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1. Γ-convergence
Proof (Theorem 2). We will adapt the proof of Theorem
13.6 in (Rindler, 2018) to the surface reconstruction loss.
We want to prove Γ-convergence of ε−1/2Fε to F0. Note
that ε−1/2Fε is equivalent to the functional

Fε(u) = λL(u)+

{∫
Ω
ε ‖∇u‖2 + 1

εW (u) u ∈W 1,2(Ω)

+∞ otherwise
(1)

where now λ(ε) = ε−1λ̃(ε2), where λ̃ represents the de-
pendence in equation 9 (in the main paper). So we will
prove Γ-convegence of this Fε to F0, where λ → ∞ and
λ
√
ε → 0, as ε ↓ 0. The proof of Γ-convergence requires

showing the lim inf and recovery properties from Section
2.3 in the main paper. Let us denote:

Eε(u) =

{∫
Ω
ε ‖∇u‖2 + 1

εW (u) u ∈W 1,2(Ω)

+∞ otherwise

E0(u) =

{
σ0perΩ(I) u ∈ BV(Ω; {−1, 1})
+∞ otherwise

For the reader’s convenience we also repeat the definition
of the limit functions F0:

F0(u) =


σ0perΩ(I) u ∈ BV(Ω, {−1, 1}),

and L(u) = 0

+∞ otherwise
(2)

Lim inf part. In this part we need to consider uε → u in
L1(Ω); we abuse notation a bit and let ε ↓ 0 denote some
particular sequence εk → 0 as k → ∞. We need to show
that lim infε ↓ 0 Fε(uε) ≥ F0(u). If lim infε ↓ 0 Fε(uε) =
∞ the statement holds trivially, therefore we assume
lim infε ↓ 0 Fε(uε) <∞.

In the proof of Theorem 13.6 in Rindler (2018) it is
shown that

∫
Ω
W (u(x))dx = 0 and consequently u(x) ∈
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{−1,+1} almost everywhere, i.e., equation 10 (in the main
paper) holds for u. Furthermore, it is shown that

lim inf
ε ↓ 0

Eε(uε) ≥ E0(u), (3)

where σ0 is some constant depending on W alone:

σ0 = 2

∫ 1

−1

√
W (s)ds. (4)

Since E0(u) < ∞, u ∈ BV(Ω; {−1, 1}) (this can be seen
directly from the definitions in equations 2 and 3 in the main
paper).

Now, for our reconstruction loss, since uε → u in L1(Ω)

we have that for every x ∈ X ,
∣∣∣∫Bx

uε

∣∣∣ → ∣∣∣∫Bx
u
∣∣∣, as

ε ↓ 0. By Fatou’s lemma applied for the functions x 7→∣∣∣∫Bx
uε

∣∣∣ and the limit function x 7→
∣∣∣∫Bx

u
∣∣∣, and the fact

that lim infε ↓ 0 Fε(uε) <∞:

L(u) = Ex

∣∣∣∣∫
Bx

u

∣∣∣∣ ≤ lim inf
ε ↓ 0

Ex

∣∣∣∣∫
Bx

uε

∣∣∣∣
= lim inf

ε ↓ 0
L(uε) ≤ lim inf

ε ↓ 0

1

λ
Fε(uε) = 0.

where the last equality is due to λ → ∞ as ε ↓ 0. This
means that the limit function u satisfies the reconstruction
constraints perfectly, or in other words that the reconstructed
surface S passes through all the balls Bx, x ∈ X , except
possibly a subset of X of measure zero. However, since∣∣∣∫Bx

u
∣∣∣ is continuous as a function of x this is true for all

balls Bx, x ∈ X .

In particular E0(u) = F0(u). Now incorporating this with
equation 3 we get

lim inf
ε ↓ 0

Fε(uε) = lim inf
ε ↓ 0

(λL(uε) + Eε(uε))

≥ lim inf
ε ↓ 0

Eε(uε)

≥ E0(u) = F0(u)

as required.

Recovery sequence part. In this part we need to consider
an arbitrary u ∈ L1(Ω) and find a sequence uε ∈ L1(Ω) so
that uε → u in L1(Ω) and limε ↓ 0 Fε(uε) = F0(u).
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Let u ∈ L1(Ω) be arbitrary. If u /∈ BV(Ω; {−1, 1}) or
L(u) > 0 thenF0(u) =∞ and there is no need to construct
a recovery sequence in this case (see, e.g., Theorem 1 where
no recovery sequence for such cases is needed). So we
assume F0(u) < ∞, and u of the form u = −1I + 1Ω\I ,
where I is defined as in equation 4.

Next, note that if
∫

Ω
u ∈ {−|Ω|, |Ω|} then L(u) > 0 and

again F0(u) = ∞. Therefore we can assume
∫

Ω
u ∈

(−|Ω|, |Ω|). In this case, Theorem 13.6 in Rindler (2018)
shows the existence of a recovery sequence of functions
uε so that uε → u in L1(Ω) and limε ↓ 0 Eε(uε) = E0(u).
The main observation in this part is that uε is a recovery
sequence also for our surface reconstruction functionals Fε
and F0.

To show that uε is a recovery sequence also in our settings it
is enough to show that λL(uε)→ 0 as ε ↓ 0. Indeed, if this
is the case,

lim
ε ↓ 0
Fε(uε) = lim

ε ↓ 0
(Eε(uε) + λL(uε))

= E0(u) = F0(u)

To show that λL(uε) → 0 we need to use a bit of extra
information on uε: uε is constructed to approximate w =
−1G∩Ω + 1Ω\G, that is∫

Ω

|uε − w| → 0,

where G ⊂ Rd is open, bounded with smooth boundary,
and |(G∆ I) ∩ Ω| can be made arbitrary small (see Lemma
13.7 in Rindler (2018), or Lemma 1 in Modica (1987)). This
means that for arbitrary δ > 0 we can choose G so that∫

Ω

|u− w| ≤ |(G∆ I) ∩ Ω| ≤ δ

Remember that L(u) = 0 and using this last inequality we
get that for arbitrary x ∈ X ,∣∣∣∣∫

Bx

uε

∣∣∣∣ =

∣∣∣∣∫
Bx

uε −
∫
Bx

w

∣∣∣∣+

∣∣∣∣∫
Bx

w −
∫
Bx

u

∣∣∣∣
≤
∫

Ω

|uε − w|+
∫

Ω

|w − u| ≤ c
√
ε

(5)

where c > 0 is some constant, and the last inequality is
due to the fact that we can make the choice δ =

√
ε and

the following bound shown in the proof of Theorem 13.6 in
Rindler (2018):∫

Ω

|uε − w| ≤ 4
√
ε sup
−2
√
ε≤t≤2

√
ε

Hd−1(St ∩ Ω),

where St =
{
x ∈ Rd | dS(x) = t

}
, dS is the signed dis-

tance function defined in equation 12, S is defined as in

equation 4 for w , and Lemma 13.9 in Rindler (2018) shows
that the Hausdorff measure of St ∩ Ω converges to that of
∂I ∩ Ω as ε ↓ 0, and therefore is bounded.

Equation 5 implies that

λL(uε) ≤ cλ
√
ε.

Lastly, remember that λ
√
ε→ 0 and therefore uε is a recov-

ery sequence as desired.

2. Distance functions
Theorem 3. Let uε ∈ W 1,2(Ω) be a (local) minimizer of
Fε, and O ⊂ Ω \ ∪x∈XBx a set where uε 6= 0. Then, uε is
smooth in the classical sense in O and satisfies

−ε∆uε + uε − sign(uε) = 0. (6)

Proof. We start by applying the Euler-Largrange (EL) con-
ditions (see e.g., Theorem 3.1 in (Rindler, 2018)) for a
minimizer u of Fε in O. Let

f(x, v,v) = ε ‖v‖2 + v2 − 2 |v|+ 1,

be our integrand. That is Fε(u) =
∫

Ω
f(x, u,∇u). The EL

conditions are:

−div [∇vf(x, u,∇u)] +
d

dv
f(x, u,∇u) = 0.

Plugging our f and noting that W ′(s) = 2s − 2 sign(s),
which is differentiable in O, we get

−2ε∆u+ 2u− 2 sign(u) = 0.

In particular, equation 6 will be satisfied in the weak sense
with any test function ψ ∈ C∞c (O). Second, regularity
results for elliptic operators (e.g., Corollary 8.11 in (Gilbarg
& Trudinger, 2015)) show that u is smooth inO and satisfies
equation 6 in the classical sense.

Theorem 4. Let O ⊂ Ω be a domain as defined in Theorem
3. Then, over O, wε satisfies

−
√
ε∆wε + sign(uε)(‖∇wε‖2 − 1) = 0 (7)

Proof. For brevity, we denote u = uε, and assume u > 0 in
O. Then, equation 14 (in the main paper) in this case is

w = −
√
ε log(1− u).

Let x = (x1, x2, . . . , xd). Now,

∂w

∂xi
=
√
ε

1

1− u
∂u

∂xi

∂2w

∂x2
i

=
√
ε

1

(1− u)2

[
∂u

∂xi

]2

+
√
ε

1

1− u
∂2u

∂x2
i



Phase Transitions, Distance Functions, and Implicit Neural Representations

Plugging in the l.h.s. of equation 7 we get

−ε
(1− u)2

‖∇u‖2 +
−ε

1− u
∆u+

ε

(1− u)2
‖∇u‖2 − 1

and this term vanishes in view of equation 6.

If u < 0 in O, then equation 14 (in the main paper) in this
case is

w =
√
ε log(1 + u).

Similar to before:

∂w

∂xi
=
√
ε

1

1 + u

∂u

∂xi

∂2w

∂x2
i

= −
√
ε

1

(1 + u)2

[
∂u

∂xi

]2

+
√
ε

1

1 + u

∂2u

∂x2
i

Again, plugging in the l.h.s. of equation 7 we get

ε

(1 + u)2
‖∇u‖2 +

−ε
1 + u

∆u+ 1− ε

(1 + u)2
‖∇u‖2

that again vanishes in view of equation 6.

Theorem 5. Let O be an open set, and uε a solution to
equation 6 in O, uε = 0 on ∂O and uε 6= 0 in O. Then
wε → sign(uε)d∂O pointwise uniformly in any compact
subset O ∪ ∂O.

Note that sign(uε) is well defined in O since we assume
that O does not vanish in O.

Proof. First, assume sign(uε) > 0 in O. Then, uε satisfies:

−ε∆uε + uε − 1 = 0 in O
uε = 0 in ∂O

Now the change of variables vε = 1− uε leads to

1

2
∆vε =

1

2ε
vε in Ω

vε = 1 in ∂Ω
(8)

Therefore, Theorem 2.3 in (Varadhan, 1967) with λ = 1
2ε

now implies

−
√
ε log(vε) = −

√
ε log(1− uε)

ε→0−−−→ d∂O

uniformly in compact subsets of O ∪ ∂O.

In the case sign(uε) < 0 in O, uε satisfies:

−ε∆uε + uε + 1 = 0 in O
uε = 0 in ∂O

The change of coordinates vε = uε + 1 now leads again
to vε satisfying equation 8 and invoking (Varadhan, 1967)
again implies that

√
ε log(vε) =

√
ε log(1 + uε)

ε→0−−−→ −d∂O

uniformly in compact subsets of O ∪ ∂O. Putting the two
cases together and comparing to equation 14 (in the main
paper) proves the theorem.

3. Networks in Sobolev spaces
Let f : Rd×Rp → R be a multilayer perceptron (MLP) with
ReLU activation. That is, f(x; θ) is composed of layers of
the form z = σ(Wy + b), where W , b are the parameters,
collectively defining θ ∈ Rp, and σ(s) = max {0, s} is the
ReLU applied entry-wise. We consider the functions f(·; θ),
for a fixed θ: these are piecewise linear and continuous. In
fact, each linear piece Lk = f |Ωk

is defined over a polytope
Ωk ⊂ Rd. For the analysis of the loss functions we discuss
in this paper we require a complete function space that
contains these neural functions and allow discussing their
”derivatives” and convergence. The most natural such space
is W 1,p(Ω), p ∈ [1,∞), the Sobolev space of all Lp(Ω)
functions with first weak derivatives also in Lp(Ω). We note
that MLP with Softplus activation is smooth in the classical
sense hence in particular belongs to W 1,p(Ω).

Lemma 1. The functions f(·; θ), where f is an MLP with
ReLU activation belongs to W 1,p(Ω), for all p ∈ [1,∞],
and Ω Lipschitz domain.

Proof. Denote f(x) := f(x; θ). To show that f ∈
W 1,p(Ω) we need to show two things: f ∈ Lp(Ω) (which
is clear since f is measurable and bounded as well as Ω is
bounded), and that it has weak derivatives in Lp(Ω), that is
for every i ∈ [d] there exists a function g ∈ Lp(Ω) so that∫

Ω

f
∂ψ

∂xi
= −

∫
Ω

gψ, (9)

for all compactly supported smooth functions ψ ∈ C∞c (Ω).
Let Ω = ∪kΩk be the decomposition of Ω to the subdo-
mains where Lk = f |Ωk

is linear. The multivariate integra-
tion by parts formula provides:∫

Ωk

f
∂ψ

∂xi
=

∫
∂Ωk

fψ 〈ei,n〉 −
∫

Ωk

∂f

∂xi
ψ. (10)

Therefore, a natural candidate for the weak derivative ∂f
∂xi

is the piecewise constant g that equals ∂Lk

∂xi
in the interior of

each Ωk. Indeed, noticing that 〈ei,n〉 flips sign when the
normal n flips sign, we see that all interior contributions of
the boundary integrals

∫
∂Ωk

fψ 〈ei,n〉 cancel, and since ψ
vanishes on the boundary ∂Ω, summing equation 10 over k
we get equation 9.
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Figure 1. Ablation of ε. From left to right ε = 1.0, 0.1, 0.05, 0.01, 0.005; λ = cε0.3 according to Theorem 2, and c ∈ {1, 10}.

4. Experiments and implementation details
In all the experiments we used ε = 0.01, and did a pa-
rameter search over λ ∈ {0.2, 0.3, 0.5, 1, 10, 20} (note that
ε1/3 ≈ 0.2, and 1/3 is in the range suggested by Theorem
2), and similarly for µ. The gradients ∇u(x) are computed
with automatic differentiation. A single training iteration
with batch size 16k takes 0.16sec, on an NVIDIA Quadro
GP100.

4.1. Fourier features

In some experiments we used Fourier features (Tancik et al.,
2020) as the first constant layer in the network, δk : Rd →
R2kd, where k is a parameter representing the number of
frequencies used. For x ∈ Rd the Fourier feature layer
is defined to be a vector δk(x) ∈ R2kd with the real and
imaginary parts of exp(i2ωπxj), ω ∈ [k], j ∈ [d] as entries.

4.2. Metrics

The distance between two point clouds X1,X2 is computed
as in (Williams et al., 2019) using the standard one-sided
and double-sided Chamfer and Hausdorff distances. We de-
note by d→C (X1,X2), dC(X1,X2) the one-sided and double-
sided `1 Chamfer distance; and by d→H (X1,X2), dH(X1,X2)
the one-sided and double-sided Hausdorff distance. These
are defined as follows:

d→C (X ,Y) =
1

|X |
∑
x∈X

min
y∈Y
‖x− y‖2

dC(X ,Y) =
1

2
(d→C (X ,Y) + d→C (Y,X ))

d→H (X ,Y) = max
x∈X

min
y∈Y
‖x− y‖2

dH(X ,Y) = max {d→H (X ,Y) + d→H (Y,X )} ,

To measure the distance between a surface and a point cloud,
or between two surfaces, we first sample each surface S
densely (i.e., with 10m uniformly random points) Y ⊂ S,
and then measure the distance between the corresponding
points clouds as described above.

4.3. 2D evaluation

Figure 1 demonstrates ablation of ε; we show wε for ε in a
range of values ε ∈ {1.0, 0.1, 0.05, 0.01, 0.005}, where λ
is chosen according to Theorem 2, i.e., λ = cε0.3, and we
take c ∈ {1, 10}. Note that as ε decreases wε is closer to a
distance function.

4.4. Surface reconstruction benchmark

This benchmark consists of 5 models, the input (train data)
to each model is a point cloud X of size 170k − 290k,
and corresponding normal data n : X → S(R3), as well
as ground-truth test point cloud Y . In this experiment we
used the PHASE loss in equation 20 (in the main paper)
with the normal loss equation 18 (in the main paper), and
µ = λ = 10. The batch size was taken to be 16k and
we performed 100k iterations, which roughly correspond
to 5k − 10k epochs. Figure 2 shows qualitative results of
PHASE.

PHASE and Fourier Features. Training PHASE with
Fourier features and normal data leads to comparable results
to PHASE alone, but requires order of magnitude less iter-
ations. In Table 1 we show the results of PHASE trained
with Fourier Features (k = 6), on the surface reconstruc-
tion benchmark of (Williams et al., 2019) (i.e., point clouds
with normals), with the same parameters µ = λ = 10, as
before. In this case we trained the model for 10k itera-
tions with batch-size 16k. See Table 1 in the main paper
for comparison with other methods. Note that PHASE and
PHASE+FF are roughly equivalent according to the distance
metric scores, maybe with slight advantage to PHASE with-
out FF. However, PHASE+FF was trained for 10k iterations
versus 100k iterations in the case of PHASE without FF,
and it also exhibits slightly more high frequency details not
captured by the metric scores, see Figure 2.
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PHASE (points and normals)

PHASE + FF (points and normals)

IGR + FF (points and normals)

PHASE + FF (points)

IGR + FF (points)

Figure 2. Surface reconstruction benchmark (Williams et al., 2019) comparing PHASE and IGR with/without normal data and Fourier
features. Note that IGR has a slight tendency to add redundant surface area that is amplified in the more challenging points-only case with
Fourier features, where PHASE, due to its minimal surface perimeter property is less susceptible to high frequency artifacts.
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Ground Truth Scans

Model Method dC dH d→C d→H

Anchor
PHASE+FF 0.24 5.30 0.09 1.17

PHASE 0.21 4.29 0.09 1.23

Daratech
PHASE+FF 0.18 2.53 0.08 1.79

PHASE 0.18 2.92 0.08 1.80

DC
PHASE+FF 0.15 2.32 0.05 2.77

PHASE 0.15 2.52 0.05 2.78

Gargoyle
PHASE+FF 0.16 3.68 0.06 0.87

PHASE 0.16 3.14 0.07 1.09

Lord Quas
PHASE+FF 0.12 0.84 0.04 0.94

PHASE 0.11 0.96 0.04 0.96

Table 1. PHASE+FF results on the surface reconstruction bench-
mark of (Williams et al., 2019). See also Table 1 in main paper for
more methods.

4.5. Learning from point clouds and Fourier features

In this example we again worked with the surface recon-
struction benchmark but explored the more challenging case
of removing the normal data and using only the point clouds
X . We wanted to see the bias caused by the high frequency
methods and compared PHASE and IGR in the case of
adding Fourier features k = 6 to both. For PHASE we
used λ = 10 as before, but smaller µ, i.e., µ = 0.5, as
we found larger µ is more unstable. For IGR we did a
parameter search and chose the one that provides lowest
error metrics on the Gargoyle model. Figure 2 shows the
results of both. Note that IGR is much more sensitive to
the high frequency bias and adds extraneous surface parts.
In contrast, PHASE, due to its minimal perimeter property
is much less susceptible to high frequency bias, although
is not completely immune to this bias for point cloud data
alone, as can be inspected in the image. For point cloud and
normal data, we found PHASE to be even more robust to the
high frequency bias, see PHASE+FF (points and normals)
experiment above.

4.6. Parameters scan

Table 2, logs the entire range of reconstruction metric er-
rors for all hyperparams options λ, µ ∈ {0.2, 1, 10}, trained
with a smaller network: an MLP with 5 layers of 256 neu-
rons each. Note that the range intervals are rather small
(except Anchor, where the worst and best results are shown
in Figure 3), and in fact the best results further improve the
state of art in some of the cases.

Metric Anchor Daratech DC Gargoyle Lord Quas

dC [0.229, 0.457] [0.174, 0.199] [0.143, 0.161] [0.158, 0.172] [0.112, 0.127]

dH [5.02, 14.8] [2.43, 3.68] [1.61, 2.38] [3.23, 4.69] [0.77, 2.32]

Table 2. Reconstruction ranges for all combinations of params.

Figure 3. The worst and best examples in Table 1, Anchor.
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