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Abstract
Although ubiquitous in the sciences, histogram
data have not received much attention by the
Deep Learning community. Whilst regression
and classification tasks for scalar and vector data
are routinely solved by neural networks, a princi-
pled approach for estimating histogram labels as
a function of an input vector or image is lack-
ing in the literature. We present a dedicated
method for Deep Learning-based histogram re-
gression, which incorporates cross-bin informa-
tion and yields distributions over possible his-
tograms, expressed by τ -quantiles of the cumu-
lative histogram in each bin. The crux of our
approach is a new loss function obtained by apply-
ing the pinball loss to the cumulative histogram,
which for 1D histograms reduces to the Earth
Mover’s distance (EMD) in the special case of the
median (τ = 0.5), and generalizes it to arbitrary
quantiles. We validate our method with an illus-
trative toy example, a football-related task, and
an astrophysical computer vision problem. We
show that with our loss function, the accuracy of
the predicted median histograms is very similar to
the standard EMD case (and higher than for per-
bin loss functions such as cross-entropy), while
the predictions become much more informative at
almost no additional computational cost. �

1. Introduction
Histograms, i.e. approximate representations of the distribu-
tion of numerical data obtained by binning the data into ad-
jacent, non-overlapping bins, are frequently used across the
disciplines. Typical examples are precipitation histograms
in meteorology (e.g. Nicholls et al. 1997), population pyra-
mids in demographics and ecology (e.g. Weeks 2020, and
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Figure 1. Comic of our method for Deep Learning-based histogram
regression: a neural network (NN) fθ with weights θ is trained
to estimate arbitrary τ -quantiles of the cumulative histogram
(Mj)

N
j=1 in each bin j ∈ {1, . . . N} (treated as N random vari-

ables), conditional on an input X . That is, the j-th NN output
Q̃θj (X; τ) ≈ QMj (τ |X) is an approximation of the true quantile
function of Mj given X (i.e., the pre-image of τ under the CDF
F (Mj |X), see panel ?). Thus, the entire distribution of possible
histograms is learned as a function of X . The values of the asso-
ciated density histogram (q̃j)

N
j=1, defined as q̃j = Q̃j − Q̃j−1,

increase early (late) for high (low) quantile levels τ .

color histograms in photography and image processing (e.g.
Novak & Shafer 1992). While the invention of histograms
is commonly attributed to Karl Pearson (Pearson, 1895),
the use of bars for the representation of data can be traced
back to the Middle Ages (Oresme, 1486). In Deep Learning,
histograms appear in different contexts: they can be used as
neural network (NN) inputs (e.g. Saadl et al. 2009; Rebetez
et al. 2016), different variants of hidden histogram layers
have been proposed (Wang et al., 2016; Sedighi & Fridrich,
2017; Peeples et al., 2020), block-wise histograms have
been employed for feature pooling in Chan et al. (2015),
and histogram loss functions were introduced in Ustinova
& Lempitsky (2016); Zholus & Putin (2020). Furthermore,
histograms of the trainable NN weights in different layers
can shed light on whether the NN training is progressing
properly.

In contrast, the task of regressing histogram labels based on
an input vector (or image) X using NNs has not received
much attention to date. This is despite the great potential
of Deep Learning for identifying complex and nonlinear

https://github.com/FloList/EMPL


The Earth Mover’s Pinball Loss

relations between an input X and an associated histogram,
which is a common problem in many areas. For instance,
Bellerby (2007) used a NN to predict rainfall histograms
based on satellite-derived input data, Liu et al. (2020) con-
sidered the Deep Learning-based estimation of dose-volume
histograms for radiotherapy planning, and Sharma et al.
(2020) presented a CNN for the recovery of object size his-
tograms from images, taking fly larvae and breast cancer
cell data as examples.

Clearly, an ad-hoc approach is to treat each bin separately
and to use a standard regression loss function such as the
l1 or l2 error (mean absolute error and mean squared error,
respectively), or a standard classification loss (softmax ac-
tivation + cross-entropy loss); the latter assuming that the
histograms sum up to unity (with the true label vector com-
ponents lying anywhere in [0, 1] instead of {0, 1} as in the
case of one-hot coded class labels for an actual classification
problem). However, a drawback of these approaches is that
the inherent ordering of the histogram bins is ignored, and
cross-bin correlations are thus disregarded. Such an ordering
may also be present in classification tasks: namely, when-
ever a continuous variable is discretized into bins, such as
for image-based age estimation with labels “child”, “adult”,
and “senior”, as opposed to viewing the problem as a regres-
sion task, where the age is estimated as a number (e.g. in
years). For these scenarios, Hou et al. (2016) suggested the
use of the (squared) Earth Mover’s distance (EMD; Rubner
et al. 2000) as a loss function. The EMD measures the mini-
mal amount of work needed to transform a distribution into
another, and therefore penalizes the NN more when placing
probability mass into bins far from the correct one, whereas
the cross-entropy loss considers each bin in isolation. An-
other cross-bin loss function with a similar motivation is
the Cumulative Jenssen–Shannon divergence (Nguyen &
Vreeken, 2015; Jin et al., 2018). The important difference
between ordered classification and our setting is, however,
that we are interested in the entire histogram, not only in
the argmax, which becomes the estimated class label for
ordered classification, while the remaining estimated class
probabilities are typically discarded. Therefore, we need
the NN to correctly predict the value (or even the entire
distribution of potential values) in every bin. This bears
similarity to concepts such as Label Distribution Learning
(LDL; Geng 2016), where the entire label distribution is
relevant. However, LDL does not assume an underlying
ordering of the labels, and categorical labels (e.g. “sky”,
“plant”, “mountain”) are supported, whereas our approach is
specifically tailored to histograms.

In this work, we introduce a method for the NN-based es-
timation of conditional histograms. Since each input X
can potentially belong to an entire distribution of output
histograms, regressing a single “mean histogram” is often
not sufficient, especially in applications where the range of

possible values in each bin for a specific input may have
severe implications as in e.g. medicine. For this reason,
we base our approach in quantile regression (Koenker &
Bassett, 1978), enabling us to estimate arbitrary quantiles
of the cumulative histogram in each bin. Specifically, we
naturally extend the EMD for 1D distributions by allow-
ing for asymmetry, in analogy to the pinball loss being an
asymmetric generalization of the l1 loss. In Sec. 2, we intro-
duce the EMD and the pinball loss, and we define the Earth
Mover’s Pinball Loss (EMPL) by combining the two. Then,
we demonstrate the effectiveness of our method in three
scenarios in Sec. 3: first, we consider a toy example that can
be phrased in terms of drawing numbered balls from an urn.
Second, we consider an application in sports and use the
EMPL to estimate league table positions. Finally, we con-
sider a problem from γ-ray astronomy: the recovery of the
brightness distributions of point-sources from photon-count
maps. We conclude this work in Sec. 4.

2. Earth Mover’s Pinball Loss
In this section, we introduce the EMPL for the task of
histogram-valued quantile regression. We start by formally
defining the optimization problem to be solved. Then, we
recall the definitions of the EMD and the pinball loss, and
proceed by defining the EMPL as a natural asymmetric ex-
tension of the EMD, which allows us to obtain quantiles for
cumulative distribution functions (and hence for cumulative
histograms in the discrete setting).

2.1. Problem formulation

We consider the task of learning a mapping from an indepen-
dent (random) variable X to a corresponding distribution
over output histograms with N ∈ N bins. We express this
distribution over output histograms in terms of their quan-
tiles, which has the advantage that no closed form for the dis-
tribution needs to be specified, making our method suitable
for highly non-Gaussian and multimodal distributions. Re-
call that for a real-valued random variable Y with a strictly
monotonic CDF FY (y) = P (Y ≤ y) and τ ∈ (0, 1), the
τ -th quantile of Y is defined as

QY (τ) = F−1
Y (τ) = inf{y : FY (y) ≥ τ}. (1)

For the sake of simplicity, we assume that the histogram val-
ues (mj)

N
j=1 are normalized, i.e. mj ∈ [0, 1] and

∑N
j=1mj

= 1, but our approach can easily be extended to arbitrary
(non-negative) histograms by appending the total histogram
count before normalization as an additional NN output.
Further, we define the cumulative histogram by setting
Mj =

∑j
r=1mr, and we write M = (Mj)

N
j=1.

Let fθ be a NN with trainable weights θ, whose task is to
predict τ -quantiles of the cumulative histogram Q̃θ(X; τ).
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Our goal is to determine optimal parameters θ∗ such that

θ∗ = arg min
θ

E
X,τ

[∥∥∥QM (τ |X)− Q̃θ(X; τ)
∥∥∥

1

]
, (2)

where QM (τ |X) is the vector-valued function that gathers
the true τ -quantiles of the cumulative histogram M from
all the bins j = 1, . . . , N , given X . The expected value
is taken over the input X ∼ PX and uniformly over the
quantile levels τ ∼ U(0, 1), and ‖ · ‖1 is the l1-norm on
RN that sums up the approximation errors from all the bins
to a single number. A sketch of the histogram regression
process is shown in Fig. 1.

2.2. Earth Mover’s distance

As a first step towards solving Eq. (2), we introduce the
EMD (Rubner et al., 2000), which is a distance measure be-
tween probability distributions rooted in the Optimal Trans-
portation problem (Villani, 2009). As will be seen later, min-
imizing the EMD between the true and estimated histograms
yields NN weights θ such that Q̃θ(X; τ) ≈ QM (τ |X) for
the specific case of the median (τ = 0.5).

Intuitively, the EMD measures the minimal amount of work
that needs to be done in order to turn the “pile of dirt” (or
earth) given by the PDF of distribution u into that of another
distribution v. The definition of the EMD is in terms of
“signatures”, defined as sets of clusters each of which con-
tains a certain amount of mass, and permits different total
masses for different signatures. In the case of equal masses,
however, it can be shown (Levina & Bickel, 2001) that
the EMD is equivalent to the Wasserstein distance (Villani,
2003; Arjovsky et al., 2017).

Interpreting the normalized histograms (mj)
N
j=1 as dis-

cretizations of continuous PDFs, we directly introduce the
EMD in the continuous framework of the Wasserstein dis-
tance, which formally reads as follows:

For d ∈ N, p ∈ [1,∞), let u, v be Borel probability mea-
sures on Rd with finite p-moments. Then, the p-Wasserstein
distance is defined as (Villani, 2009)

Wp(u, v) =

(
inf

π∈Γ(u,v)

∫
Rd×Rd

‖x− y‖p dπ(x, y)

)1/p

,

(3)
where Γ(u, v) is the collection of joint probability measures
on Rd × Rd with marginals u and v for the first and second
argument, respectively. The definition of the p-Wasserstein
distance does not require the measures u and v to be ab-
solutely continuous w.r.t. the Lebesgue measure λ and is
equally well-defined for discrete measures such as the Dirac
measure, in which case the aforementioned notion of dis-
crete clusters containing points can be recovered.

In this work, we restrict ourselves to the 1-Wasserstein dis-
tance in the one-dimensional case, i.e. p = 1 and d = 1,

in which the otherwise difficult calculation of the Wasser-
stein distance is greatly simplified and admits the following
closed-form solution (Ramdas et al., 2017):

W1(u, v) =

∫
R
|U(t)− V (t)| dt, (4)

where U and V are the CDFs of u and v, respectively, im-
plying that the 1-Wasserstein distance is simply given as
the L1-distance between the CDFs of the two distributions
in the 1D case, which arises from a notion of monotonicity
that the optimal transport plan needs to satisfy (see Ramdas
et al. 2017).

2.3. Pinball loss

Now, we turn towards the problem of quantile regression.
For a scalar random variable Y , let ỹ be an approximation
of the true quantile function QY (τ). A suitable distance
for comparing ỹ with observed values y is the pinball loss
function (Fox & Rubin, 1964; Koenker & Bassett, 1978;
Koenker & Hallock, 2001; Ferguson, 2014), defined as

Lpin
τ (y, ỹ) = (y − ỹ)

(
τ − I(y<ỹ)

)
=

{
τ(y − ỹ), if y ≥ ỹ,
(τ − 1)(y − ỹ), if y < ỹ.

(5)

The pinball loss is constructed in such a way that its ex-
pectation is minimized by ỹ = QY (τ), which follows im-
mediately from setting the derivative of the expected loss
function w.r.t. ỹ

∂EY [Lpin
τ (Y, ỹ)]

∂ỹ
= (1− τ)FY (ỹ)− τ(1− FY (ỹ))

= FY (ỹ)− τ,
(6)

to zero, which yields the minimum at ỹ = QY (τ).

2.4. Quantile regression for histograms

Having introduced the EMD between probability distribu-
tions and the pinball loss for quantile regression, we now
combine the two for the task of histogram-valued regression.
We proceed in the continuous framework and subsequently
consider the discrete case (i.e., histograms instead of PDFs).

For probability measures u and v, we define the EMPL as

Lτ (u, v) =

∫
R

(U − V )
(
τ − I(U<V )

)
dt, (7)

where U and V are again the CDFs of u and v, respectively,
and we suppress the argument t for brevity. This loss func-
tion can be viewed as an asymmetric extension of Eq. (4)
in the spirit of the pinball loss in Eq. (5), with the asym-
metry governed by the quantile level of interest τ . We can
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decompose the integral into two regions and write

Lτ (u, v) = (1− τ)

∫
U<V

|U − V | dt+ τ

∫
U≥V
|U − V | dt,

(8)
from which the following bounds in terms of the 1-
Wasserstein distance follow immediately:

η−W1(u, v) ≤ Lτ (u, v) ≤ η+W1(u, v) ≤W1(u, v), (9)

where η− = min{τ, 1− τ} and η+ = max{τ, 1− τ}. Note
in particular that for the median (τ = 0.5), one obtains

L0.5(u, v) =
1

2

∫
R
|U − V | dt =

1

2
W1(u, v), (10)

and the 1-Wasserstein distance in the case d = 1 is recov-
ered up to the factor of 1/2 (see Eq. (4)). For τ 6= 0.5, the
EMPL is not symmetric and generally Lτ (u, v) 6= Lτ (v, u),
but rather Lτ (u, v) = L1−τ (v, u). Figuratively speaking,
one could think of moving probability mass up or down
a hill whose slope is determined by the quantile level of
interest, making it more difficult to move probability mass
upwards than downwards.

In the discrete setting, Eq. (7) becomes

Lτ (u, v) =
1

N

N∑
j=1

[
(Uj − Vj)

(
τ − I(Uj<Vj)

)]
, (11)

where Uj =
∑j
r=1 ur and similarly for Vj . We remark

that the EMPL as defined in Eq. (11) implicitly assumes
the “distance” dij between two bins i and j in the notion of
“work” when moving probability mass to be proportional to
the distance between the bin indices, i.e. dij ∝ |i− j|. For
example, if one uses equally spaced (logarithmically spaced)
bins in terms of the underlying variableRwhose distribution
is described by the histogram, the distance scales linearly
with R (with logR).

Coming back to the problem formulation, it now becomes
apparent that training a NN using the EMPL as defined in
Eq. (11) provides an (approximate) solution to Eq. (2):

Proposition 1. For each fixed input X = x and quantile
level τ ∈ (0, 1), a NN returning the conditional quantiles of
the cumulative histogram, i.e. Q̃θ(x; τ) = QM (τ |x), mini-
mizes the expected τ -EMPL between observed cumulative
histograms M̄(x) and the NN prediction Q̃θ(x; τ).
Proof. This follows directly from plugging U = M̄(x) and
V = Q̃θ(x; τ) into Eq. (11) and using the same argument
as in Eq. (6) for each bin j ∈ {1, . . . N}.

An in-depth theoretical (convergence) analysis of the EMPL
is beyond the scope of this paper and left to future work;
however, our results in Sec. 3 are encouraging and confirm
its suitability for diverse practical use cases.

2.5. Implementation details

The expectation over the inputs X in Eq. (2) is approxi-
mated as usual by training the NN on a large number of
representative training samples (Xs)

S
s=1 with Xs ∼ PX by

means of a mini-batch gradient descent method. As for the
expectation over the quantile level τ , we follow Tagasovska
& Lopez-Paz (2019) and draw an individual quantile level τ
for each input Xs from a uniform distribution τ ∼ U(0, 1)
during the NN training. Compared with NNs that are trained
for a single quantile level τ , the authors of that work showed
that simultaneously estimating all the quantile levels greatly
reduces quantile crossing in the case of scalar-valued NNs.
The quantile levels τ appear at two places in the NN: 1) they
are fed as an additional NN input in order for the NN to
know which quantile level shall be estimated, and 2) they
are used in the computation of the loss.

In practice, we obtain Q̃ by 1) estimating N logits (l̃j)
N
j=1

(one per bin), 2) applying the softmax function q̃j =

softmax(l̃)j , which yields a normalized density histogram
(q̃j)

N
j=1, and 3) setting Q̃j =

∑j
r=1 q̃r, which enforces

Q̃N = 1. This implies that the NN prediction is prop-
erly normalized for all τ ; moreover, monotonicity of the
predicted cumulative histograms for each fixed τ is guar-
anteed because of Q̃j = Q̃j−1 + q̃j with q̃j ∈ (0, 1). The
monotonicity of the quantiles within each bin is not strictly
enforced, but it is encouraged by Eq. (11). Although we
rarely ever encountered quantile crossing in our experiments
once the NN is trained, crossing penalty terms as proposed
by Takeuchi et al. (2006) could be incorporated in our frame-
work without difficulty.

We also consider a Smoothed EMPL that is differentiable
everywhere, derived by replacing the pinball loss by the
smooth approximation proposed in Zheng (2011) (and ap-
plied to NNs in Hatalis et al. 2019), which yields

Lατ (u, v) =
1

N

N∑
j=1

[
τ (Uj − Vj)

+ α log

(
1 + exp

(
Vj − Uj

α

))]
,

(12)

where α > 0 is a smoothing parameter. In the limit
α ↘ 0, Lτ (u, v) is recovered, and for any α > 0,
Lατ (u, v) − Lτ (u, v) is τ -independent, as follows imme-
diately from the definitions. Note that log (1 + exp(·)) is
the softplus function, which is readily available in most
machine learning libraries. An alternative approach that
also provides differentiability everywhere is to consider
an “L2-version” of the EMPL, leading to the estimation of
τ -expectiles rather than τ -quantiles (Aigner et al., 1976;
Newey & Powell, 1987), which generalize the mean instead
of the median and occasionally find use in financial risk
estimation, but lack intuitive interpretability.
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3. Results

Figure 2. Left: EMPL predictions for the toy example, for x = 1,
10, 100, and 1,000 draws. Each colored line corresponds to the
MLP prediction for a particular quantile level τ (1/10, . . ., 9/10),
specified next to it in the top panel. The gray markers delimit the
true inter-quantile range between the lowest and highest considered
quantile levels, and the true median is indicated by the golden
dotted line. For a single draw x = 1, the predictions of NNs trained
using the 1-Wasserstein distance (EM1) and the cross-entropy
loss (XE; computed w.r.t. to the density histogram (mj)

N
j=1) are

also shown: both produce a correct “average histogram” in a
certain sense (namely median and mean, respectively), but a single
number per bin is not sufficient to properly reflect the distribution
of possible histograms. Right: Analytic CDF of the cumulative
histogram M3 in the central bin j = 3 (solid black line). The
predicted quantiles (solid vertical lines) agree with the analytic
quantiles (dashed vertical lines) for all values of x and quantile
levels τ (dashed horizontal lines). As x → ∞, all the quantiles
converge towards j/N = 3/5.

We now present histogram regression results from three
experiments with the EMPL. We start with a toy example
intended to build some intuition for the problem at hand, also
showing that predicting average histograms with standard
loss functions is insufficient when the data exhibits high
stochasticity. Then, we consider an application to sports and
lastly, we study a computer vision task in γ-ray astronomy.
An additional example that considers a bimodal distribution
within each bin is provided in the Supplementary Material.

3.1. Toy example: drawing balls from an urn

First, we illustrate our method by means of a toy example,
for which the analytic solution can be computed. Minimiz-
ing the pinball loss is equivalent to maximizing the likeli-
hood of an asymmetric Laplace distribution (Yu & Moyeed,
2001), which requires the outcome in each bin to be con-
tinuous. Whilst interpolation techniques such as jittering
could be applied to the outcome in the discrete case (and
are needed in fact to obtain analytical convergence results;
Machado & Santos Silva 2005; Padellini & Rue 2018), we
will show in this example that even in the extreme case
where the set of possible outcomes consists of the two in-
tegers {0, 1}, the predictions for the quantiles in practice
behave as expected.

The scenario is the following: we randomly draw x times
with replacement from an urn that contains numbered but
otherwise identical balls N = {1, . . . , N} such that each
ball has equal probability of being drawn. We keep track of
the drawn numbers by adding a tally mark in the respective
field (or bin) of a table after each draw before putting the ball
back into the urn again. This yields a frequency histogram
(mc

j)
N
j=1, with mc

j denoting the number of times the ball
j has been drawn. The task of the NN will be to estimate
the distribution of the relative counts in each bin (mj)

N
j=1,

where mj = mc
j/x, depending on the number of draws x.

The total number of counts mc
j in each bin j ∈ N follows

a binomial distribution B(x, p), where p = 1/N . Since
the mean and variance of the relative counts in each bin are
given by E[mj ] = p and Var(mj) = p(1−p)/x, the relative
counts mj → p as x → ∞, for all j ∈ N , implying that
each ball will be drawn equally often in the (hypothetical)
limit of infinitely many draws. However, for small values
of x, the variability of the resulting histograms is high, and
in the case of a single draw x = 1, mj = 0 in N − 1 bins,
while mj = 1 in the bin for the drawn number j.

Since the EMPL compares the cumulative histograms, we
also define the cumulative histogram as (M c

j )Nj=1, where
M c
j =

∑j
r=1m

c
r, and similarly for the relative cumulative

histogram (Mj)
N
j=1. We write Y ∼ U{1, N} for the ran-

dom variable Y describing a single draw from the urn (i.e.
from a discrete uniform distribution between 1 and N ). We
can determine the CDF for the cumulative counts M c

j in
each bin j ∈ N by computing the conditional probability
for drawing at most l ∈ {0, . . . , x} times a number less than
or equal y ∈ [1, N ], given by

P (#(Y ≤ y) ≤ l |x) = P (M c
j ≤ l |x)

=

l∑
m=0

(
x

m

)
pm≤j (1− p≤j)

x−m
,

(13)

where j = byc (only integers can be drawn), p≤j = j /N
is the probability for drawing a number less than or equal y
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in a single draw, and the probabilities for drawing exactly
0, . . . , l times a number Y ≤ y need to be summed up to
obtain the probability for drawing at most l times such a
number. Inverting this relation yields the quantiles for the
distribution of the value M c

j (and equivalently Mj) in each
bin, conditional on x.

For our numerical experiment, we choose N = 5 balls and
take the number of draws x itself to be a random variable X ,
given by X = round(X̂) with log10(X̂) ∼ U(0, 3). We
train a simple multilayer perceptron (MLP) containing 2
hidden layers with 128 neurons each, ReLU activation and
batch normalization for the hidden layers, and a softmax ac-
tivation for the output layer to obtain Q̃θ(X; τ) as described
in Sec. 2.5. The NN training consists of 10,000 batch itera-
tions at a batch size of 2,048. We minimize the EMPL with
randomly drawn quantile levels τ using an Adam optimizer
(Kingma & Ba, 2014). The 2-dimensional inputs to the NN
are given by x and τ , and the corresponding 5-dimensional
labels (mj)

N
j=1 |X = x are generated by randomly drawing

x times from a discrete uniform distribution with range N
and normalizing the resulting histogram. Equivalently (and
faster), one can draw from a multinomial distribution with x
trials and uniform probability pj = p = 1/N for all j ∈ N .

Fig. 2 shows the quantiles of the estimated cumulative rel-
ative counts in each histogram bin for x = 1, 10, 100, and
1,000 draws (left panels). The colored lines correspond to
the predicted quantiles as indicated in the top panel next
to the lines, and the dark gray delimiters show the ana-
lytic values for the two most extreme considered quantiles
(τ = 1/10 and 9/10). The right panels depict the true CDFs
of the relative cumulative counts in the central bin for each
x, i.e. F (M3 |x), together with the analytic (dashed) and
predicted (solid) quantiles, given by the pre-image of τ (see
the horizontal dashed lines) under the CDF.

For a single draw from the urn, i.e. x = 1, the only possi-
ble values of the histograms are 0 and 1. The cumulative
histogram in bin j for a quantile level τ should be 1 if τ
is greater than the probability of drawing a number greater
than j, i.e. if τ > (N − j)/N , and 0 else. For all values
of τ , the MLP correctly determines where the cumulative
histogram jumps from 0 to 1. Since the EMD coincides
with the EMPL for τ = 0.5, a NN trained by minimizing
the EMD predicts mj = 1 for the central bin j = 3 and
mj = 0 otherwise.1 In contrast, using the cross-entropy
loss for training produces the expected mean histogram in
each bin (mj = 1/N ; independently of the input x), which
for x = 1 is not representative of any observed histogram
with values in {0, 1}. Therefore, among the considered loss
functions, only the EMPL is able to adequately express the
full range of possible histograms, thanks to the dependence
of the NN outputs on the quantile level of interest τ .

1See the Supplementary Material for the expected EMD for x = 1.

As the number of draws x increases, the CDF of Mj gradu-
ally becomes narrower (see the right panels for the central
bin j = 3) and consequently, the quantile ranges converge
from both sides towards p≤j = j/N . For all x and τ , the
predicted quantiles match their analytic counterparts. Note
that in the limit of no stochasticity x → ∞, the NN pre-
diction with the EMPL would become τ -independent and
equal its cross-entropy and EMD loss counterparts.

3.2. An application to the football Bundesliga

Week after week, millions of fans around the globe cheer
passionately for their favorite football club in the hope of
claiming the league title by finishing first at the end of
the season. Whilst each club tries its best to win as many
matches as possible, their fortune is not entirely in their
own hands: 38 points at the end of the Bundesliga (German
top-flight division) season 1997−98 were not enough to
save Karlsruher SC from being relegated to 2. Bundesliga
placed 16th; however, the same number of points would
have sufficed for position 13 in season 2001−02, in safe
distance from the relegation spots 16−18. Thus, knowledge
of the results of a single club in isolation is a strong indicator
of how well the club fares in terms of the league table, but
is not sufficient to determine its position.

We apply the EMPL to the following task: given the list of
points that a club has earned in each match during a season
X ∈ {0, 1, 3}34 (win: 3 points, draw: 1 point, defeat: 0
points; for 34 matches), estimate the histogram (mj)

N
j=1

that results from the positions of the club in the league ta-
ble after each week. Narrow histograms (steep cumulative
histograms) indicate few change in the position over the
course of the season, while a wide histogram (a gently in-
creasing cumulative histogram) suggests a turbulent season
for the respective club in terms of its place in the table. For
instance, if a club managed to lead the table throughout the
season over 34 weeks, this would result in a histogram with
m1 = 1 and mj = 0 for j = 2, . . . , 18 (where 18 is the
number of competing clubs).

We use data from all the Bundesliga seasons between
1995−96 (when the 3-points-for-a-win rule was introduced)
and 2017−18, keeping the seasons 1998−99, 2006−07, and
2014−15 for testing, while using the other 20 seasons as
training data.2 In order to increase the amount of training
data, we “re-play” each training season 1,000 times, ran-
domly permuting the 34 weeks (each of the 18 clubs plays
2 × 17 = 34 matches in a season, namely a home and an
away match against every other club). Clearly, these artifi-
cial seasons converge to the same league table by the end
of the season, but the histograms of the table positions after
each week are distinct (as is the ordering of the input lists
X containing the points from each match).

2Data: www.kaggle.com/thefc17/bundesliga-results-19932018.

www.kaggle.com/thefc17/bundesliga-results-19932018
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Figure 3. Cumulative histograms depicting the distribution of the
table position after each week for three clubs (one from each test
season). The light-blue histograms represent the truth, and the col-
ored regions show the estimated quantiles from 10− 90% in steps
of 10% with the EMPL. The orange error bars show bootstrapping
estimates of the 10− 90% quantile range. When simply training
a NN to estimate bin-wise means and standard deviations for the
cumulative histogram assuming a Gaussian likelihood (indepen-
dently in each bin), the resulting quantile range is not confined to
[0, 1] due to the infinite support of the Gaussian distribution and
may be non-monotonic (white triangles), which are undesirable
properties. The vertical dashed lines and white numbers indicate
the position of the club at the end of the respective season (which
cannot be inferred from the histograms). The results of all the
club’s matches during the season (i.e., the input X for the MLP)
are illustrated to the right of the histograms (see main text).

We train again a simple MLP with 2 hidden layers with
128 neurons followed by ReLUs and 50% dropouts (Hinton
et al., 2012; Srivastava et al., 2014) to prevent overfitting. A
softmax activation function produces the relative histograms,
consisting of 18 bins corresponding to the league table posi-

tions. We minimize the Smoothed EMPL with α = 0.005
over 250 epochs using a batch size of 2,048.

Fig. 3 shows the predictions for the relative cumulative his-
tograms for three clubs (one from each test season). The
light-blue histogram corresponds to the true cumulative his-
togram for the club in the respective season, and the gray
dashed line shows the final standing of the club (which can-
not be deduced from the histogram). The colored regions
indicate the estimated quantile ranges, from 10 to 90% in
steps of 10%. The orange error bars show bootstrapping
estimates of the bin-wise quantiles obtained by computing
hypothetical histograms that would arise had the club ob-
tained the same points in each match in another (artificially
generated) season. Specifically, we randomly select 200 sea-
sons from our augmented dataset, remove the club whose
final number of points is closest (in order to minimize the
bias due to situations such as having two champions from
different seasons compete against each other, which would
bias the histograms towards lower positions), and calculate
the bin-wise quantiles over the resulting histograms. The
lists of points in each match (i.e. the inputs X fed to the
MLP) are illustrated on the right-hand side next to the his-
tograms (1st match at the bottom, 34th match on top; green:
3/win, gray: 1/draw, red: 0/defeat). Although the estimated
quantile ranges do not perfectly match their bootstrapping
counterparts, their magnitudes are generally similar, and
the EMPL enables the quantification of the uncertainty in
the distribution of a club’s table position over the season,
based on other seasons and without any knowledge about
the results of the other clubs. Thus, the available domain
knowledge that is learned during the training in combina-
tion with a limited number of observations allows one to
derive a narrow posterior distribution that expresses which
histograms are compatible with the observations.

A clear advantage of quantile-based approaches is that they
do not assume a specific underlying distribution. We illus-
trate this by comparing our method with a naive likelihood-
based approach for quantifying the bin-wise uncertainty in
the histograms, namely a NN trained by simply maximizing
the Gaussian log-likelihood for the cumulative histogram
(Mj)

N
j=1 with independent means µj and standard devia-

tions σj for each bin (resulting in 2 × 18 = 36 outputs).
While the monotonicity of the mean estimates (µ̃j)

N
j=1 and

the normalization µ̃N = 1 are enforced by computing
µ̃ as the cumulative sum of softmax-activated logits (see
Sec. 2.5), other quantiles of the cumulative histograms do
not need to be monotonic (caused by σ̃j 6= σ̃j−1); also, the
values are unbounded due to the infinite support of the Gaus-
sian distribution. In contrast, the EMPL predictions, which
do not presume a particular distribution of the histogram val-
ues within each bin, lie in [0, 1] and increase monotonically
for all τ by construction, which are essential properties.
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Figure 4. Predicted and true cumulative (left) and resulting density
(right) point-source brightness histograms. Projections of the corre-
sponding input photon-count maps X are shown in the inset plots
(log-scaled), and the maximum number of counts per pixel (which
is considerably lower than the maximum number of counts per
point-source because of the point spread function), which defines
the upper limit of the color map, is indicated next to the maps.

3.3. An example from astrophysics: predicting
point-source brightness distributions

Now, we consider a computer vision problem in the field of
γ-ray astronomy, namely the estimation of the point-source
brightness distribution (mj)

N
j=1 given a photon-count map

X ∈ Nnpix as an input, where npix is the number of pixels in
the region of interest (ROI, taken to be a circle of radius 20◦

here). Specifically, each observed map Xs contains emis-
sion from Ts ∈ N point-sources, each of which contributes
Cts ∈ N photon counts to the map (for t = 1, . . . , Ts), such
that the total number of counts in map s is C tot

s =
∑Ts

t=1 C
t
s.

Binning the counts in the map according to (Cts)
Ts
t=1 results

in a histogram that characterizes the brightness distribu-
tion of the generating point-source population: for each
t = 1, . . . , Ts, Cts counts are added to the associated bin
(for example, for a source t responsible for Cts = 4 counts,
these 4 counts are added to the “3−5 counts” bin), imply-
ing that the counts from dim (bright) point-sources go to
low (high) bins. Once all the counts are distributed, the
histogram is normalized to sum up to unity. The task of the
NN is to estimate this underlying point-source brightness
distribution (mj)

N
j=1 from a photon-count map X .

Training loss MAE1

↓
MSE1

↓
EM12

↓
EM22

↓
IS [%]
↑

MAE 4.1 8.6 10.8 4.6 95.7
MSE 4.0 8.1 10.3 4.2 95.8
XE 4.2 8.6 9.4 4.2 95.6

EMP (all τ ) 4.0 8.3 8.8 3.9 95.8
SEMP (all τ ) 4.0 8.2 9.0 3.9 95.8
EM1 (τ = 0.5) 3.9 8.2 8.7 3.9 95.9

1: × 1,000, 2: × 100
MAE / MSE: mean absolute / squared error, XE: cross-entropy,
(S)EMP: (Smoothed) EMPL (always evaluated for τ = 0.5),
α = 0.001 when smoothed, EM1/2: absolute/squared EMD,
IS: histogram intersection (Swain & Ballard, 1991).

Table 1. Different metrics (columns) when evaluating the NN on
512 test maps, for NNs trained using different loss functions (rows).
The EM-based losses perform similarly to the per-bin losses in
terms of per-bin metrics (MAE/MSE/IS), and achieve better results
as measured by the EMD. Training the NN for all quantile levels τ
simultaneously barely affects the median accuracy as compared to
the EM1 loss (τ = 0.5 only), while yielding much more expressive
outputs through arbitrary quantiles, thus providing uncertainties.

A particularly interesting application is the analysis of the
photon-count map from the Fermi space telescope (Abdol-
lahi et al., 2020), which contains unexplained excess emis-
sion from the center of our Milky Way galaxy (Goodenough
& Hooper, 2009) that could possibly be explained by anni-
hilation of dark matter particles (Hooper & Linden 2011).
Recently, machine learning methods have opened up a new
avenue for the analysis of this excess (Caron et al., 2018;
List et al., 2020; Mishra-Sharma & Cranmer, 2020). Whilst
an exhaustive study of the Fermi map is beyond the scope
of this work, we demonstrate that our method is able to esti-
mate the histogram describing the brightness distribution of
point-sources in a simple scenario with simulated photon-
count maps. We generate 312,500 photon-count maps with
the tool NPTFit-Sim (Rodd & Toomey), modeling emis-
sion from isotropically distributed point-sources. The pho-
ton counts from each source are smeared out by the Fermi
point spread function over multiple pixels, and each pixel
may contain counts from more than one source, making
the problem probabilistic and non-trivial. We subsequently
discard the maps with less than 1,000 counts and those that
contain very bright point-sources with > 60 counts; then,
we put aside 1/15th of the remaining maps for testing and
use the others as training data.

The input maps Xs are discretized using the HEALPix tes-
sellation of the sphere (Gorski et al., 2005), and we use a
resolution set by the parameter Nside = 256 (giving npix =
65,536 in our ROI). As proposed by List et al. (2020), we
employ a graph-convolutional NN built on the DeepSphere
framework (Perraudin et al., 2019; Defferrard et al., 2020),
in which the HEALPix sphere is described by a weighted
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undirected graph, and the convolution operation is defined
by means of the graph Laplacian operator. Our NN is com-
posed of 8 graph-convolutional layers, each followed by
maximum pooling, batch normalization, and a ReLU acti-
vation, and three fully-connected (FC) layers. The quantile
level τ is appended before the first FC layer.

Fig. 4 shows three examples from the testing dataset, for
a dim (top), moderate (middle), and bright (bottom) point-
source population. The cumulative and density histograms
are depicted in light blue (truth) and by colored regions /
lines (NN), corresponding to 5− 95% quantiles in steps of
5%. The white triangles in the right panels are located at
the predicted medians. The NN has learned to faithfully
recover the underlying brightness histograms. The uncer-
tainties become larger with increasing brightness for equally
spaced bins as considered here; however, we found in our
experiments that this trend generally reverses when using
logarithmically spaced bins.

Table 1 lists several metrics when using different loss func-
tions for the NN training, evaluated on 512 testing maps.
We emphasize that in the case of the median τ = 0.5, for
which we report our results with the EMPL, the EMPL by
construction is exactly identical to the EMD (see Eq. (10),
up to 1/2), as the EMPL naturally extends the EMD to arbi-
trary quantiles. Therefore, one should not expect a higher
accuracy when evaluating the EMPL-trained NN for the spe-
cific value τ = 0.5 as compared to the EMD-trained NN. In
turn, Table 1 shows that training the same NN to estimate all
the quantiles using the EMPL rather than only the median
barely affects the accuracy of the median predictions. Thus,
the EMPL provides much more expressive outputs that quan-
tify the uncertainties “for free”. The EM-based losses (EM1
& EMPL) outperform the bin-wise losses w.r.t. the cross-bin
metrics EM1 and EM2, while performing similarly in terms
of the bin-wise metrics.

Whilst labeled histogram data may be difficult to acquire or
might not be available at all in some applications, this astro-
physical example belongs to the important class of problems
where labeled training data can be obtained (for instance
using a simulator), but recovering the underlying histogram
from real data is a challenging task that can be tackled by
Deep Learning methods. For instance, CNNs are able to
assess the real photon-count map of the sky on multiple
scales, which can potentially give rise to more robust results
in the presence of mismodeling on large angular scales (List
et al., 2020), whereas statistical methods typically rely on
an approximation of the likelihood that treats each pixel
independently (e.g. Mishra-Sharma et al. 2017).

4. Conclusions
We have presented a method for the NN-based regression of
histograms from input images or other data. Our approach
is based on minimizing a novel loss function, which we call
the Earth Mover’s Pinball Loss (EMPL), rooted in trans-
portation theory as well as in quantile regression. This loss
function is an asymmetric generalization of the EMD that
allows for the regression of arbitrary quantiles of the cu-
mulative histogram in each bin, harnessing the idea of the
pinball loss. In the particular case of the median (τ = 0.5),
our loss function reduces to the EMD. We have demon-
strated the effectiveness of our method in a toy example,
a football-related task, and a problem in γ-ray astronomy.
The accuracy of the estimated median histogram is very
similar to the standard EMD case, and the prediction of
arbitrary other quantiles comes at almost no additional cost
(the increase in walltime for training is < 10%). Given the
vast range of applications where histograms are used, there
is a great potential for Deep Learning methods to provide ac-
curate, fast, and reliable histogram predictions. The EMPL
is easy to implement (see the Supplementary Material), and
we expect it to be particularly useful for tasks where the
entire distribution of possible histograms is of interest such
as rain forecasts (“what’s the probability that it rains more
than 10 mm tomorrow?”) or radiation treatment planning
(“how certain can we be that 20% of the cancerous organ
should receive a dose of 30 Gy?”). Possible extensions of
our work include multidimensional histograms, incorporat-
ing epistemic uncertainties (e.g. Gal & Ghahramani 2016),
flexible ground distances, and the application to parameter-
ized continuous (i.e. unbinned) distributions.
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