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Appendix

The Appendix is organized as follows.

• Section A presents omitted proofs for theoretical conclusions in the main paper.

• Section B includes additional details for Figures 2 and 3.

• Section C provides additional discussions.

A. Proofs

Proof for Theorem 4
Proof. Recall the definition of τl:

τl :=
Eα∼π̄N [αl+1 · (1− α)n−l]

Eα∼π̄N [αl · (1− α)n−l]
(15)

To bound τl, we start with the denominator Eα∼π̄N [αl · (1− α)n−l]. First ∀α ∈ [0, 1], we have

αl−1 · (1− α)n−l ≤
(
l − 1

n− 1

)l−1(
1− l − 1

n− 1

)n−l
.

The above can be easily verified by the checking the first order condition of log
(
αl−1 · (1− α)n−l

)
. Therefore

Eα∼π̄N [αl · (1− α)n−l]

≤
(
l − 1

n− 1

)l−1(
1− l − 1

n− 1

)n−l
· Eα∼π̄N [α]

=

(
l − 1

n− 1

)l−1(
1− l − 1

n− 1

)n−l
· 1

N
. (16)

where the last equality is due to π̄N [α] = 1
N . Now let’s look at the numerator Eα∼π̄N [αl+1 · (1−α)n−l]. For α ∈ [ l−1

n−1 ,
l
n ],

we have

αl+1 · (1− α)n−l ≥ α ·
(
l − 1

n− 1

)l
·
(

1− l

n

)n−l

Therefore combining the bounds for both denominator and the numerator we have

τl ≥

(
l−1
n−1

)l
·
(
1− l

n

)n−l(
l−1
n−1

)l−1 (
1− l−1

n−1

)n−l · E [Nα · 1(α ∈ [ l − 1

n− 1
,
l

n

])]

=
l − 1

n− 1︸ ︷︷ ︸
Term 1

·

(
1− l

n

1− l−1
n−1

)n−l
︸ ︷︷ ︸

Term 2

·weight
(
π̄N ,

[
l − 1

n− 1
,
l

n

])
︸ ︷︷ ︸

Term 3

, (17)
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where the weight is introduced by its definition. For the second term above,(
1− l

n

1− l−1
n−1

)n−l

=

(
1−

l
n −

l−1
n−1

1− l−1
n−1

)n−l

=

(
1− l(n− 1)− (l − 1)n

n(n− 1)− (l − 1)n

)n−l
=

(
1− n− l

n(n− l)

)n−l
≥1− n− l

n(n− l)
· (n− l) =

l

n
. (18)

For the third term, we will call Lemma 2.4 of Feldman (2020):

Lemma 4 (Lemma 2.4 of (Feldman, 2020)). For any 0 < β1 < β2 < 1, and for any γ > 0,

weight
(
π̄N ,

[
β1, β2

])
≥ 1− δ

1− 1
N + β2 + γ

· weight
(
π̄N ,

[
β1

1− 1
N + β1 − γ

,
β2

1− 1
N + β2 + γ

])
, (19)

where in above δ := 2 · e
−γ2

2(N−1)V ar(π)+2γπmax/3 , and

V ar(π) :=
∑
j∈[N ]

(πj −
1

N
) ≤ πmax

N
.

Using above, we next further derive that

weight
(
π̄N ,

[ l − 1

n− 1
,
l

n

])
≥ 0.4 · weight

(
π,

[
2

3

l − 1

n− 1
,

4

3

l

n

])
To see this, using above Lemma 4, for any γ > 0,

weight
(
π̄N ,

[
l − 1

n− 1
,
l

n

])
≥ 1− δ

1− 1
N + l

n + γ
· weight

(
π,

[
l−1
n−1

1− 1
N + l−1

n−1 − γ
,

l
n

1− 1
N + l

n + γ

])

Let γ = 1
2 , for sufficiently large n(� l), N ,

1− 1

N
+
l − 1

n− 1
− γ ≤ 2

3

Similarly

1− 1

N
+
l

n
+ γ ≥ 4

3

Easy to show that δ ≤ 2e−1/10πmax , and when πmax ≤ 1
20 , we have δ ≤ 2e−2 ≤ 0.3. Therefore

1− δ
1− 1

N + l
n + γ

≥ 0.7

7/4
= 0.4. (20)

To summarize

weight
(
π̄N ,

[ l − 1

n− 1
,
l

n

])
≥ 0.4 · weight

(
π,

[
2

3

l − 1

n− 1
,

4

3

l

n

])
Combining Term 2 and 3 we complete the proof.
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Proof for Proposition 5
Proof. The major difference from proving Theorem 4 is due to the reasoning of the numerator: Eα∼π̄N [αl+1 · (1− α)n−l].
Now for α ∈ [ l−1

1.1(n−1) ,
l−1
n−1 ], we have

αl+1 · (1− α)n−l ≥ α ·
(

l − 1

1.1(n− 1)

)l
·
(

1− l − 1

n− 1

)n−l
Therefore, using Eqn. (16), and the definition of τl we have

τl ≥

(
l−1

1.1(n−1)

)l
·
(

1− l−1
n−1

)n−l
(
l−1
n−1

)l−1 (
1− l−1

n−1

)n−l · E [Nα · 1(α ∈ [ l − 1

1.1(n− 1)
,
l − 1

n− 1

])]

=
l − 1

n− 1
· 1

1.1l
· weight

(
π̄N ,

[
l − 1

1.1(n− 1)
,
l − 1

n− 1

])
. (21)

Again, using Lemma 2.4 of Feldman (2020), for the weight term, we further derive that for any γ > 0,

weight
(
π̄N ,

[
l − 1

1.1(n− 1)
,
l − 1

n− 1

])
≥ 1− δ

1− 1
N

+ l−1
n−1

+ γ
· weight

(
π,

[
l−1

1.1(n−1)

1− 1
N

+ l−1
1.1(n−1)

− γ
,

l−1
n−1

1− 1
N

+ l−1
n−1

+ γ

])

Let γ = 1
2 , for sufficiently large n(� l), N ,

1− 1

N
+

l − 1

1.1(n− 1)
− γ ≤ 2

3

Similarly

1− 1

N
+

l − 1

1.1(n− 1)
+ γ ≥ 4

3

Similarly we show that δ ≤ 2e−1/10πmax , and when πmax ≤ 1
20 we have δ ≤ 2e−2 ≤ 0.3. Therefore

1− δ
1− 1

N + l−1
n−1 + γ

≥ 0.7

7/4
= 0.4. (22)

To summarize

weight
(
π̄N ,

[
l − 1

1.1(n− 1)
,
l − 1

n− 1

])
≥ weight

(
π,

[
0.7 · l − 1

n− 1
,

4

3

l − 1

n− 1

])
Putting this above bound back to Eqn. (21) we complete the proof.

Proof for Theorem 6
Proof. This is simply because when h memorizes the noisy labels for x such that Ph∼A(S′)[h(x) = k] = P̃[ỹ = k|x], we
will have:

err+l (P,A, x|S)

=τl · Ph∼A(S′)[h(x) 6= y]

=τl ·
∑
k 6=y

P̃[ỹ = k|x].

Plugging the lower bound we prepared for τl earlier (Theorem 4) we proved the claim.
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Proof for Lemma 2
Proof. Using the definition of yLC, and using the knowledge of Eqn. (10) we know that

yLC[1] =
1

1− e+(x)− e−(x)

(
(1− e+(x))P̃[ỹ = −1|x]− e+(x)P̃[ỹ = +1|x]

)
yLC[2] =

1

1− e+(x)− e−(x)

(
(1− e−(x))P̃[ỹ = +1|x]− e−(x)P̃[ỹ = −1|x]

)

Therefore

yLC[1] + yLC[2] =
1

1− e+(x)− e−(x)

(
(1− e+(x)− e−(x)) · P̃[ỹ = −1|x] + (1− e+(x)− e−(x)) · P̃[ỹ = +1|x]

)
= 1.

Proof for Theorem 7
Proof. Due to symmetricity, we consider y = +1. Using the definition of yLC, and using the knowledge of Eqn. (10) we
know that

P[yLC = +1|x] =
(1− e−(x)) · P̃[ỹ = +1|x]− e+(x) · P̃[ỹ = −1|x]

1− e+(x)− e−(x)

Recall we denote by yLC the random variable drawn according to yLC. Next we show:

P̃[ỹ = +1|x] > P̃[ỹ = −1|x]⇔ P[yLC = +1|x] > P̃[ỹ = +1|x]. (23)

This is equivalent to the following comparison (when e+(x) + e−(x) < 1):

RHS of Eqn. (23)

⇔ (1− e−(x)) · P̃[ỹ = +1|x]− e+(x) · P̃[ỹ = −1|x]

1− e+(x)− e−(x)
> P̃[ỹ = +1|x]

⇔ (1− e−(x)) · P̃[ỹ = +1|x]− e+(x) · P̃[ỹ = −1|x] > (1− e+(x)− e−(x)) · P̃[ỹ = +1|x]

⇔ e+(x) · P̃[ỹ = +1|x] > e+ · P̃[ỹ = −1|x]

⇔ P̃[ỹ = +1|x] > P̃[ỹ = −1|x]

⇔ LHS of Eqn. (23)

Note that because we consider a non-trivial case P̃[ỹ 6= y|x] > 0, we have P̃[ỹ = +1|x] < 1. Therefore the above derivation
holds even if we capped P[yLC = +1|x] = (1−e−(x))·P̃[ỹ=+1|x]−e+(x)·P̃[ỹ=−1|x]

1−e+(x)−e−(x) at 1 to make it a valid probability measure.

Now we derive when P̃[ỹ = +1|x] > P̃[ỹ = −1|x]. Recall ỹ(1), ..., ỹ(l) denote the l noisy labels for x ∈ XS=l, and let
Z1, ..., Zl denote the l Bernoulli random variable that Zk = 1(ỹ(k) = +1), k ∈ [l]. Then

P̃[ỹ = +1|x] > P̃[ỹ = −1|x]

⇔ P̃[ỹ = +1|x] > 1/2

⇔
∑
k∈[l] Zk

l
> 1/2.

Now we derive P
[∑

k∈[l] Zk

l > 1/2
]
. Note E

[∑
k∈[l] Zk

l

]
= 1− e+(x). By applying Hoeffding inequality we prove that

P

[∑
k∈[l] Zk

l
≤ 1/2

]
≤ e−2l(1/2−e+(x))2 .
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Therefore

P

[∑
k∈[l] Zk

l
> 1/2

]
≥ 1− e−2l(1/2−e+(x))2 .

The case with y = −1 is entirely symmetric so we omit the details.

Proof for Corollary 1

Proof. Because err+l (P,A, x|S) := τl · Ph∼A(S′)[h(x) 6= y], as well as w.p. at least 1− e−2l(1/2−esgn(y)(x))2 , memorizing
yLC returns lower error P[h(x) 6= y] than memorizing the noisy labels s.t. P[h(x) = k] = P̃[ỹ = k|x], the corollary is then
true via the lower bound for τl.

Proof for Theorem 8
Proof. Again due to symmetricity, we consider y = +1. Similar as argued in the proof of Theorem 7, from Eqn. (23) we
know that when P̃[ỹ = +1|x] < P̃[ỹ = −1|x], we have P[yLC = +1|x] < P̃[ỹ = +1|x], that is memorizing yLC is worse
than memorizing ỹ. Again because we consider a non-trivial case P̃[ỹ 6= y|x] < 1, we have P̃[ỹ = +1|x] > 0. Therefore
the above derivation holds even if we capped P[yLC = +1|x] = (1−e−(x))·P̃[ỹ=+1|x]−e+(x)·P̃[ỹ=−1|x]

1−e+(x)−e−(x) at 0 to make it a valid
probability measure.

Similarly define Zk for k ∈ [l] as in Proof for Theorem 7: the l Bernoulli random variable that Zk = 1(ỹ(k) = +1), k ∈ [l].
Then

P[yLC = +1|x] < P̃[ỹ = +1|x]⇔ P̃[ỹ = +1|x] < P̃[ỹ = −1|x]⇔
∑
k∈[l] Zk

l
< 1/2

We bound P
[∑

k∈[l] Zk

l < 1/2
]
:

P

[∑
k∈[l] Zk

l
< 1/2

]

=P

∑
k∈[l]

1− Zk ≥ l/2


=P[Bin(l, e+(x)) ≥ l/2],

where we use Bin to denote a Binomial random variable, and the fact that E
[∑

k∈[l](1−Zk)

l

]
= e+(x). Using tail bound for

Bin (e.g., Lemma 4.7.2 of (Ash, 1990)) yields:

P[Bin(l, e+(x)) ≥ l/2] ≥ 1√
8 · 1

2 l(1−
1
2 )
· e−l·DKL( 1

2‖e+(x))

=
1√
2l
· e−l·DKL( 1

2‖e+(x)),

completing the proof. The case with y = −1 is entirely symmetric so we omit the details.

Proof for Theorem 9
Proof. Note that label smoothing smooths the noisy labels in the following way:

P̃[yLS = +1|x] = (1− a) · P̃[ỹ = +1|x] +
a

2
. (24)

The proof is then simple: when E+ is true, from the proof of Theorem 7, Eqn. (23), we know that yLC further ex-
tremizes/increases the prediction of +1 that P[yLC = +1|x] > P̃[ỹ = +1|x], while label smoothing yLS reduces from
P̃[ỹ = +1|x] by a factor of a · P̃[ỹ = +1|x]− a

2 > 0. Therefore, memorizing smoothed label increases the error P[h(x) 6= y].
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The above observation is reversed when the opposite event Ē+ is instead true: in this case, yLC further extremizes/increases
the prediction of −1 that P[yLC = +1|x] < P̃[ỹ = +1|x], while label smoothing yLS increases from P̃[ỹ = +1|x] by a
factor of a2 − a · P̃[ỹ = +1|x] > 0.

Proof for Lemma 3
Proof. Denote by `CE the CE loss, and Dx,Dỹ the marginal distribution of x, ỹ explicitly.

Ex×ỹ [`PL(h(x), ỹ)]

=Ex×ỹ [`CE(h(x), ỹ)]− EDỹ [EDx [`CE (h (x) , ỹ)]]

=−
∑
x∈X

∑
ỹ∈Y

P(x, ỹ) logQ(ỹ|x)︸ ︷︷ ︸
CE term

+
∑
x∈X

∑
ỹ∈Y

P(x)P(ỹ) logQ(ỹ|x)︸ ︷︷ ︸
Peer term

, (25)

The conditional probability Q(ỹ|x) is defined as the prediction of the underlying neural network model, while P(x)P(y)
captures the probabilities of the marginal-product of the training distribution. We call the first sum-integration as CE term
and the second as peer term.

For the CE term, we further have

−
∑
x∈X

∑
ỹ∈Y

P(x, ỹ) logQ(ỹ|x)

=−
∑
x∈X

∑
ỹ∈Y

[P(x, ỹ) logQ(ỹ|x)P(x)− P(x, ỹ) logP(x, ỹ)]

=−
∑
x∈X

∑
ỹ∈Y

P(x, ỹ) log
Q(x, ỹ)

P(x, ỹ)

=DKL(Q(x, ỹ)‖P(x, ỹ))

In the above, we used Q(x, ỹ) = Q(ỹ|x)P(x) as in classification task the model prediction does not affect the feature
distribution. Similarly, for the peer term∑

x∈X

∑
ỹ∈Y

P(x)P(ỹ) logQ(ỹ|x)

=
∑
x∈X

∑
ỹ∈Y

[
P(x)P(ỹ) logQ(ỹ|x)P(x)− P(x)P(ỹ) logP(x)P(ỹ)

]

=
∑
x∈X

∑
ỹ∈Y

P(x)P(ỹ) log
Q(x, ỹ)

P(x)P(ỹ)

=−DKL(Q(x, ỹ)‖P(x)× P(ỹ)).

Combing the above derivations for the CE and peer term we complete the proof.

Proof for Theorem 11
Proof. Again due to symmetricity, we consider y = +1. It was shown in (Cheng et al., 2020a) that, when taking expectation
over the data distribution, the original definition of peer loss

`PL(h(x), ỹ) := `(h(x), ỹ)− `(h(xp1), ỹp2) (26)

is equivalent to

`(h(x), ỹ)− Ẽ[`(h(x), ỹq)], (27)

where q is a randomly sampled index from [n], and the expectation is over the randomness in ỹq . The high-level intuition is
that each x appears in the peer terms exactly once in expectation, so we can fix xp1 be the same x. Then we will only vary
p2 (index q in our notation). The operation of taking expectation is to reduce uncertainty in the peer term.
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The average empirical peer loss on x is then given by

1

l

l∑
i=1

`PL(h(x), ỹ(i))

=
1

l

l∑
i=1

`(h(x), ỹ)− Ẽ[`(h(x), ỹq)]

=Ẽ [`(h(x), ỹ)]− `(h(x),−1) · P̃[ỹq = −1]

− `(h(x),+1) · P̃[ỹq = +1].

where Ẽ denotes the empirical expectation w.r.t. the empirical distribution of ỹ|x, and P̃[ỹq]s are the empirical distribution
of ỹq. As shown already, peer loss pushes h to predict one class confidently, therefore there are two cases: h(x) = +1 or
h(x) = −1.

When h(x) = +1 we have

Ẽ [`(h(x) = +1, ỹ)]− `(h(x),−1) · P̃[ỹq = −1]

− `(h(x),+1) · P̃[ỹq = +1]

=P̃[ỹ = +1|x] · `(h(x) = +1,+1) + P̃[ỹ = −1|x] · `(h(x) = +1,−1)

− `(h(x) = +1,−1) · P̃[ỹq = −1]− `(h(x) = +1,+1) · P̃[ỹq = +1]

=
(
P̃[ỹ = +1|x]− P̃[ỹq = +1]

)
· (`(h(x) = +1,+1)− `(h(x) = +1,−1))

While if h(x) = −1, we have

Ẽ [`(h(x) = −1, ỹ)]− `(h(x),−1) · P̃[ỹq = −1]

− `(h(x),+1) · P̃[ỹq = +1]

=P̃[ỹ = +1|x] · `(h(x) = −1,+1) + P̃[ỹ = −1|x] · `(h(x) = −1,−1)

− `(h(x) = −1,−1) · P̃[ỹq = −1]− `(h(x) = −1,+1) · P̃[ỹq = +1]

=
(
P̃[ỹ = −1|x]− P̃[ỹq = −1]

)
(`(h(x) = −1,−1)− `(h(x) = −1,+1))

= −
(
P̃[ỹ = +1|x]− P̃[ỹq = +1]

)
(`(h(x) = −1,−1)− `(h(x) = −1,+1))

For CE, we have `(h(x) = +1,+1) = `(h(x) = −1,−1) = 0, and in Cheng et al. (2020a); Liu & Guo (2020), `(h(x) =
−1,+1) = `(h(x) = +1,−1) is set to be a large positive quantity. Let’s denote it as C. Then h(x) = +1 returns a lower
loss (

(
P̃[ỹ = +1|x]− P̃[ỹq = +1]

)
· (−C), a negative quantity as compared to −

(
P̃[ỹ = +1|x]− P̃[ỹq = +1]

)
· (−C) a

positive one) if P̃[ỹ = +1|x]− P[ỹq = +1] > 0.

Next we derive the probability of having P̃[ỹ = +1|x] > P̃[ỹq = +1]. When n is sufficiently large, P̃[ỹq = +1] ≈
p+ · (1− e+) + p− · e− < P[ỹ = +1|x] = 1− e+. Define Zl as in Proof for Theorem 7: the l Bernoulli random variable
that Zk = 1(ỹ(k) = +1), k ∈ [l]. Then using Hoeffding bound we prove that

P
[
P̃[ỹ = +1|x] > p+ · (1− e+) + p− · e−

]
=1− P

[∑
k∈[l] Zk

l
≤ p+ · (1− e+) + p− · e−

]

≥1− e
−2l

(p+·(1−e+)+p−·e−−(1−e+))2

≥1− e
−2l

p2−·(1−e+−e−)2 ,

completing the proof. Again the case with y = −1 is symmetric.
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Proof for Corollary 2

Proof. Because we have shown that w.p. at least 1− e
−2l

p2
sgn(−y)·(1−e+−e−)2 , training with `PL on x ∈ XS=l returns h(x) = y,

results a 0 individual excessive generalization error err+l (P,A, x|S) = 0. On the other hand, Theorem 6 informs us that
err+l (P,A, x|S) is in the following order when memorizing the noisy labels:

Ω

 l2

n2
weight

(
π,

[
2

3

l − 1

n− 1
,

4

3

l

n

])
·
∑
k 6=y

P̃[ỹ = k|x]

 (28)

Taking the difference (Eqn.(28) −0) we proved the claim.

Proof for Theorem 12
Proof. Consider y = +1. As argued in the proof of Theorem 11, when P̃[ỹ = +1|x] < P[ỹq = +1], we have h(x) = −1

returns a smaller loss. So the output h(x) predicts −1, the wrong label. Now we show when P̃[ỹ = +1|x] < P̃[ỹq = +1].
Define Zl as in Proof for Theorem 7: the l Bernoulli random variable that Zk = 1(ỹ(k) = +1), k ∈ [l]. Then

P
[
P̃[ỹ = +1|x] < P̃[ỹq = +1]

]
=P
[
P̃[ỹ = +1|x] < p+(1− e+) + p− · e−

]
=P

∑
k∈[l]

1− Zk ≥ l(p+ · e+ + p− · (1− e−))


=P [Bin(l, e+) ≥ l (p+ · e+ + p− · (1− e−))] .

Again using the tail bound for Bin, we prove that

P [Bin(l, e+) ≥ l(p+ · e+ + p− · (1− e−))]

≥ e−l·DKL( 1
2‖e+)√

8l (p+ · e+ + p− · (1− e−)) · (p+ · (1− e+) + p− · e−)
.

Note that (p+ · e+ + p− · (1− e−)) + (p+ · (1− e+) + p− · e−) = 1, and each term (p+ · e+ + p− · (1− e−)) and
(p+ · (1− e+) + p− · e−) is positive. Therefore

(p+ · e+ + p− · (1− e−)) · (p+ · (1− e+) + p− · e−) ≤ 1

4
.

Therefore we conclude that

e−l·DKL( 1
2‖e+)√

8l (p+ · e+ + p− · (1− e−)) · (p+ · (1− e+) + p− · e−)
≥ 1√

2l
e−l·DKL( 1

2‖e+),

completing the proof.

B. Figures

More examples for Figure 2
In Figure 5, we provide one additional figure for training with 40% random label noise for comparison.

Details for generating Figure 3
The training uses ResNet-34 as the backbone with the following setups: mini-batch size (64), optimizer (SGD), initial
learning rate (0.1), momentum (0.9), weight decay (0.0005), number of epochs (100) and learning rate decay (0.1 at 50
epochs). Standard data augmentation is applied to each dataset.

The generation of instance-dependent label noise follows the steps in (Xia et al., 2020; Cheng et al., 2020a):
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Figure 5. A 2D example illustrating the memorization of noisy labels. Left panel: Training with clean labels. Middle panel: Training with
random 20% noisy labels. Right panel: Training with random 40% noisy labels.

• Define a noise rate (the global flipping rate) as ε.

• For each instance x, sample a q from the truncated normal distribution N(ε, 0.12, [0, 1]).

• Sample parameters W from the standard normal distribution. Compute x×W .

• Then the final noise rate is a function of both q and x ·W .

C. Discussion
Sample cleaning Sample cleaning promotes the procedure of identifying possible wrong labels and removing them from
training. If the identification is done correctly, the above procedure is effectively pushing P̃(ỹ) to the direction of the correct
label, achieving a better generalization performance. From the other perspective, removing noisy labels helps the h to
de-memorize the noisy ones.

The ability to identify the wrong labels has been more or less analyzed in the literature, but certainly would enjoy a more
thorough and in-depth investigation. We view this as an important theoretical question for the community. Similar to the
previous observations, we would like to caution the existence of rare examples with small l - the previously introduced
approaches have been shown to have a non-negligible chance of failing in such cases. We imagine this is probably true for
sample cleaning, when the majority of a small number of noisy labels are in fact misleading.

Understanding the difficulty of labeling A better understanding of the possibility of handling noisy labels calls for
immediate effort for understanding the probability of observing a wrong label for different instances. The salient challenge
in doing so is again due to the missing of ground truth supervision information. One promising direction to explore is to
leverage inference models (Liu et al., 2012) to infer the hidden difficulty factors in the generation of noisy labels.

Hybrid & decoupled training Our results also point out a promising direction to treat samples from different regimes
differently. While the existing approaches seem to be comfortable with the highly frequent instances (large l), the rare
instances might deserve different handling.

One thing we observed is rare samples suffer from a small l and insufficient label information. While dropping rare samples
is clearly hurting the generalization power, a better alternative would be to collecting multiple labels for these instances to
boost the classifier’s confidence in evaluating these instances.

Dataset effort Last but not least, a concrete understanding of the effects of instance-dependent label noise would require
a high-quality dataset that contains real human-level noise patterns. While there have been some recent efforts (Xiao et al.,
2015; Jiang et al., 2020), most of the evaluations and studies stay with the synthetic ones.




