 1605 Vo b(W)]
Vs, £ = 5B [6: Vi, b(w)]
= 3wy [TR0kSK(W — 1) Vi b(w)]

where 8, := N (w|p,, Sk)/ Zle 7N (W, Se), b(w) := £(w) + vlog g(w]|T).

I. Matrix Gaussian for Matrix Weights in Deep Learning

In this appendix, we consider a matrix Gaussian for layer-wise matrix weights in a neural network, where a precision form
will be used.

MN(WIE,S;', Sy := N (vec(W)|vec(E),S™ 1)

where the precision S = Sy ® Sy has a Kronecker form, W € R¥*P is a matrix, Sy, € S¥’1¥, Sy € Sifrd, and ® denotes

++
the Kronecker product.

In this case, Assumption 1 is not satisfied since the FIM of a matrix Gaussian is singular due to the cross terms between
Sy and Sy in the FIM. However, a block-diagonal approximation for the FIM is non-singular. This approximation has
been used in many works such as Tran et al. (2020); Glasmachers et al. (2010); Lin et al. (2019a). Therefore, we relax
Assumption 1 and use the block-diagonal approximation of the FIM instead. The update is known as simultaneous block
coordinate (natural-gradient) descent in optimization.

We consider the following optimization problem for NNs with Lo regularization.

. (0%
min Eywir) [(W) + STr(WTW)| = y3(q(W]r))

where (W) = [], ¢(W;) and for each layer [, (W) is a matrix Gaussian distribution with precision matrix S; =
Si,v®S,u.
For simplicity, we only consider one layer and drop the layer index [.

Let’s consider a global parameterization 7 = {E, Sy;, Sy} We use the following parameterizations:

T = {E ERPP Sy e STF, Sy € Siﬁd}
A= {BeR™, ARy, BeRYY)
n = {A eRP. M e SP*P, Ne SdXd} .
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and maps:
E E
Sy p=9(A):=¢ AAT
Su BB'
E E, +B;TAA!
A 5=, (n) = A;h(M)
B B;h(N)

Thanks to this parameterization, it is also easy to generate samples from a matrix Gaussian MN (W |E, Sljl, S‘_,l) as
W =E + B "Mat(z)A ™!
where z ~ N/ (z]0, I).

The block-diagonal approximation of the FIM under the local parameterization 7 is given below. Note that we also
numerically verify the following computation of FIM by Auto-Diff.

IA 0 0
Fo(mo)= |0 2dIy; 0 (48)
0 0 2lIy

where the red terms are set to be zero due to the block-diagonal approximation while the black terms are obtained from the
exact FIM.

Thanks to the block-diagonal approximation of the FIM, we can show that Assumption 2 is satisfied for each parameter
block by holding the remaining blocks fixed.

Now, we discuss how to compute Euclidean gradients w.r.t. local parameterization 7. Since each matrix Gaussian
MN (WIE, Sgl, S‘_,l) can be re-expressed as a vector Gaussian A'(w|u, S™!), The Euclidean gradients w.r.t. global
parameter Tve. = {p, S} of the vector Gaussian are

8, = ap + Exiry [Vul(Ww)]
gs = 1 (aIs + Exr, [Vol(w)] —48)
where w = vec(W), u = vec(E), 2 =S™' = S, ® S

To avoid computing the Hessian V2 ¢(w), we use the per-example Gauss-Newton approximation (Graves, 2011; Osawa
etal., 2019a) as

gy ~ %(Ozlz + Enwire [VwE(w)vgg(w)] _ 7S)
Recall that
E=E, +B;TAA;"
Sy = Ath(M)h(M)" A}
Sy = B;h(N)h(N)TBT
Let’s denote g = V,,4(w) and G = Vy £(W), where w = vec(W) and g = vec(G). By matrix calculus, we have

gal = B, 'Mat(g,)A; " = B; ' (aE + Eywir) [Vwl(W)])A; " =B, (0B + Eywir) [G] )A; T

Now, we discuss how to compute a Euclidean gradient w.r.t. M. By the chain rule, we have

n=0 = Tr( [VMU E]gZ)

= —2Tr([(A; " [Var,M]A; ) @ (B, "B, V)] gx)

gM;;
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where M;; is the entry of M at position (¢, 7).

By the Gauss-Newton approximation of the Hessian, we have

gy |,y ~ ~Tr([(ATT[Var, MIATY) @ (B "B (0 + Exver) [Vul(w)Vit(w)] —7S1)

Let’s consider the first term in the approximated gy,.

~Tr([(A; T [V, M|A; ) ® (B "B, ")]als) = —aTr(B; "B, HTr(A A~ [V, M])

Now, we consider the second term in the approximated gy..

~Tr([(A; T [V, M]A Y ® (B—TB—l)}JENWW [v ow)VEe(w)])
=~ Exwirg {Tr(g [( [VM ]A_l) }

~ Byl | Tr(vec(G)T (A7 T [Var, M]ATY) @ (B, 7B )] vee(G)) |

Using the identity (B” @ A)vec(X) = vec(AXB), we can simplify the above expression as

= Te([(A " [V, M} © (B "By )] Exwir, [Vul(w) Vi 0(W)] )
=~ Byl | Tr(vec(G)”[(A [vM” MJAT!) @ (B 7B ) ]vec(@)) |
=~ Eyuin | Tr(vec(G vec[ B, "B, )G(A; " [Var, MT] A7) |
— By |Tr(GT (B, 7B )G(A; T [Var, MT]ATY)) |
=~ Eyuin | Tr(A7'GTB B GA; T [V, MT])|
= — Eyiwin) Tr( 'GTB; B 'GA; [VMijM])] (since Tr(CD) = Tr(CTD™))

where C:= A;'G"B; "B; 'GA; ", D :=V,;, M" and C" = C.

Finally, we consider the last term in the approximated gy..

|
=
>
N~
4
=

L]M] A_l) ® (Bt_TBt_l) (—’}/St))

¢ : ]
:'yTr([(A;T [VMM M] A;l) ® (B;TB;l)]St)
= Tr([(A; T [V, M]A; Y @ (B, "B )] [(A/A]) @ (B/BY)])
=Tr([(A7 T [V, M]A;H(AAY) @ (B "By (B.BY)])
=y Tr([(A7 [Var, M]AY) @ I5])
=Tr([(A7 " [Var,, M|A])) Tx(15)
=vdTr([V,M])

Therefore, we have the following expression due to the Gauss-Newton approximation.

gu,| ~—aTr(B; "B H)Tr(A™ AT [V, M]) — Eypur) [Tr(A;lc;TB;TBgleA;T [V, M])} +vdTr([V,,M])

iln=o
We can re-express it in a matrix form as

gar| & 0B B A AT By [AT'GTB B 'GAT ] + qdly
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Similarly, we can show

gv|  ~-aTr(A7TAT BB — By [Br'GATTATIGTBT] 4 aply

n=0
Our update in terms of the auxiliary parameterization is
S, Sy
TR-1 T A1
Eit1 ¢+ E,— B, B, ' [aE +Eywir) [G]) | A7 TA;

Ay Am[Z {~dvla+ aTe(BB]) AT AT + By, AT GT(BB])GAT | }]

2d
Bi < B[ { —pls +0aTx(AAT) B, BT +Ey [B'GAADTGTBT] )] @)
2p ~——
from the entropy from the regularization

from the NN loss

By adding a natural momentum term Z (Khan et al., 2018) and an exponential weighted step-size 8; = %, we can obtain
the following update for DNN with the Gauss-Newton approximation.

Zt — (1 — Cl) [OéEt + Eq(w‘.,.t) [G] )] + Clzt_l
Eij < E, — 8B, "B, 'ZA; TA;!

A Ath[g—; {~dLa + aTe(BB]) AT AT + Eyuiry [A7'GT(BB]) 'GATT] }]

Bit1 Bth[% {—pVIB +aTr((AA]) B, "B, " +Eywir,) [BflG(AtAtT)ilGTB;T} }] (50)

where G = Vi (W), ¢; and ¢ are fixed to 0.9 and 0.999, respectively, as the same used in the Adam optimizer.

The time complexity for our update above is O(d® + p?), which is the same as noisy-KFAC (Zhang et al., 2018). In our
approach, the update for A (Sy/) and B (Sy) blocks use the exact FIM block. It can be shown that the corresponding
updates for Sy = AAT and Sy = BB blocks also use the exact FIM block and our update ensures that Sy and Sy are
always non-singular. Our approach is different from noisy-KFAC (Zhang et al., 2018). In noisy-KFAC, the FIM of Sy and
Sy are approximated by KFAC. The authors have to use additional damping to ensure that Sy and Sy are non-singular.

I.1. Complexity Reduction

A nice property of our update in (50) is that we can easily incorporate extra structures to reduce the time and space
complexity. As shown in Appendix J, we can further exploit group-structures both in A and B so that the precision
S =Sy ®Sy = (AAT) ® (BBY) = (A ® B)(A ® B) has a low-rank Kronecker structure to further reduce the
computational complexity. Note that the Kronecker product of two matrix groups such as A ® B is also a matrix group
closed under the matrix multiplication. Therefore, A ® B is a Kronecker product group when A and B are matrix groups.

Recall that the time complexity of Adam for a matrix weight W & R¥*? is linear O(dp). If a block triangular group
structure (see Appendix J.1) is exploited in both A and B, the time complexity of our update reduces to O(kdp) from
O(d® + p?), where 0 < k < min(d, p) is a sparsity parameter for the group defined in Appendix J. In this case, our update
has a linear time complexity like Adam, which is much faster than noisy-KFAC. Although we present the update based on
the Gauss-Newton approximation of the Hessian, our update with the triangular group structure can be easily applied to the
case with Hessian information if each Hessian has a Kronecker form such as a example about layer-wise weight matrices in
a NN discussed in the next section.

Notice that our update can be automatically parallelized by Auto-Diff since our update only use basic linear algebra
operations (i.e., matrix multiplication, low-rank matrix solve, and the Einstein summation) , which is more efficient than
Newton-CG type updates, where a sequential conjugate-gradient (CG) step is used at each iteration.

L.2. A Layer-wise Hessian and its Approximation

We consider the following loss function parameterized by a MLP/CNN evaluated at one data point. We will show that a
layer-wise Hessian of matrix weights has a Kronecker form. This result has been exploited in Dangel et al. (2020); Chen
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et al. (2019). For simplicity, we only consider the matrix weight W at the input layer of a MLP. It is easy to extend this
computation to other layers and CNN.

(W) = c(f(Wx))

where z: is a single data point with shape p x 1, ¢(+) is a function that returns a scalar output, and W is the matrix weight at
the input layer with shape d x p.

We assume f(z) is an element-wise C?-smooth activation function (e.g., the tanh function). Let u := Wx and v :=
f(u) = f(Wx)

By the chain rule, it is easy to check that

where ® denotes the element-wise product.
Let W, . denotes the i-th row of the matrix W. We know that the shape of W . is 1 x p.
Now, we can show that the Hessian is a Kronecker product.
V., Vv, A(W) = Z(i == k) [V, 0] f" (wi)xx" + [V, Vo, €] f' (ur) f' (i) xx"
= (26 == W) [Vl 1" (i) + [T Vo £ (i) £ () ) 3"

a scalar

We assume vec uses the row-major order. Therefore, if we use w = vec(W) to denote a vector representation of W, the
Hessian w.r.t. w = vec(W) with shape dp x 1 is

Vie=_A ® (xxT)
~~ ~~— ——r
dxd Kronecker Product pxp
where A is a symmetric matrix with entry A, = Z(i == k) [V, 0] /" (i) + [V, Vo ] f (ur) f/ (ui).
Now, we discuss the Gauss-Newton approximation of the Hessian. Note that
Vi, L(W) = [[Vo, 0] f'(u:)] x"
—_—
a scalar

where ® denotes the element-wise product.

Vive LOW) [V, L(W)] = [V, 0] ' (i) [V, €] f () "

a scalar

Therefore, the Gauss-Newton approximation in term of w can be re-expressed as
B® (XXT)

where B is a symmetric matrix with entry Bi, = [V, 0V, 0] f/ (ui) f' (u;).

From the above expression, we can clearly see that the Gauss-Newton approximation ignores diagonal terms involving
f"(u;) and approximates [V, V,, (] by [V, 0V, (].

J. Group Structures

In this section, we use the Gaussian example with square-root precision form to illustrate group structures.
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J.1. Block Triangular Group
J.1.1. PROOF OF LEMMA 1

Proof Now, we show that B, (k) is a matrix group.

Ba Bp kxk doxd
Bup(k) = { { ; BD} ’BA e RK*F Bp e Do }

(0) It is clear that matrix multiplication is an associate product.

(1) It is obvious that T = I 0
0 Ip

(2) For any B € B,y (k), we have

] € Byp(k) since I4 € R’j_i’“ and Ip € Diofdo_

-1 -1 -1
o= [ ] coutn

since B;' € R¥*" and B,' € D%,
(3) For any B, C € By, (k), the matrix product is

_|Ba Bp||Cs Cp| _ |BsCs B4Cp+BpCp
BC= { 0 BD} {0 CD] - { 0 B,rCp ] € Bup(k)
since B4C4 € RY** and BpCp € Do},

J.1.2. PROOF OF LEMMA 2

Proof For any M € M,,(k), we have

where M 4 is symmetric and M p is diagonal. Therefore,

h(M) =1+ M + iM?

_—IAJFMA Mp L1 My, Mp| My Mg

o i 0 Ip +Mp 210 Mp 0 Mp

C[Ta+My Mp | M?% M Mp+MpMp

B i 0 Ip +Mp 210 MQD

_ [Ta+Ma+ M4 Mg+ 5(MaMp + MpMp) € B (k)
L 0 ID+MD+%M% P

Since M 4 is symmetric, we have T4 + M 4 + %Mg = % (IA + (T +Ma)(Ta+ MA)T) > 0 is invertible and symmetric.
Similarly, Ip + Mp + %M% is diagonal and invertible.

Thus, h(M) € By, (k). Moreover, the determinant [h(M)| > 0

J.1.3. PROOF OF LEMMA 3

Proof we consider the following parametrization for the Gaussian A (w|u,S™'), where the precision S belongs to a
sub-manifold of Siip , auxiliary parameter B belongs to By,(k), and local parameter M belongs to M, (k),

A )

A= {MGRP, BGBup(k)}v
77:2{5€Rp, MEMup(k)}'
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The map v o ¢y, (n) at A, := {;, B, } is chosen as below, which is the same as (23)

& =veen (3 = [oatiantiator

As shown in Appendix J.1.4, the FIM is non-singular. Therefore, Assumption 1 is satisfied.

In Appendix J.1.4, we show that M can be decomposed as
M = Maiag + Myp + M, + Mgy
Let Zup, Zdiag, Zasym be the index set of the non-zero entries of Myp, Mgiag, and Meym respectively.

Now, we can show that Assumption 2 is also satisfied. This proof is similar to the one at (37). The key idea is to use an
effective representation to represent T and 1.

Now, let’s consider the global matrix parameter. Let S; = {BBT|B € By (k)}, which represents the parameter space of
the global matrix parameter. Consider another set

Uy U
S ={UU"|U = [ o Uf)]}, (51)

where U 4 € R*** is an upper-triangular and invertible matrix, U is an invertible and diagonal matrix and U has positive
diagonal entries. We will first show that S; = S5 and therefore, S, represents the sub-manifold. The key reason is that U
can be used as a global parameter while B does not. Recall that in B is used as an auxiliary parameter, which could be
over-parameterized. Note that a global parameter should have the same degree of freedoms as a local parameter. It is easy to
verify that S and M, (k) both have (k + 1)k/2 + (p — k)k + (p — k) = (k+ 1)(p — k/2) degrees of freedom.

We will see that U is indeed the output of the upper-triangular version of the Cholesky method (Lin, 2021), denoted by
CholUP. In other words, if S = U; UlT € Sy and Uy = CholUP(S), we will show U; = Us. This Cholesky algorithm
takes a positive-definite matrix X as an input and returns an upper-triangular matrix W with positive diagonal entries so
that X = WW7 (e.g, W = CholUP(X)). Like the original Cholesky method, this method gives a unique decomposition
and is C'*-smooth w.r.t. its input X when X is positive-definite.

Now, We show that S; = S. It is obvious that Sy C Sy since by construction U € B,,,(k). Now, we show that S; C Ss.
Consider any S € S, it can be expressed as

S:{BA BB] [BA BB}T

0 Bp|/|0 Bp
_ [BaB% +BzBL BiB)p
- BpB%L B%

Since B is an invertible and diagonal matrix, d := abs(diag(Bp)) ® diag™'(Bp) is a vector with entries whose value is
either 1 or -1. Let U4 := CholUP(B ABE) be an upper-triangular matrix as an output by the upper-triangular version of
the Cholesky method. Consider the following upper-triangular matrix U

U~ [Ua BpDiag(d™)
|0 Diag(d)Bp

We can show that this U has positive diagonal entries. Moreover, UU” € S,. Note that Bp is a diagonal matrix. We can
show UUT = S since

BABi I
—— —_——
U, U% +BgDiag(d™?)B% BsBp
uu” = =Ses,

Diag(d)BpDiag(d™')B%  Diag(d)BpDiag(d)Bp
Bo B2,
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Therefore, S1 = S2 and we now show that U can be used as a global parameterization to represent the sub-manifold. Since
S1 = S, we can use Ss to denote the sub-manifold. Furthermore, U is indeed an upper-triangular and invertible matrix with
positive diagonal entries, which implies that U is a (upper-triangular) Cholesky factor of S € S». Note that the Cholesky
decomposition gives a unique representation. Therefore, for any S = UU” € S,, we have U, = CholUP(S).

For the local parameter, since M € M, (k), we have

[ 2

0 Mp

Since M 4 is symmetric, we can consider the upper-triangular part of M 4, denoted by triu(IM 4). Therefore, the upper-
triangular part of M is

triu(M) = {triu(MA) MB:l

0 Mp

Consider the vector representation of the non-zero entries of triu(M) denoted by my... Similarly, consider the vector
representation of the non-zero entries of U denoted by vec(U). The length of m,. is the same as the length of vec(U).
Therefore, we can use these two vector representations to represent the global parameter and the local parameter in the
structured spaces. Moreover, they have the same degree of freedoms. The remaining proof can be found at (37) by using the
inverse function theorem and Assumption 1, where we need to use the result that if S = uu?t e Ss and Uy = CholUP(S),
then U = Uy and S € S;. Moreover, for any positive-definite matrix X, CholUP(X) is C'-smooth w.r.t. X, which is as
smooth as the original Cholesky method.

J.1.4. NATURAL GRADIENT COMPUTATION FOR STRUCTURED M

we use a similar technique discussed in Appendix D.1.1 to deal with the FIM computation w.r.t. an asymmetric M. The
main idea is to decomposition M as a sum of special matrices so that the FIM computation is simple. We also numerically
verify the following computation of FIM by Auto-Diff.

Since
M4 Mg
M= [ 0 MD] € Myp(k),
by Lemma 2, h(M) is invertible for any M € M, (k). Moreover, by the structure of M, |h(M)| > 0.

Since M 4 is symmetric, we can re-express the matrix M 4 as follows. We use a similar decomposition in Appendix D.1.1.

MA = MA + M?;up + MAdiag’

up

where M 4, contains the upper-triangular half of M 4 excluding the diagonal elements, and M 4, contains the diagonal
entries of M 4.

We will decompose the M as follows
M = Mdiag + Mup + MZ;) + Masym

where Mi,, 1S a diagonal matrix, Meym is an asymmetric matrix, and M, is a upper-triangular matrix with zero diagonal
entries.

- My, 0 _ |0 Mp My, O
Md1ag — |: 0 ¢ MD:| Masym - |:O 0 :| Mup - |: O P 0:|

Note that Mgiag, Masym, and My, respectively contain the diagonal entries of M, the asymmetric entries of M, the
upper-triangular half of the symmetric part of M excluding the diagonal entries.

Recall that the FIM F,, (1) is block-diagonal with two blocks—the d block and the M block. We will can show that the M
block of the FIM is also block-diagonal with three blocks, where each block represents the non-zero entries in My, Miag,
and Mgy, respectively.
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Now, we will show that any cross term of the FIM between any two of these blocks is zero. We have three cases. Let Zyp,
ZLgiag> Lasym be the index set of the non-zero entries of Myp, Miag, and Mgy, respectively.

Case 1: For a cross term of the FIM between M, and Mg, it is zero since this is the case shown in the symmetric case
(see Lemma 13 in Appendix D.1.1 for details).

Case 2: For a cross term of the FIM between Mgy and My;,,, We can compute it as follows.

By Eq. 28 and the chain rule, we have the following expressions, where j > .

= Vi, loga(wln) = =Tr([Var,,,, M] [Varlogg(wln)])
I
— VMg, log g(w|n) = =Tr( [V, M| [V logg(win)])
——

Therefore, we have

— VM, log g(w|n) = —Asym(V s log g(w]n))
— V M, log (w|n) = —Diag (Vs log g(w|n))

where we define the Diag(-) function that returns a diagonal matrix with the same structure as Mg, and the asym(-)
function that returns a (upper) triangular matrix with the same structure as Mgym.

Notice that we only consider non-zero entries in Mygym, which implies that j > ¢ and (4, j) € Zyym in the following
expression. Therefore, any cross term can be expressed as below.

- E’I(“’l"l) |:vMasymijV1\/Idiug 1Og q(w|n):| ‘7’]:0 = _E(I(“"n) I:VA4asymij Diag(vM log q(W|T’)):| ’

n=0

= — Eqwm) Z [VMasymij Mkl]kazDiag(vM log Q(W|77)) ’n—O
k,l -
=—Eun) [VMusymij Mij] V., Diag (VM log q(w|n)) ‘nzo

L =1

= — Eqwin [VMU Diag(VM log Q(Wm)” ’nzo

= — Diag(Eq(un [V, Varlogg(win)]) ’

=Diag( Vs, M+M")) =0
N —

n=0
Ii_7‘+I_;‘7‘,

where we obtain the last step since j > ¢ and Diag(I,;;) = 0 since (7, ) € Zasym and (2, j) & Zgiag.

Case 3: Now, we show that any cross term of the FIM between Mgy, and M, is zero. Let’s denote a Up(+) function that
returns a upper-triangular part of an input matrix with the same (non-zero) structure as M,;,. Similarly, we can define a
Asym(-) function.

It is obvious see that the intersection between any two of these index sets are empty.

For any i < j, where (i, j) € Zyp, we have (i, ) & Zuym and Asym(I;;) = Asym(I;;) = 0.
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In this case, let (4, j) € Zyp. The cross term can be computed as follows.

— Eqquim) [VMU.)U V Maym 108 q(W|?7)} ‘n:o = —Eywpm [VMup”ASYm(VM log Q(Wln))} ‘

= - Eq(w\n) Z [VM“”]. Mkl] kalASym(vM IOg Q(Wm)) ’
k,l

n=0

n=0

n=0

atwlny | [V, Mis] Var,; Asym(Varlog q(win)) + [Var,, Mji] Var, Asym(Varlog g(w(n)) ‘
=1 e

= - Eq(w\n) [V]V[ij ASym(VM IOg Q(W|77)) + V]WjiASym(VM IOg Q(W|77))] ‘17:0

= - Asym(Eq(w\n) [VM” V]\/1 lOg Q(W|77) + V]WjivM lOg Q(W|"7)] )‘77:0
=Asym(Vy,,(M+M")+Vy,, M+M")) =0

Iij+Ij1 Iij"l‘Iji

where we use M = Mjag + My + MZ;, + Mgym to move from step 2 to step 3, and obtain the last step since Asym (Iij) =
Asym(Iji) =0.

Now, we compute the FIM w.r.t. Mgiag, Masym and M, separately.

Like Eq (34) in Appendix D.1.1, the FIM w.r.t. the upper-triangular block is

~Eyuin) [Vaty,, Vo, loga(wm)] | =41,

Like Eq (33) in Appendix D.1.1, the FIM w.r.t. the diagonal block is

) [VMdiagm V My, l0g q(Wln)} ’n:o =2L;

By the chain rule, the FIM w.r.t. My, can be computed as follows, where (i,§) € Lasym-

— Eywim) {VMasym“ V My 108 q(W‘n)} ‘n:O

= — Eytulm [vMasme Asym (Vs log (I(W|7l))} ’

n=0

= = Eqwin | Y [V tigm,, Mit] Vg Asym (Vs log g(w(n)) ‘
k.l

n=0

=~ Eqwim | [VMign,, Mij] Vr,; Asym (Vs log g(wn)) ’
L =1

= — Asym(Eq(upm) [V, Vs log g(win)] )‘nzo
=Asym(Vy,, [M + MT] ) (By Lemma 11)

n=0

:Iij +Ij1

where we obtain the last step since that Asym(I;;) = 0 when ¢ < j since (7, ) € Zyym and (J, ) & Zasym. Therefore, the
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FIM w.r.t. the asymmetric block is

—E(I(w‘n) |:vMasymi'VJ\4asym log q(w|n):| ‘1]:0 = I7f]

J

Like the symmetric case (see Eq (35) Appendix D.1.1) when we evaluate gradients at 17, = {49, Mo} = 0, we have
To—
Vs L, o= [Vs6] B{'V,.L
Vit £]yg = =Tr([Var, (M + MBI [V L]B )

Let’s denote G = —2B; ! [Vgﬂ] B, T Therefore, we can show that Euclidean gradients are
Gy, = Diag(Gar); G, = Up(Gu + Gy) = 2Up(Gu); G, = Asym(Gur); g5 =B;'V,.L

The natural gradients w.r.t. Mgiae, Myp, and Mgy are %Diag(G), %Up(G), and Asym(G) respectively. The natural
gradient w.r.t. § is B; 'V, L.

Natural gradients can be expressed as in the following compact form:

gt(sf)) = B;lvuﬁ

QS\Z)U = Cyp O rup( — 2B, [V=L]B; )
where

1
5Ja I

Cyp = |2 € My, (k

p {0 ;ID} p()

Therefore, our update is
Mypq < By — BBt_TBt_lgpt
By « Bih (5Cup © nup(QBt_ngtBt_T)) (52)

J.1.5. INDUCED STRUCTURES

When B € B,,(k), we can show that the covariance matrix 3 = (BB”)~! has a low rank structure. The update is like the
DFP update in the quasi-Newton family. This structure is useful for posterior approximation

Notice that the precision matrix S = BB is a block arrowhead matrix as shown below.
S =BB”
B,B) + BgBL BgBp

BpB% B%

Now, we can show that the covariance matrix > = P! admits a rank-k structure.
B,"B},! -B;"B'BgB}!
E =
ApTH-Tr-1 AT Hr-Tr-1 —1 -2
-B;, BgB, B, B, BiyB, B, BgB, +Bj
0
=U, U} + [ _2}
k BD
where Uy, is a p-by-k matrix as shown below and Uy, is a rank-k matrix since BET is full k rank (invertible).
-7
-B;
U, =
B,'BLB "
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J.1.6. A SINGULARITY ISSUE OF THE FIM

In Appendix J.1.5, we know that when B € By, (k) takes the block upper triangular structure, the covariance is a low-rank
matrix.

> = (BB?)!
- [0 0
=U,Up + [0 B2

As shown in Appendix J.1.4, the FIM F, (n,) is non-singular. Equivalently, we can use auxiliary parameterization

A € By (k) for the covariance 3 = AA” if we choose to use the covariance as a global parameterization 7 = {u, 3}.

In fact, the zero block (the k-by-k matrix) highlighted in red ensures the FIM F,,(n,) is non-singular when k& > 0. The
group structure contains such a zero block so that the FIM is non-singular. It is tempting to use a non-zero block to replace
the zero block in the above expression to get a more flexible structure. Unfortunately, the FIM F,, (1)) may become singular
by doing so.

Th singularity issue also appears even when we use a common (global) parameterization 7 for a low-rank (e.g., rank-one)
Gaussian (Tran et al., 2020; Mishkin et al., 2018; Sun et al., 2013) such as & = vv7 + Diag(d2), where v, d € R? are both
learnable parameters. For illustration, let’s consider a rank-one structure in the covariance matrix 3 € Sf_ip of Gaussians,
which is a case considered in Tran et al. (2020), where the global parameterization is chosen to be 7 = {u, v, d} so that the
covariance ¥ = vv’ + Diag(dz) has a rank-one structure. We will give two examples to show that the FIM F is singular
when 7 = {p, v,d}, where u, v, d € R? are all learnable vectors. To avoid the singularity issue, Tran et al. (2020) have to
use a block approximation of the FIM F .. Mishkin et al. (2018) also consider a rank-one matrix in the precision matrix S of
Gaussians, where an additional approximation is used to fix this singularity issue. Sun et al. (2013) reduce the degree of
freedom in a p-dimensional low-rank Gaussians such as ¥ = vvT + d?I to avoid this issue'®, where d is chosen to be a
learnable scalar instead of a vector. However, the covariance used in Sun et al. (2013) is less flexible than the covariance
induced by our group structures since the degree of freedom for the covariance used in Sun et al. (2013) is p + 1 while the
degree of freedom for the covariance induced by the block triangular group with k£ = 1is 2p — 1.

Now, we give two examples to illustrate the singularity issue in a rank-one p-dimensional Gaussian with constant mean and
the covariance structure ¥ = vv’ + Diag(d?), where 7 = {v,d} and v, d € R? are all learnable vectors.

Example (1): First of all, in 2-dimensional (p = 2) Gaussian cases with constant mean, we know that the degree of freedom
of the full covariance X is 3 since X € Sif is symmetric. It is easy to see when 7 = {v, d}, the degree of freedom in the
rank-one Gaussian case with constant mean is 4, which implies the FIM is singular since the maximum degree of freedom is
3 obtained in the full Gaussian case.

Example (2): This issue also appears in higher dimensional cases. We consider an example in a 3-dimensional (p = 3)

1 1
rank-one Gaussian with constant zero mean. Let’s consider the following case where v = |0|,andd = [1| so that
0 1

> := vvT + Diag(d?). Let a = {3] € R®. The FIM in this case is denoted by F (), where the global parameter is

7 = {v,d}. In this case, F- (o) computed by Auto-Diff is given below.

05 0 0 05 0 0
0 20 0 0 0
002 0 0 0
Frle)=105 0 0 05 0 0
0 00 0 05 0
0 00 0 0 05

wherea=[1 1 1 1 0 0] whend=[1 1 1]7andv=[1 0 0] .

It is easy to see that F. () is singular. Therefore, the FIM F, under the global parameterization 7 = {v,d} for the
rank-one Gaussian can be singular.

8When p = 1, the FIM of the low-rank Gaussian considered by Sun et al. (2013) is still singular.
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Even when we allow to learn the mean g in the rank-one Gaussian cases, the FIM F. is still singular where 7 = {u, v, d}
N~
o

. _ |Fr(p) 0 . . o _
since F, = [ 0 FT(a)] is block-diagonal and F.. («) is singular at g = 0.

J.1.7. COMPLEXITY ANALYSIS AND EFFICIENT COMPUTATION

When B € B,,(k) is a p-by-p invertible matrix, it can be written as

_|Ba Bsp
o[ o)

where B 4 is a k-by-k invertible matrix and B p is a diagonal and invertible matrix.
To generate samples, we first compute the following matrix.

-7
B~ = [ 7]7?’AT -7 0T:|
-B, BB, Bj

Given B~7 is known, for variational inference, we can easily generate a sample in O(k?p) asw = p + B~ "¢, where
€ ~ N(0,I). Similarly, Sflg# = BfTBflg# can be computed in O(k?p).
Since M € M, (k), it can be written as

[ 2

0 Mp
where M 4 is a k-by-k symmetric matrix and M p, is a diagonal matrix.
We can compute h(M) in O(k?p) when M € M, (k)

Ly + My +3M5 Mg+ 5 (MaMg + MpMp)

— Ing2
h(M):=I+M+ 1M [ 5 I0 % My IME,

Similarly, we can compute the matrix product Bh(M) in O(k?p).
Now, we discuss how to compute sy (2B;1gZBt_T)

We assume gy, can be expressed as the following form.

_ 1 |Hin Hp
8- 72 |Hy  Hy

where Hy, = HT,,.

2B 'gyBT = [E —-F'BLB," - B,'BsF + B, 'BsB;, ' Hy,B,"BLB,"  F! - B;lBBB;HmBBT]

F - B;'H»B,"BEB,” B,'Hy,B,”
where E =B 'H;;B,” and F = B,'Hy, B,
Therefore, we have

E-F'BLB," - B,'ByF +B,'BsB,'H»B,'BLB," F' - BAlBBBD1H22BDT]

—1 =T\ __
Kup(2Bt gEBt )_ [ 0 Diag(BBnggBBT)

Notice that by Stein’s identity , we have

gs = %]ELI(U}) [V?uf(w)]
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where w = 1+ B~ e and € ~ (0, 1).
For a k-rank approximation, if we can compute O(k) Hessian-vector products, let’s consider the following product.
vi|  [HuB,' -H1,B;,'BLB,”
= T “TRTp-T
V2 H21BA —HQQBD BBBA

g V)V Ve sG] [ BT
G0,V fwr,wa) V3, f(wi,wa) | [-BRTBEBT

Therefore, we have

(B3'vi — B3'BsBj'va) (Bplva)"

9B, 'gsB; ) =
Iiup( t 8x»by ) 0 BBlDiag(Hzg)BBT

(53)

We can compute this in O(k?p) since Bp is diagonal, where we assume we can efficiently compute O (k) Hessian-vector
products and compute/approximate diagonal entries of the Hessian Diag (Hgg).

J.1.8. BLOCK LOWER-TRIANGULAR GROUP

Similarly, we can define a block lower-triangular group Bow (k) and a local parameter space Moy (k).

Ba 0 do xd My 0
Buw (k) = { [BC BD} Bae R, Bp e DXl Mi(k) = { [MC MD] | My e s Mp e ploxio |

we consider the following parametrization for the Gaussian N (w|u, S™'), where the precision S belongs to a sub-manifold
of S_’;j_p , auxiliary parameter B belongs to Bjoy (k), and local parameter M belongs to M,y (k),

T .= {ILERP, S:BBTGS_Z:_j_p | BEBlow(k)}a
Ai={p R’ BeBwk)},
n .= {5 c Rp, M e Mlow(k)}'

The map v o ¢y, (n) at A; := {p;, B} is chosen as below, which is the same as (23)

no|_ o I
po\_ _ [ m+B TS
UB J o= { "’ |
We can show Assumption 1 and 2 are satisfied similar to Appendix J.1.3.

Our update over the auxiliary parameters is

Mypq < By — ﬁBt_TBt_lgm
Byt < Bih (8Ciw © riow (2B; g, B; 7)) (54)

where

1
=Ja 0
— |2
ClOW - |:JC ;ID:| S M]OW(k)

where J denotes a matrix of ones and factor % appears in the symmetric part of Cj,,. ® denotes the element-wise product,
Klow(X) extracts non-zero entries of Moy (k) from X so that Koy (X) € Moy (k). We can compute this update in O(k?p).

When B € Bjoy (k), we show that the precision matrix S = BB has a low rank structure. This update is like the BFGS
update in the quasi-Newton family. This structure is useful for optimization.
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The precision matrix S admits a rank-k structure as shown below.
T T

S=BB' = :Vng+[0 B]? Vi =
T T 2 D

B4

Bc
where Vi, is a d-by-k matrix and V, is a rank-k matrix since B 4 is full k rank.

Similarly, we can show that the covariance matrix X = S™! is a block arrowhead matrix.

B, -B;"B.B}' B! 0

E:
| 0 B! -B,'B¢B;' B!

B,"B,' +B,"BL{B,°BeB,' —B,"B{B}’

-B;’B¢B! B}’

Now, we discuss how to compute oy (2B 'lgeB; T).

Similarly, we assume gy can be expressed as the following form.

_ 1 [Hu Hp
$97 7% |Hy Hy
where Hy; = H1T2.
Therefore, we have
F 0

-1 =T
Hlow (2B gEB ) - 1 1 1 T T T 1
-B, BcF+B, E; Bj Diag [BcFBC +Hy, — BcE; — EQBc] B,

where
E1 H11 Hgl BZT HllBET
E; Hs Ho 0 HB,"

F:=B,'E, =B;'H;;B,”

Note that we have the following identity.

Diag(AB) = Diag(B”A”) = Sum(A ©® B”, column)
where Sum(X, column) returns a column vector by summing X over its columns.
Using this identity, we can further simplify the term as

F 0
HIOW(QB_lgEB_T) =
—B,'BcF + B,'Ey B! [Diag(Hss) + Sum(Be © (B¢F — 2E;), column) | B!

J.2. Alternative Structures Inspired by the Heisenberg Group

First of all, the Heisenberg group is defined as follows.

B =

S O =
O -
— oo
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where a and b are column vectors while c is a scalar.

We construct the following set inspired by the Heisenberg group, where 1 < k1 + k2 < pand dy = p — k1 — ko.

k1-by-k1 Bz
AN ——

Bu(ki, ko) = {| Ba Bs Br, | 1B, c Xk B, e ploxdo B, e RE2xk2}
0 Bp, Bp,

0 0 Bp,
——
k}2-by-k2
We can re-express the structure as follows

Bup(k1, k2) = { [BOA Ef,] By = [Bé)l gﬂ }

where B4 € R % Bp, € Diox% Bp, € RF2XM.
We can show that By, (k1, k2) is a matrix group, which is more flexible than the block triangular group.
Similarly, we define a local parameter space M, (k1, k2) as

My Mp, Mg,
Mup(kl,kZ) :{ 0 MDl MD2 MA c Slekl, MD1 c Ddoxdo’ MD4 GSk2Xk2}
0 0 Mp,

Likewise, we consider the following parametrization for the Gaussian NV (w|pu, S_l), where the precision S belongs to a
sub-manifold of Siip , auxiliary parameter B belongs to Bup(kl, k2), and local parameter M belongs to M, (k1, k),

ri= {u €eR’, S=BB” € S" | Be Bup(kl,kz))}

A:: {ILGRP, BEBup(klakQ)}7
n:={6 e R?, MEMUp(kl’kQ)}'

The map 1) o ¢y, (n) at A := {p;, B4} is chosen as below, which is the same as (23)

{ g }:1/’()\)::{ Bl];T }
[ad=onm={"hon’ b

We can show Assumption 1 and 2 are satisfied similar to Appendix J.1.3. Our update over the auxiliary parameters is
Mypq < By — BB;TBglgm
By ¢ Bih (8Cy © ki (2B] g, By 7)) (55)

where © denotes the element-wise product, ,,(X) extracts non-zero entries of M, (k1, k2) from X so that k£, (X) €
Mp (K1, k2), Cyp is a constant matrix defined below, J denotes a matrix of ones and factor % appears in the symmetric part
of Cyp.

%JA JB1 JB2
Cup = 0 %ID1 JD2 S Mup(kb k2)
0 0 3Jp,

We can also efficiently implement this update by using Hessian-vector products.

Similarly, we can define a lower version of this group denoted by Bjow (k1, k2) and derive our update for this structure.

(B4 O _[Bp, ©
Biow(k1, k2) *{ [BC BD} ‘BD - {BD3 BDJ }

where By € RY%, Bp, € Dlox% Bp, € RF ™.



