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Abstract

Network compression has been widely studied
since it is able to reduce the memory and com-
putation cost during inference. However, pre-
vious methods seldom deal with complicated
structures like residual connections, group/depth-
wise convolution and feature pyramid network,
where channels of multiple layers are coupled and
need to be pruned simultaneously. In this paper,
we present a general channel pruning approach
that can be applied to various complicated struc-
tures. Particularly, we propose a layer grouping
algorithm to find coupled channels automatically.
Then we derive a unified metric based on Fisher
information to evaluate the importance of a single
channel and coupled channels. Moreover, we find
that inference speedup on GPUs is more corre-
lated with the reduction of memory? rather than
FLOPs, and thus we employ the memory reduc-
tion of each channel to normalize the importance.
Our method can be used to prune any structures in-
cluding those with coupled channels. We conduct
extensive experiments on various backbones, in-
cluding the classic ResNet and ResNeXt, mobile-
friendly MobileNetV2, and the NAS-based Reg-
Net, both on image classification and object de-
tection which is under-explored. Experimental
results validate that our method can effectively
prune sophisticated networks, boosting inference
speed without sacrificing accuracy.
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Figure 1: Compare top-1 accuracies of our pruned models with
state-of-the-arts under various FLOPs and network structures.

1. Introduction

Modern computer vision models equipped with deep net-
works exhibit excellent performances in many tasks. How-
ever, they consume a great amount of memory and compu-
tation during inference. It can hinder the model deployment
on edge devices where high-end hardwares are not available.
It can also limit the throughput of services on clouds, re-
sulting from considerable energy cost and inference latency.
Network pruning aims at increasing the inference efficiency
with negligible accuracy drop. It takes the trained dense
model as input and prunes weights or channels with little
importances. Through fine-tuning the pruned model can
usually regain the lost performance caused by pruning.

Although numerous channel pruning methods have been
proposed in literature (Molchanov et al., 2017; Luo et al.,
2017; He et al., 2017; Liu et al., 2017), most of them study
sequential networks such as AlexNet (Krizhevsky et al.,
2012) and VGGNet (Simonyan & Zisserman, 2015) where
pruning the input channel of a layer only affects the output
channel of its single preceding layer. However, recently de-
veloped networks are designed with complicated structures
such as residual connections in ResNet (He et al., 2016),
group convolution (GConv) in ResNeXt (Xie et al., 2017)
and RegNet (Radosavovic et al., 2020), depth-wise convo-
lution (DWConv) in MobileNet (Sandler et al., 2018), and
feature pyramid networks (FPN) (Lin et al., 2017a) in object
detection frameworks. These structures have coupled chan-
nels distributed in multiple layers, which must be pruned or
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Figure 2: Efficiency of our proposed method. In (a) and (b)
we compare our pruned models with the searched RegNet and
uniform-scaled MobileNetV2, respectively. In (c) and (d) circles
with different colors represent different network structures, and
lines show the results of pruning by different strategies. “Mem-
ory” is our full method which normalizes importance scores by
memory reduction and prunes coupled channels via layer grouping.
“Internal” only prunes the isolated channels. “FLOPs” normal-
izes importances by FLOPs. “Unpruned” represents the unpruned
model. In (d) different detection networks are pruned and com-
pared with the baselines. The x-axis shows the inference time.

preserved simultaneously. Ignoring the coupled channels
and pruning them independently will definitely hurt the effi-
ciency in terms of both FLOPs (floating-point operations),
memory access and actual speedup during inference.

In this paper we propose a general framework named Group
Fisher Pruning that can be applied to various complicated
structures. Particularly, we first introduce a binary mask
initialized as 1 for each input channel. Then we propose a
layer grouping algorithm to automatically find the coupled
channels given computation graph of the network, and we
make the coupled channels share the same mask. The impor-
tance of a single channel is estimated by the loss change if it
is discarded, which is approximated by Fisher information
and is proportional to the squared mask gradient. Based on
the single-channel importance, we obtain the overall impor-
tance of coupled channels by the principled chain rule of
gradient computation. Pruning is done by iteratively setting
the mask of the least important channel to 0, where the cou-
pled channels are pruned together. Finally the network is
fine-tuned to regain the lost accuracy. During fine-tuning
and inference, the channels with 0 masks are explicitly ex-
cluded from the network, and thus computation and memory
cost can be practically reduced for acceleration.

Moreover, we propose to normalize importances of channels
by their reductions of computation costs as we would like
to prune the least important channels with the most com-
putation overheads to achieve the best trade-off between
accuracy and efficiency. However, we find the commonly-
used reduction of FLOPs is a rather biased estimator for

the actual inference speedup. In contrast, we propose to
measure the computational complexity of a channel by its
reduction of memory during pruning. Through experiments
we find normalizing the channel importance by the reduc-
tion of memory is more correlated with the speedup than
FLOPs in terms of the inference time on GPUs.

Our proposed Group Fisher Pruning has the following ad-
vantages. Firstly, it can prune any layers including those
with coupled channels, and thus achieves better trade-off
between accuracy drop and actual acceleration. Secondly,
it prunes globally rather than locally (He et al., 2017; Luo
etal., 2017), i.e., it obtains the pruning ratio for each layer
automatically without the cumbersome sensitivity analysis
of layer-wise pruning ratio (Yu et al., 2018), and thus leads
to higher accuracy. Thirdly, it estimates importances of all
channels in one pass via the principled Fisher information
instead of multiple forward passes for individual channels
(Luo & Wu, 2020), and thus is more efficient. Lastly, in
contrast with (Liu et al., 2017), it does not depend on spe-
cific layers like batch normalization (BN) and thus is more
general so that we can prune more sophisticated structures
such as object detection networks, where such layers may
not be naively adopted due to the larger input size.

To demonstrate the generalization ability and effectiveness
of the proposed method to deal with complicated network
structures, we conduct extensive experiments on various
backbones, including classic ResNet (He et al., 2016) and
ResNeXt (Xie et al., 2017), mobile-friendly MobileNetV2
(Sandler et al., 2018), and recent NAS-based RegNet (Ra-
dosavovic et al., 2020) on image classification (See Fig. 1).
We also evaluate our method on object detection, which
is more computation-intensive due to larger input image
size and more complicated network structure than image
classification, but rather under-explored (See Fig. 2).

Our main contributions are: we introduce the concept of
coupled channels, find them by the proposed layer grouping
algorithm, derive a unified metric to evaluate both coupled-
channel and single-channel importances (based on Fisher
information), and normalize the importance by memory
reduction to realize higher speedup on GPUs without sacri-
ficing the accuracy.

2. Related Work

Network pruning can be generally categorized into unstruc-
tured and structured methods. Unstructured methods (Han
et al., 2015; 2016; Guo et al., 2016) prune unimportant
weights in the model, but efficiency of the pruned sparse
network can only be shown with the help of specialized
libraries or hardwares. Recently, there are also efforts
(Zhou et al., 2021; Mishra et al., 2021) to develop N:M fine-
grained sparse models, leveraging the innovations in general-
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Figure 3: Prune different constrained structures. For each Conv/FC layer we introduce channel-wise binary input masks, where masks
with the same color are shared and red stripes show the pruned channels. Many previous methods only prune internal layers in a residual
block when residual connections exist as in (a), which will lead to lower efficiency since only output channels of conva/convs can be
pruned but not those of convi/convs. In contrast, we find coupled channels automatically by our proposed layer grouping algorithm
and make them share masks as in (b), where convz and convs are found to have coupled channels as they both are children of conv;
in the computation graph. We prune the coupled channels together such that the output channels of convi/convs can also be pruned
correspondingly, leading to higher efficiency. In (c) except for mask sharing in conva/convs, the input and output channels of group
convolution (gconv) are also coupled and should be pruned simultaneously, which results in the mask sharing of convs/conv4. In (d)
and (e) feature pyramid and head networks for one-stage and two-stage detection frameworks are shown, where the structures are more
complicated than classification networks. Note that Ps in (e) is a pooling layer rather than Conv layer, so there is no mask assigned to it.

Even though, our method is still able to achieve high efficiency via mask sharing for coupled channels.

purpose GPUs (e.g., NVIDIA Ampere architecture). On the
contrary, structured methods prune the whole channels or
filters with little importances, and thus actual speedup can
be easily achieved without requiring sparse accelerators.

For structured pruning methods (Wen et al., 2016; Lebedev
& Lempitsky, 2016), different importance metrics have been
proposed. PFEC (Li et al., 2017) employs L; norm of
the channel weights, while SFP (He et al., 2018a) uses Lo
norm of each filter. These methods rely on the “smaller-
norm-less-informative” assumption (Ye et al., 2018) which
may not be true especially for structured pruning. CP (He
et al., 2017) and ThiNet (Luo et al., 2017) cast channel
selection as reconstruction error minimization of feature
maps, where LASSO regression and greedy strategy are
used to select the pruned channels, respectively. However,
they can only prune networks in a layer-wise manner, as
the least-square reconstruction happens locally. NISP (Yu
et al., 2018) instead minimizes the reconstruction error of
the final response layer and propagates importance scores
through the entire network. The above methods also need
sensitivity analysis to decide the pruning ratio for each layer,
which may be time-consuming and sub-optimal. Network
Slimming (Liu et al., 2017) reuses BN layer scaling factors
as importance scores so that channels can be pruned globally.
Although BN is prevalently used in image classification,
many applications such as object detection can not trivially
adopt BN because of the large input image size, which limits
the application scenarios of pruning methods based on BN
scaling factors. SSS (Huang & Wang, 2018) introduces
extra scaling factors to scale the outputs of various micro-
structures and solves the sparsity regularized optimization of

scaling factors by the accelerated proximal gradient method.

Apart from the heuristic-based importance evaluation meth-
ods, one may use the exact loss change induced by removing
a specific parameter (Luo & Wu, 2020) to measure its im-
portance, but it is prohibitively expensive due to the large pa-
rameter number. Others try to approximate the importance
score via Taylor expansion on the loss. The seminal work of
OBD (LeCun et al., 1990) and OBS (Hassibi & Stork, 1993)
exploit the second-order derivative information to estimate
the importances of weights, but they may need to obtain
the heavy-weight Hessian matrix which is too large to com-
pute for modern large-scale networks. L-OBS (Dong et al.,
2017) layer-wisely computes the Hessian matrix to achieve
tractable approximation. WoodFisher (Singh & Alistarh,
2020) approximates the inverse of Hessian matrix by the
Woodbury matrix identity and improves unstructured prun-
ing based on OBD/OBS. PCNN (Molchanov et al., 2017)
extends Taylor expansion to channel pruning and uses the
first-order information instead. It takes a greedy strategy to
prune the least important channels, interleaving pruning and
fine-tuning. In place of estimating importances of feature
maps, IE (Molchanov et al., 2019) applies Taylor expan-
sion to the weights of a filter. These importance estimation
methods are more principled than magnitude-based ones,
but they seldom deal with structure constraints, for example,
the residual connections.

Besides the importances, another factor needed to be con-
cerned is computation, as we wish to prune the least im-
portant channels with the most computation costs. Current
methods (Molchanov et al., 2017; Theis et al., 2018) typi-



Group Fisher Pruning for Practical Network Compression

cally add a regularization term to constrain FLOPs of the
pruned network. However, the same amount of FLOPs re-
duction may lead to different actual speedups. Through
experiments we empirically find that reduction of memory
access can act as a more accurate estimator for efficiency
gain, which is not explored in previous pruning methods.

3. Methodology

We first introduce Fisher information (Theis et al., 2018) as
single-channel importance estimation, which can be used
to prune channels in sequential networks but can not deal
with complicated structures. Then we propose our layer
grouping algorithm to find coupled channels in different
layers, and make the coupled channels share the mask so
as to prune them simultaneously. Finally we propose to use
memory reduction as importance normalization to achieve
better trade-off between efficiency and accuracy.

Given a training dataset D = {x,,y, } of image-label
pairs and a network W, trained on it to convergence, we
aim to prune the least important channel. We introduce
a binary mask (initialized as 1) for each input channel to
achieve structured pruning, and one channel can be pruned
by setting its mask to 0. During pruning, the input ten-
sor A € R™*¢xhxw for a convolution (Conv) or fully-
connected (FC) layer (h = w = 1 in FC) is element-wisely
multiplied by the masks m € R® with broadcasting to form
the masked input A = A ® m, which is the actual input
for each layer. During inference we explicitly discard the
channels with 0 masks, both for a layer and its parents in
the computation graph, since pruning input channels of one
layer also prunes output channels of its preceding layers.

3.1. Fisher Information Importance

To evaluate the importance s; of a channel ¢, we apply Taylor
expansion to the network loss £ and approximate the loss
change when discarding it (setting its mask to 0):

1
si=L(m—e)—L(m)~ —e VL + ieiT (V2.L) e
1 1
= -e/g+ el He, = —gi+ S Hy, (1)

m = 1 is the all-one vector and e; € R€ denotes the one-
hot vector of which the i-th element equals 1. g € R€ is the
gradient w.z.t.t and H € R¢*¢ is the Hessian matrix. As
the model has converged and recall that A= AOm,m=1
before pruning, we have V3£ = VAL ~ 0. Then we can
obtaing = V,,L = 0, i.e., g,—ﬁi:]{, g.c ~ 0
where £,, denotes the negative log-likelihood loss of n-th
sample and M” is the sample-wise gradient. We compute
the dlagonal entry H;; of the Hessian matrix H:

Figure 4: Depth-first search for finding parents (Pa). We take the
first residual block of ResNet-50 as an example which consists
of Conv (C), BN (B), ReLU (R) and Pooling (P) layers. During
layer grouping we ignore all layers except Conv layers, so we can
adopt DFS to find that C1 has two children C2/C5, and C6 has two
parents C4/C5. C2 and C5 have coupled channels which should be
pruned together such that output channels of C1 can be pruned.
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where we employ Fisher information to transform second-
order derivative to the square of first-order derivative. Note
that g; =~ 0 and H;; > 0 which correspond to mean and
variance of the sample-wise gradient, respectively. As-
sume A, € Re*"X¥ jg the feature map of n-th exam-
ple, we have the masked feature ;&n = A,, ©® m where
m € Re*"*¥ js broadcasted by m € R®, so we can com-
pute Vi £ = A, OV L, € R in which Vi L,
is already available durmg the backward pass without requlr—
ing additional computation. Then the sample-wise gradient
w.rt.m can be obtained by summing over the spatial di-
mension h and w: V,,, L, = sum(VzL,) € R, Lastly
the importance score for a channel can be computed by
averaging the sample-wise gradients:

T 2 N /o £.\2
() x5 Gm) @
which is proportional to the squared gradient of the mask.
The above derivation is based on the model convergence, to
satisfy it, a greedy pruning strategy is employed. Starting
from a dense model, we first accumulate the importance
scores by passing a few batches, then the least important
channel is pruned. Next we fine-tune the pruned model
and meanwhile re-accumulate the importance scores of the
remained channels, following which the remained least im-
portant one is pruned, and the procedure recurs.
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3.2. Prune Coupled Channels

Till now we can prune early-stage networks like AlexNet
(Krizhevsky et al., 2012) and VGGNet (Simonyan & Zis-
serman, 2015) which involve normal Conv layers and se-
quential structures where pruning only affects a layer and
its single preceding one. However, recent networks contain
complicated structures such as residual connections (He
et al., 2016), group convolutions (GConv) (Xie et al., 2017),
depth-wise convolutions (DWConv) (Sandler et al., 2018)
and feature pyramid networks (FPN) (Lin et al., 2017a) in
object detection. There emerge coupled channels which
should be pruned simultaneously to achieve higher speedup
than pruning only the isolated channels. We propose mask
sharing in coupled channels. Given the network compu-
tation graph G containing nodes like convolution (Conv),
batch normalization (BN), ReLU and pooling (Pool) lay-
ers, we adopt the proposed layer grouping algorithm to find
the coupled channels as Alg. 1. Firstly, we use depth-first
search (DFS) as Fig. 4 to find parents P [I;] of each Conv/FC
layer /;. Since channel pruning only affects the channel di-
mension, we ignore all layers except Conv/FC layers in G
during layer grouping. Then given parents of each layer, we
can assign layers to different groups where layers in one
group have coupled channels to be pruned simultaneously.
It contains the following situations: (1) layers which have
the same parents should be assigned to one group because
their input channels (or equivalently, output channels of
their parents) are coupled and should be pruned together as
Fig. 3 (b); (2) layers whose parents contain GConv should
be in the same group with their parents because the input
and output channels of GConv are coupled as Fig. 3 (c). For
the isolated channels, there is only one layer in the group
such as the 3 x 3 Conv of a residual bottleneck as Fig. 3 (a).

After obtaining the coupled channels via layer grouping, we
make them share the same mask. Then the overall contribu-
tion of coupled channels can be computed by:

N o (~oc, omt\ & (o)
n OM; n
siocz< am?”(?mi) :Z<Zam¢> , 4
n=1 \zeX * n=1 \zeX g
where m¥ is a copy of m; in channel x, one of the coupled
channels in X that share the same mask m;. The overall
importance of coupled channels exactly follows the chain
rule of gradient computation for shared parameters, and thus
is principled without introducing any heuristics. X can be
channels in the same layer or those distributed in different
layers, and thus summation over X can be both in-layer and
cross-layer. For the in-layer case, X contains channels in
one layer (such as the coupled channels in i-th group of a
single GConv). For the cross-layer case (such as residual
connections), X consists of the i-th channel from all layers
found by our layer grouping algorithm.

(a)

(b)

Trxw » > ...

R-CNN

Figure 5: (a) prune group convolution (GConv). (b) prune RPN
and R-CNN in Faster R-CNN.

Algorithm 1 Layer Grouping

Input: computational graph G with layers L. = {I;}
Output: groups of layers G = {g;} where g; = {l;}
1: for [ in layers L; do
2: find its parents P [I] via DFS on graph G
3: end for
4: initialization: groups G < ()
5: for [ in layers L; do
6: new_group ¢« True
7: for g in groups G; do
8 C <+ {l'|l' egandl is GConv/DWConv}
9: ifP[lJN(P[g]UC) # 0, then
10: g« gU{l}, Plg] < PlglU P[]
11:  new_group < False; break
12: end for
13: if new_group; then
14: ¢« {i},Plg] + P[], G+ GU{g'}
15: end for

Algorithm 2 Group Fisher Pruning
Input: unpruned model W, prune interval d, training data
Output: pruned model W, channel masks m

1: initialization: W + Wy, m < 1,t <+ 0

2: find layers having coupled channels via Alg. 1
3: repeat
4:
5

forward: compute loss £

: backward: compute gradients of parameters W and
accumulate memory-normalized importance scores
update model parameters W by gradient descent
update iteration index t <— ¢ + 1
if t%d = 0; then

9:  prune the least important channel 7 by setting m; = 0
10:  zeroize accumulated importance scores
11: until remained FLOPs reduces to desired amount

e
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For pruning GConv with ¢ input channels divided into g
groups as Fig. 3 (c), each time we prune one group of
channels which share the same mask, since generally they
represent related features. We first compute the c-dim gra-
dient corresponding to c individual channels and reshape
itto g x § (see Fig. 5 (a)), and do in-layer sum over the
last dimension to obtain the g-dim gradient corresponding
to g groups of channels. Next we compute the cross-layer
summation across layers: the GConv layer itself and layers
which are in the same group with the GConv including its
children layers. Then we obtain the overall importance with
the squared gradients as Eq. (4).

For pruning Faster R-CNN, where the first Conv layer of
RPN and the first FC layer of R-CNN are assigned to the
same group as Fig. 3 (e), similar computation can be done.
Assume the RolAlign layer is applied to the image-level
feature map A,, € R®*"*% and produces Rol features
F e R *exh'>xw’ from n/ Rols in each image (see Fig.
5 (b)). Recall that in Faster R-CNN the Rol features will

be flattened as F' € R™ * (" x%") and sent to the first FC
layer of R-CNN. For FC layer we can compute gradients of
its masks with shape of n’ x (¢ x b’ x w’), which is then
transposed to ¢ X (n’ x b’ x w’) and in-layer summed over
the last dimension to obtain the c-dim gradient. Now it has
the same shape as gradients computed from the first Conv
layer in RPN. The overall gradients of coupled channels
from the RPN Conv layer and the R-CNN FC layer can be
obtained via cross-layer summation. Lastly the gradients
are used to compute the importances as Eq. (4).

3.3. Importance Normalization

The raw importance scores do not take into consideration
the computation costs of different channels, however it is
more effective to prune the least important channel with the
highest cost. Otherwise we may prune too many channels
to achieve the desired speedup, but it may lead to degraded
accuracy resulting from less parameters retained. We pro-
pose to normalize the importance scores by the computation
reduction of each channel. We first try the widely-used
FLOPs proxy and normalize the importance by the reduc-
tion of FLOPs AC/AC, for pruning an input channel of
normal Conv/GConv as AC' =n X ¢, X h X w X kp, X ky,
and ACy; = nx £ x hxwx % x kp, X kyy, where ky, [k,
denotes the kernel height/width and g is the group number
in GConv. Different from previous methods which compute
channel FLOPs in advance and fix them during pruning, we
dynamically update the FLOPs by remained channels of
the network. We use c; < ¢; and cg < ¢, to represent the
unpruned input and output channel number of each layer.
As the layers are connected internally, pruning a channel not
only brings FLOPs reduction in the current layer, but also
in its parent layers across the computation graph, which can
be computed as AC? = n x h x w X ¢, X kp, X ky, and

AC’_}I’:nx%’xhxwxchkhka.

However, we find that reduction of FLOPs is not directly cor-
related with the inference speedup. In contrast, reduction of
memory increases linearly with speedup (Fig. 6 (a)), which
motivates us to employ the memory reduction as the im-
portance normalization. The memory reduction of pruning
one channel can be obtained for normal Conv and GConv
as AM =n x h xwand AMy =n x ¢ x h x w. Note
that we discard one group at a time when pruning GConv.
Similar to FLOPs reduction, pruning an input channel in one
layer brings memory reduction from all of its parents (which
can be found by DFS as Fig. 4), and we obtain the overall
reduction by summing separate values. Finally we adopt the
memory-normalized importance s;//AM of each channel
to evaluate its significance and prune the least important
one every few iterations. There exist methods (Wang et al.,
2020; Li et al., 2020) that directly profile the running time
without resorting to proxies. However, it is not applicable
here since we prune in a fine-grained manner. The running
time difference of discarding one or few channels is too
subtle to measure. Through memory-normalization (Fig. 6
(b)), we notice that in the pruned model, the reduction of
memory is still linearly correlated with speedup. Besides,
the reduction of FLOPs is more correlated with speedup
than the FLOPs-normalization (Fig. 6 (a)) variant. In the
appendix we demonstrate that the memory is a good proxy
generally applicable to various networks.

4. Experiments

In this section we first conduct ablation studies to verify
the effectiveness of our layer grouping and mask sharing
strategy to prune coupled channels, and that of the proposed
memory normalized importance scores. We measure the
batch inference time on NVIDIA 2080 Ti GPU to prove our
pruned models can significantly accelerate inference with
little accuracy drop. Next we show that our method can out-
perform previous methods to prune various networks under
different FLOPs constraints including the rather compact
ResNet (He et al., 2016) and ResNeXt (Xie et al., 2017)
where residual connection and GConv is adopted. Our
method can be applied to prune MobileNetV2 (Sandler et al.,
2018) where DWConv is presented, and it outperforms the
uniform-scaled baselines remarkably. It can also be used
to prune RegNet (Radosavovic et al., 2020) which is neural
architecture search based and highly efficient and accurate,
surprisingly we achieve higher accuracy and speed than the
searched counterpart under the same FLOPs. Finally, we
prune object detection networks with sophisticated struc-
tures and show significant speedup with negligible mAP
drop. We conduct all experiments for the task of image
classification and object detection on the ImageNet (Deng
et al., 2009) and COCO (Lin et al., 2014) datasets, respec-
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Figure 6: The comparison between normalizing importances by
FLOPs and memory. States of the model (reduced FLOPs/memory
and relative speedup) during the pruning process are shown.

tively. We prune a channel every d = 25/10 iterations when
pruning classification/detection networks. After the whole
pruning process we fine-tune the pruned model for the same
number of epochs that is used to train the unpruned model,
which is trained following standard practices. The complete
pruning pipeline of our proposed method is in Alg. 2. All
experiments are done using PyTorch (Paszke et al., 2019)
and more details can be found in the appendix.

4.1. Ablation Studies

As shown in Tab. 1, pruning coupled layers simultaneously
(“-M”) as Fig. 3 (b) rather than the isolated channels only
(““I””) as Fig. 3 (a), for residual networks with both 50 and
101 layers, we achieve higher or comparable top-1 accuracy
but with much higher inference speed, which verifies we can
obtain better actual speedup under the same FLOPs. We also
adopt the absolute value of the first-order gradient as the
importance metric, but for pruning ResNet-50 it only obtains
75.8% top-1 accuracy, which lags behind our method based
on Fisher information 76.4%.

Besides, we explore different importance normalization
strategies: unnormalized (“-U”), normalized by FLOPs re-
duction (“-F”) and normalized by memory reduction (“-M”)
in Fig. 2 (c) and Tab. 1. We find that normalizing im-
portance scores by memory reduction can achieve the best
accuracy-efficiency trade-off compared with the other two
variants. The unnormalized importance score brings the
worst efficiency gain and the largest accuracy drop, which
results from the least parameter remained. For ResNet,
ResNeXt and MobileNet, normalization by memory reduc-
tion is more efficiency-friendly and with higher accuracy.

Except for the rather compact residual networks, we also
prune the light-weight networks MobileNetV2 (MBv2). In
Fig. 2 (b) and Tab. 2 we compare the accuracy and speed
of our pruned networks and the uniform scaled ones un-

Table 1: Prune ResNet, ResNeXt and MobileNetV2 on ImageNet.
The column “T1” represents top-1 accuracy on the validation set,
“F” denotes FLOPs, “P” is number of parameters, “M” means
memory, “T” is the inference time and “S” shows the speedup on
GPUs. The row with no suffix represents the unpruned model,
“-I” shows the results of pruning only the internal layers, “-M” is
our full method which normalizes importance scores by memory
reduction and prunes coupled channels via layer grouping, “-F”
normalizes the importance scores with FLOPs reduction and “-U”
uses the raw Fisher information without normalization.

model TI(%) F@10° P10%  M(10%) T@ms) S(x)
Res50 7679  4.089 25.55 .11 6548 -
Res50-1 7623 2.044 19.96 9.24 5022 1.30
Res50-M 7642 2.044 19.42 5.82 3650 179
Res50-F 7620  2.043 17.17 8.27 4707 139
Res50-U 7493 2.044 8.881 9.27 5006 131
Res101 7829  7.801 4454 16.23 106.7 -
Res101-1 7836  3.900 28.04 14.14 8493 126
Resl01-M | 78.33  3.900 28.02 10.84 7120 1.50
Res101-F 7830  3.899 26.89 14.13 8391 127
Resl01-U | 78.14  3.900 2425 14.49 84.10 127
NeXt50 7797 4230 25.02 14.40 87.16 -
NeXt50-M | 77.53  2.115 18.05 9.02 5535 157
NeXt50-F | 77.50  2.114 13.10 10.57 5979 146
NeXt50-U | 76.97  2.113 8.426 11.17 60.23 145
MBv2 7741 1.137 11.25 1335 4421 -
MBv2-M 7597  0.568 6.05 6.84 2472 179
MBv2-F 7597 0.566 5.31 11.08 3758 118
MBv2-U 7294 0.569 227 9.819 3178 1.39
Table 2: Prune MobileNetV2 on ImageNet.
model T1 (%) F(@10% P@0% M(@10% T (ms)
MBv2-2.0x 7741 1.14 11.25 1335 4421
Ours 77.00 1.09 11.06 9.66 37.22
MBv2-1.4X 75.74 0.58 6.11 9.57 30.63
Ours 75.97 0.57 6.05 6.84 24.72
MBv2-1.0x 72.92 0.30 3.50 6.68 20.82
Ours 73.42 0.29 3.31 4.82 16.61
MBv2-0.7 X 68.98 0.17 248 5.26 15.81
Ours 69.16 0.15 1.81 3.39 11.62
MBv2-0.5% 64.70 0.10 1.97 3.64 10.97
Ours 64.68 0.09 1.17 2.59 8.51

der different FLOPs budgets. To obtain a network with
similar FLOPs as MBv2 (e.g., MBv2-0.7x), we prune a
uniform-scaled double-FLOPs MBv2 (e.g., MBv2-1.0x) to
50% FLOPs remained. It can be seen that our pruned net-
works significantly outperform the uniform-scaled baselines.
Other than only pruning the human-designed networks, we
prune the highly-efficient RegNet to show that we can prune
it to further boost the efficiency and accuracy. We prune Reg-
Net (e.g., RegX-1.6G) to 50% FLOPs remained to compare
with the searched half-FLOPs RegNet (e.g., RegX-0.8G).
As shown in Fig. 2 (a) and Tab. 3, our pruned networks
outperform the searched counterparts in this extreme cir-
cumstance.

4.2. Compare with SoTAs

To compare with previous state-of-the-arts, we conduct ex-
tensive experiments of image classification on ImageNet
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Table 3: Prune RegNetX on ImageNet.

Table 5: Prune detection networks including RetinaNet, FSAF,
ATSS, PAA and Faster R-CNN on COCO. The “AP” column
shows the mAP (%) on the validation set and the “T” column is
the inference time. The other columns and the suffix in rows have

model T1 (%) F@10% P10 M@10% T (ms)
RegX-32G | 7872 3.176 15.29 11.36 65.99
Ours 78.80 3.228 14.34 9.89 61.34
RegX-1.6G | 77.29 1.602 9.19 7.93 4121
Ours 77.97 1.588 9.30 7.29 40.44
RegX-0.8G | 75.24 0.799 7.26 5.15 26.71
Ours 76.39 0.799 5.93 5.38 25.51
RegX-04G | 7228 0.398 5.16 3.14 16.32
Ours 73.75 0.399 5.42 2.78 14.97
RegX-02G | 68.65 0.199 2.68 2.16 10.09
Ours 70.01 0.199 2.77 2.13 11.49

Table 4: Compare with SoTAs on ImageNet. The column “T1”
represents top-1 accuracy of the pruned model on the validation
set where | shows the accuracy drop compared with the unpruned
model. “B1” shows the top-1 accuracy of the unpruned base model.
“F” shows the amount of FLOPs of the pruned model, where |
elements show the relative FLOPs reduction compared with the
unpruned model. “S” denotes the actual speedup of the pruned

the same meaning as Tab. 1 (* : no Group Normalization in heads

to compare with RetinaNet).

model on GPUs.

method T1(%) Bl(%) | F(G) S(x)
ThiNet (Luo et al., 2017) 74.03 75.30 2.58 1.13
SSS (Huang & Wang, 2018) 75.44 76.12 3.47 -
IE (Molchanov et al., 2019) 76.43 76.18 3.27 -
HetConv (Singh et al., 2020) | 76.16 76.16 2.85 -
Meta (Liu et al., 2019) 76.20 76.60 3.0 -
GBN (You et al., 2019) 76.19 75.85 2.43 -
Ours 76.95 76.79 3.06 1.30
ThiNet (Luo et al., 2017) 72.03 75.30 1.81 1.27
CP (He et al., 2017) 75.06 76.13 2.04 -
NISP (Yu et al., 2018) 0.894 - 2.29 -
SFP (He et al., 2018a) 74.61 76.15 2.38 1.43
GDP (Lin et al., 2018) 72.61 75.13 2.24 1.24
SSS (Huang & Wang, 2018) 71.82 76.12 2.33 -

2 DCP (Zhuang et al., 2018) 74.95 76.01 1.81 -

% | AOFP (Ding et al., 2019b) 75.11 75.34 1.77 -

~ FPGM (He et al., 2019) 74.83 76.15 1.90 1.62
IE (Molchanov et al., 2019) 74.50 76.18 2.25 -
C-SGD (Ding et al., 2019a) 74.54 75.33 2.20 -
Meta (Liu et al., 2019) 75.40 76.60 2.0 -
GBN (You et al., 2019) 75.18 75.85 1.84 -
LFPC (He et al., 2020) 74.46 76.15 1.60 -
HRank (Lin et al., 2020) 74.98 76.15 2.30 -
Ours 76.42 76.79 2.04 1.79
ThiNet (Luo et al., 2017) 68.17 75.30 1.17 1.35
GDP (Lin et al., 2018) 70.93 75.13 1.57 -
IE (Molchanov et al., 2019) 71.69 76.18 1.34 -
Meta (Liu et al., 2019) 73.40 76.60 1.0 -
CURL (Luo & Wu, 2020) 73.39 76.15 1.11 -
Ours 73.94 76.79 1.02 2.94
ISTA (Ye et al,, 2018) 7527 7640 | 447 -
SFP (He et al., 2018a) 77.51 77.37 4.51 -

= | SSS (Huang & Wang, 2018) 75.44 76.40 3.47 -

% | AOFP (Ding et al., 2019b) 76.40 76.63 3.89 -

& | FPGM (He et al., 2019) 77.32 77.37 4.51 -
IE (Molchanov et al., 2019) 77.35 77.37 4.70 -
Ours 78.33 78.29 3.90 1.50
AMC (He et al., 2018b) 70.80 71.80 0.22 -
Meta (Liu et al., 2019) 72.70 74.70 0.29 -

o | Ours 73.42 75.74 0.29 1.84

@ | Meta (Liu et al., 2019) 68.20 74.70 0.14 -

= Ours 69.16 75.74 0.15 1.79
Meta (Liu et al., 2019) 65.00 74.70 0.11 -
Ours 65.94 75.74 0.10 1.82

Z

% SSS (Huang & Wang, 2018) 74.98 77.57 243 -

Z | Ours 77.53 77.97 2.11 1.57

model AP F(10°) P10%  M@0%  T(ms) S(x)
Retina 365 2385 37.96 297.4 3973 -
Retina-1 363 1192 30.31 246.1 2849 139
Retina-M | 36.5 1192 26.34 190.2 2536 1.57
Retina-F | 368 1192 26.18 254.1 3008 132
Retina-U | 358 1192 14.18 2442 2853 1.39
FSAF 374 2055 36.41 2831 37.10 -
FSAF-I 372 1027 28.52 2315 2689 138
FSAF-M | 373 1027 24.09 171.3 23.00 161
FSAF-F 37.6 1027 23.19 233.6 2790 133
FSAF-U | 364 1027 19.23 2422 2799 133
ATSS* 381 2044 3229 283.1 3714 -
ATSS-I 379 1022 24.48 234.6 2676 139
ATSS-M | 38.0 1022 22.20 177.1 2372 157
ATSS-F 383 1022 21.54 236.9 28.18 132
ATSS-U | 367 1021 12.41 228.5 2635 141
PAA™ 39.0 2044 3229 283.1 3716 -
PAA-I 394 1022 24.82 2347 2729 136
PAA-M 394 102.1 23.00 174.9 2330 159
PAA-F 396 1021 21.95 235.5 2781 134
PAA-U 385 1022 13.19 228.4 2639 141
Faster 374 1993 4175 294.6 4428 -
Fasterr-M | 37.8  99.55 30.96 197.0 2558 173
Fasterr-M | 36.6  49.82 17.48 130.8 1443 3.07
Faster-F 378 99.70 25.95 240.6 2879  1.54
Faster-U | 335  99.90 9.861 224.8 28.06 1.8

using different network structures and FLOPs constraints.
From Fig. 1 and Tab. 4 we can see that our method per-
forms best. Specifically, we outperform layer-wise pruning
methods such as CP (He et al., 2017) and ThiNet (Luo et al.,
2017) because we evaluate the importance scores globally
throughout the network. Moreover, we do not need sensi-
tivity analysis which is required by NISP (Yu et al., 2018)
to decide the pruning ratio for each layer, as our method
can automatically learn to prune the least important chan-
nels considering the current state of the network. We also
achieve better accuracy than the methods C-SGD (Ding
et al., 2019a), GBN (You et al., 2019) and IE (Molchanov
et al., 2019) which compute the overall importance of cou-
pled channels via heuristics, validating the benefits of our
importance metric grounded on gradients obtained by the
principled chain rule.

4.3. Prune for Detection

Pruning object detection is more challenging than image
classification due to its larger input size and more com-
plicated networks, which demands model pruning more
than image classification. Besides, many pruning methods
based on BN scaling parameters can not be directly applied.
However, our method can not only be applied to image
classification, but also object detection, thanks to its gen-
eral importance estimation and the proposed layer grouping
for pruning coupled channels. We prune one-stage meth-



Group Fisher Pruning for Practical Network Compression

Table 6: Compare with Slimmable Networks for pruning Faster-
RCNN on COCO. AP for pruned model and the unpruned model
(B-AP), and the AP drop (A) are shown. “F” denotes the percent-
age of remained FLOPs.

model AP(%) B-AP(%) A(%) F(%)
Slim (Yu etal., 2019) | 36.1 36.4 03] 356

Ours 37.8 374 041 50
Slim (Yu et al., 2019) | 34.0 36.4 24 25

Ours 36.6 37.4 08) 25

ods including RetinaNet (Lin et al., 2017b), FSAF (Zhu
et al., 2019), ATSS (Zhang et al., 2020) and PAA (Kim &
Lee, 2020), and two-stage method Faster R-CNN (Ren et al.,
2015) to extensively validate the effectiveness of our method.
We present the pruning results of our method for various
detection frameworks in Fig. 2 (d) and Tab. 5. Similar
to pruning classification models, normalizing importances
with memory reduction and pruning coupled channels to-
gether (“-M”) leads to the highest efficiency. Our method
effectively prunes detection networks without losing aver-
age precision, in some cases our pruned model even receives
higher mAP than the unpruned baseline. More importantly,
our method delivers practical inference speedup, e.g., we
achieve a 3x speedup by pruning Faster R-CNN with only
0.8% mAP drop. We also compare the pruned networks
with state-of-the-art method Slimmable Networks (Yu et al.,
2019) in Tab. 6, as shown we can achieve higher mAP, lower
mAP drop under comparable or less FLOPs.

Considering the intrinsic differences between image classifi-
cation and object detection, we compare the pruned network
structures between them. As in Fig. 7, we find that the
pruned classification network keeps more capacity in later
stages where the spatial resolution is rather small, as classi-
fication needs more global features. However, for detection
the early stages also remain a large portion of channels, as
detection should extract features at different scales to detect
objects with various sizes. This validates that our method
can be adaptively applied to different tasks.

5. Conclusion

We present a general channel pruning framework for compli-
cated structures. We propose the layer grouping algorithm to
find coupled channels and make them share the binary mask.
Based on the single-channel importance approximated by
Fisher information, we compute the overall importance of
coupled channels by the chain rule of gradient computation.
We prune the coupled channels simultaneously for better
accuracy-efficiency trade-off. Moreover, normalizing chan-
nel importances by memory reduction rather than FLOPs is
proposed to deliver more speedup. Extensive experiments
on pruning various network structures with residual connec-
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Figure 7: The percentage of remained channels in the pruned
backbone over different layers for classification and detection.
Features maps are 2x down-sampled at blue dashed lines.

tions, GConv/DWConv and FPN in detection are explored
and verify the effectiveness.

Inspired by the memory-bound nature of GPUs, we pro-
pose to normalize channel importance by memory reduction,
which can bring a better trade-off between accuracy and
speedup. In future work we will theoretically model the re-
lationships between core factors (e.g., FLOPs, memory) and
inference speed on various platforms (e.g., GPU/CPU/TPU).
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