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Abstract
In this appendix, first we provide the implemen-
tation details used to prune classification and de-
tection networks, and conduct ablation studies
on the hyper-parameters including pruning inter-
val and prune/fine-tune learning rate. Then we
give results of different network structures about
the relationship between relative FLOPs/memory
reduction and speedup, which is general and mo-
tivates us to normalize the channel importance by
its memory reduction. Finally we present visual-
izations of pruned networks to show our method
can automatically find the proper pruning ratio
for each layer and prunes coupled channels in
complicated structures simultaneously.

1. Implementation Details
Classification. To prune classification networks, we first
follow the standard practices in (He et al., 2016; Xie et al.,
2017; Sandler et al., 2018; Radosavovic et al., 2020) (such as
data augmentation, input size, weight initialization, learning
rate scheduling, weight decay, optimizer, momentum and
training iterations) to train the dense model. Starting from it,
we accumulate the Fisher information importance si for d =
25 iterations and prune the least important channel (with the
smallest memory-normalized importance si/4M ). Then
we set the accumulated importance for each channel to 0
and fine-tune the pruned model with lr = 0.004, meanwhile
we accumulate the importance for another d = 25 steps. As
the model has converged before pruning, we adopt a small
learning rate to update the model weights after pruning each
channel. Next the pruning and fine-tuning process recur.
In the pruning procedure, we set the masks of the pruned
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model train (h) prune (h) fine-tune (h)
ResNet-50 28.2 15.1 16.2
RetinaNet 10.3 6.2 7.0

Table 1: Time for pruning networks to 50% FLOPs.

channels to 0. After the FLOPs of the pruned model arrives
at the desired quantity, we physically discard all channels
with 0 masks and fine-tune the model once with lr = 0.1
and parameters inherited from the pruned model.

The time cost for training a dense ResNet-50, pruning it to
50% FLOPs remained and fine-tuning to regain accuracy
is shown in Tab. 1. We find that the total time of pruning
and fine-tuning is approximately equal to that of training a
dense model, showing the efficiency of our method. During
deployment, we measure the inference time of the pruned
model on an NVIDIA 2080 Ti GPU with batchsize = 64
following (Radosavovic et al., 2020), the reported time is
averaged across 100 batches with the first 100 batches dis-
carded where the time is inaccurate.

Because of page limit, in the main submission results of
comparing with SoTAs on pruning classification networks
are concise. Here we present a detailed comparison with
state-of-the-art channel pruning methods in Tab. 2. Un-
der similar parameters and FLOPs, models pruned by our
method has advantages over previous ones on both absolute
accuracy and accuracy drop. Besides, our method achieves
more speedup thanks to coupled pruning and memory nor-
malization. For the reduction of parameters and FLOPs, we
report the relative values for some methods to follow the
original references. Only a few methods measure the actual
inference time and speedup on GPUs which we report.

Detection. The dense models for detection are trained with
the standard settings from MMDetection (Chen et al., 2019).
The pruning interval d = 10 and fine-tuning lr = 0.002 dur-
ing pruning. After the pruning stage we fine-tune the model
with pruned channels discarded using lr = 0.01 to recover
its accuracy. The time of each step to prune RetinaNet (Lin
et al., 2017b) can also be found in Tab. 1, which shows our
method is efficient. Similar to pruning classification net-
works, the inference time is measured on an NVIDIA 2080
Ti GPU across 100 batches, except that batchsize = 24 is
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method T1(%) B1(%) T5(%) B5(%) P(M) F(G) S(×) 4T1 4T5
R

es
50

ThiNet (Luo et al., 2017) 74.03 75.30 92.11 92.20 33.72%↓ 36.79%↓ 1.13 1.27 0.09
SSS (Huang & Wang, 2018) 75.44 76.12 92.61 92.86 25.30 3.47 - 0.68 0.25
IE (Molchanov et al., 2019) 76.43 76.18 - - 22.60 3.27 - -0.25 -

Meta (Liu et al., 2019) 76.20 76.60 - - - 3.0 - 0.40 -
GBN (You et al., 2019) 76.19 75.85 92.83 92.67 31.83%↓ 40.54%↓ - -0.34 -0.16

Ours 76.95 76.79 93.51 93.40 23.82 3.06 1.30 -0.16 -0.11
ThiNet (Luo et al., 2017) 72.03 75.30 90.99 92.20 51.56%↓ 55.83%↓ 1.27 3.27 1.21

CP (He et al., 2017) 75.06 76.13 90.80 92.20 - 50.00%↓ - 1.07 1.4
NISP (Yu et al., 2018) 0.89 ↓ - - - 43.82%↓ 44.01%↓ - 0.89 -
SFP (He et al., 2018a) 74.61 76.15 92.06 92.87 - 41.80%↓ 1.43 1.54 0.81
GDP (Lin et al., 2018) 72.61 75.13 91.05 92.30 - 2.24 1.24 2.52 1.25

SSS (Huang & Wang, 2018) 71.82 76.12 90.79 92.86 15.60 2.33 - 4.30 2.07
DCP (Zhuang et al., 2018) 74.95 76.01 92.32 92.93 - 55.76%↓ - 1.06 0.61
AOFP (Ding et al., 2019b) 75.11 75.34 92.28 92.56 - 56.73%↓ - 0.23 0.28

FPGM (He et al., 2019) 74.83 76.15 92.32 92.87 - 53.50%↓ 1.62 1.32 0.55
IE (Molchanov et al., 2019) 74.50 76.18 - - 14.20 2.25 - 1.68 -
C-SGD (Ding et al., 2019a) 74.54 75.33 92.09 92.56 - 46.24%↓ - 0.79 0.47

Meta (Liu et al., 2019) 75.40 76.60 - - - 2.0 - 1.20 -
GBN (You et al., 2019) 75.18 75.85 92.41 92.67 53.40%↓ 55.06%↓ - 0.67 0.26
LFPC (He et al., 2020) 74.46 76.15 92.04 92.87 - 60.80%↓ - 1.69 0.83

HRank (Lin et al., 2020) 74.98 76.15 92.33 92.87 16.15 2.30 - 1.17 0.54
Ours 76.42 76.79 93.07 93.40 19.42 2.04 1.79 0.37 0.33

ThiNet (Luo et al., 2017) 68.17 75.30 88.86 92.20 66.12%↓ 71.50%↓ 1.35 7.13 3.34
GDP (Lin et al., 2018) 70.93 75.13 90.14 92.30 - 1.57 - 4.20 2.16

IE (Molchanov et al., 2019) 71.69 76.18 - - 7.90 1.34 - 4.49 -
Meta (Liu et al., 2019) 73.40 76.60 - - - 1.0 - 3.20 -

CURL (Luo & Wu, 2020) 73.39 76.15 91.46 92.87 6.67 1.11 - 2.76 1.41
Ours 73.94 76.79 91.71 93.40 12.36 1.02 2.94 2.85 1.69

R
es

10
1

ISTA (Ye et al., 2018) 75.27 76.40 - - 23.6 4.47 - 1.13 -
SFP (He et al., 2018a) 77.51 77.37 93.71 93.56 - 42.20%↓ - -0.14 -0.15

SSS (Huang & Wang, 2018) 75.44 76.40 - - - 3.47 - 0.96 -
AOFP (Ding et al., 2019b) 76.40 76.63 93.07 93.29 - 50.19%↓ - 0.23 0.22

FPGM (He et al., 2019) 77.32 77.37 93.56 93.56 - 42.20%↓ - 0.05 0
IE (Molchanov et al., 2019) 77.35 77.37 - - 31.2 4.70 - 0.02 -

Ours 78.33 78.29 94.10 94.02 28.02 3.90 1.50 -0.04 -0.08

M
B

v2

AMC (He et al., 2018b) 70.80 71.80 - - - 0.22 - 1.00 -
Meta (Liu et al., 2019) 72.70 74.70 - - - 0.29 - 2.00 -

Ours 73.42 75.74 91.56 92.61 3.31 0.29 1.84 2.32 1.05
Meta (Liu et al., 2019) 68.20 74.70 - - - 0.14 - 6.50 -

Ours 69.16 75.74 89.06 92.61 1.81 0.15 1.79 6.58 3.55
Meta (Liu et al., 2019) 65.00 74.70 - - - 0.11 - 9.70 -

Ours 65.94 75.74 85.96 92.61 1.32 0.10 1.82 9.80 6.65

N
eX

t5
0

SSS (Huang & Wang, 2018) 74.98 77.57 92.50 93.68 10.70 2.43 - 2.59 1.18
Ours 77.53 77.97 93.64 93.89 18.05 2.11 1.57 0.44 0.25

Table 2: Compare with SoTAs on ImageNet. The column “T1/T5” represents top-1/5 accuracy of the pruned model on the
validation set where ↓ shows the accuracy drop compared with the unpruned model. “B1/B5” shows the top-1/5 accuracy
of the unpruned base model. “P/F” shows the number of Params/FLOPs of the pruned model, where ↓ elements show the
relative Params/FLOPs reduction compared with the unpruned model. “S” denotes the actual speedup of the pruned model
on GPUs. “4T1/4T5” denotes the top-1/5 accuracy drop after pruning.
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parameter
classification, Res50 detection, RetinaNet
value Top1 (%) value mAP (%)

prune step d

5 76.36 5 36.5
10 76.28 10 36.5
25 76.42 30 36.5
40 76.37 40 36.3

prune lr

0.002 76.32 0.0005 36.7
0.004 76.42 0.001 36.6
0.04 76.40 0.002 36.5
0.08 76.59 0.005 36.5

fine-tune lr

0.01 75.86 0.001 35.3
0.02 76.25 0.0025 35.6
0.04 76.16 0.005 36.1
0.08 76.29 0.0075 36.5
0.1 76.42 0.01 36.5
0.2 76.33 0.0125 36.5
0.4 75.96 0.015 36.6

Table 3: Ablation studies on hyper-parameters when pruning
networks to 50% FLOPs.

smaller (since input image size of detection is much larger
than classification) and the reported time for detection has
been divided by the batchsize.

Ablations. In Tab. 3 we provide ablation studies on
pruning step d, pruning and fine-tuning learning rate for
pruning ResNet-50 and RetinaNet to 50% FLOPs retained.
As shown our method is rather robust against the hyper-
parameters on both classification and detection.

2. Speedup with Different Normalizations
We find the actual speedup on GPUs is more linearly cor-
related with the reduction of memory than the reduction of
FLOPs, here we show it is generally applicable to different
network structures. Assume the FLOPs/memory/inference
time of the dense model is C/M /T , and that of the pruned
model in the pruning procedure is C ′/M ′/T ′, we study the
relationship between relative speedup 1− T ′

T and relative
FLOPs/memory reduction 1 − C′

C /1 − M ′

M . In Fig. 1 the
status of the pruned model during the pruning process are
plotted. When we normalize importances by4C (reduction
of FLOPs) of channels, the relative memory reduction is ap-
proximately linearly correlated with relative speedup, which
grows much slower with the increase of relative FLOPs
reduction. It motivates us to normalize importances by
4M (reduction of memory). If we prune by the memory-
normalized importance si/4M , the relationship between
speedup and memory reduction stays approximately linear,
but FLOPs reduction becomes more proportional to rela-
tive speedup. It verifies the effectiveness of normalizing by
memory, through it we can estimate the actual speedup with
the reduction of FLOPs/memory more accurately than nor-

malizing by FLOPs, and thus we are able to achieve higher
speedup than previous methods under the same FLOPs.

3. Pruned Network Visualization
Classification. In Fig. 3 we compare the remained channels
after pruning ResNet-50 to different FLOPs (4G/3G/2G/1G),
using memory (left column) and FLOPs (right column) as
importance normalizations, respectively (4G is FLOPs for
the dense model). The pruned results of all layers are shown
in the first row, and those of 1st/2nd/3rd convolutional layers
in residual blocks are shown in the following rows for clarity.
It shows that normalizing by memory prunes more channels
in early stages, but normalizing by FLOPs prunes rather
uniformly in different stages.

Detection. Remained channels in the pruned feature pyra-
mid network (Lin et al., 2017a) of RetinaNet are shown in
Fig. 2 (a). As expected, the coupled channels are pruned
simultaneously and verify that our method can deal with so-
phisticated structures. We also compare the pruned channels
in classification and regression heads of RetinaNet in Fig.
2 (b), where we find that the classification branch retains
more capacity than regression. This is because region clas-
sification is a more difficult task than box regression since
it needs to discriminate dozens of classes, while regressing
bounding box requires less capacity as it can share a certain
amount of knowledge across classes.
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(a) ResNet-50, by FLOPs.
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(b) ResNet-50, by memory.

reduced FLOPs
reduced memory

reduced memory/FLOPs (%)

re
la

ti
ve

 s
p

ee
d

u
p

 (
%

)

0         20         40        60         80        100

0

20

40

60

100

80

(c) MBv2-2.0×, by FLOPs.
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(d) MBv2-2.0×, by mem-
ory.
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(e) ResNeXt-50, by FLOPs.

0 20 40 60 80 100
reduced memory/FLOPs (%)

0

20

40

60

80

100

re
la

tiv
e 

sp
ee

du
p 

(%
)

reduced FLOPs
reduced memory

(f) ResNeXt-50, by memory.
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(g) NetX-3.2G, by FLOPs.
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(h) NetX-3.2G, by memory.
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(i) RetinaNet, by FLOPs.
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(j) RetinaNet, by memory.

Figure 1: The comparison between normalizing importances by FLOPs and memory under different network structures.
States of the model (reduced FLOPs/memory and relative speedup) during the pruning process are shown. In each figure,
two points on one horizontal line indicate the same model. NetX represents RegNetX.
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Figure 2: Visualization of channels (percentage) in pruned RetinaNet where 50% FLOPs are remained.
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(a) All layers, normalize by memory.
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(b) All layers, normalize by FLOPs.
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(c) 1st conv layers in bottleneck, normalize by memory.
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(d) 1st conv layers in bottleneck, normalize by FLOPs.
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(e) 2nd conv layers in bottleneck, normalize by memory.
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(f) 2nd conv layers in bottleneck, normalize by FLOPs.
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(g) 3rd conv layers in bottleneck, normalize by memory.
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(h) 3rd conv layers in bottleneck, normalize by FLOPs.

Figure 3: Remained input channels (percentage) in pruned ResNet-50 under different FLOPs budgets. The four different
colors indicate various amount of FLOPs. The blue dashed lines show that the feature maps are 2× down-sampled.
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