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Abstract
Game optimization has been extensively studied
when decision variables lie in a finite-dimensional
space, of which solutions correspond to pure
strategies at the Nash equilibrium (NE), and the
gradient descent-ascent (GDA) method works
widely in practice. In this paper, we consider
infinite-dimensional zero-sum games by a min-
max distributional optimization problem over a
space of probability measures defined on a contin-
uous variable set, which is inspired by finding a
mixed NE for finite-dimensional zero-sum games.
We then aim to answer the following question:
Will GDA-type algorithms still be provably effi-
cient when extended to infinite-dimensional zero-
sum games?
To answer this question, we propose a particle-
based variational transport algorithm based on
GDA in the functional spaces. Specifically, the
algorithm performs multi-step functional gradient
descent-ascent in the Wasserstein space via push-
ing two sets of particles in the variable space. By
characterizing the gradient estimation error from
variational form maximization and the conver-
gence behavior of each player with different ob-
jective landscapes, we prove that a theoretical ver-
sion of the generalized GDA algorithm converges
to the NE or the value of the game efficiently for a
class of games under the Polyak-Łojasiewicz (PL)
condition. To conclude, we provide complete sta-
tistical and convergence guarantees for solving an
infinite-dimensional zero-sum game via a prov-
ably efficient particle-based method. Additionally,
our work provides the first thorough statistical
analysis for the particle-based algorithm to learn
an objective functional with a variational form us-
ing universal approximators (i.e., neural networks
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(NNs)), which is of independent interest.

1. Introduction
Recent years have witnessed a resurgence in zero-sum
games for machine learning applications, where two play-
ers’ strategies are usually parameterized with two finite-
dimensional decision variables. The optimal strategies de-
fine the pure NE in the sense that they identify two deter-
ministic strategies. Motivating examples include generative
adversarial networks (GANs) (Nowozin et al., 2016; Sanjabi
et al., 2018a; Gidel et al., 2018a; Sinha et al., 2017), rein-
forcement learning (Dai et al., 2017; Ho & Ermon, 2016),
distributionally robust optimization (DRO) (Van Parys et al.,
2017; Ghosh et al., 2018), and learning exponential fami-
lies (Dai et al., 2018), among others. Such zero-sum games
have been extensively analyzed in convex-concave settings,
where a global Nash equilibrium (NE) can be computed by
gradient descent-ascent (GDA) type algorithms (Facchinei
& Pang, 2007; Hamedani et al., 2018; Monteiro & Svaiter,
2010; Nemirovski, 2004). Nonetheless, in the nonconvex-
nonconcave setting, these methods stagger, and a crucial
issue arises: What if the pure NE does not exist (Arora et al.,
2017; Jin et al., 2019)? The finite-dimensional formula-
tion naturally excludes a potentially better or even the only
existential mixed NE, and meanwhile is restricted to local
convergence in the absence of convexity.

To alleviate the concern above and to further understand the
difficulty at the boundary of contemporary game optimiza-
tion, we consider a class of zero-sum infinite-dimensional
games where each decision variable is a probability mea-
sure representing the mixed strategies over the spaces of
pure strategies. In addition, we assume this distributional
games to satisfy Riemannian Polyak-Łojasiewicz (PL) and
smoothness conditions, which cover a range of nonconvex-
nonconcave landscapes and the practical training objectives
such as GANs with regularization (Arora et al., 2017). A
natural approach to distributional optimization problems is
the particle-based method (Raginsky et al., 2017; Wibisono,
2018; Zou et al., 2018), where stochastic gradient Langevin
dynamics (SGLD) is adopted to draw a sample from the de-
sired distribution via discretization of stochastic differential
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equations (Hsieh et al., 2018). However, SGLD sampling is
quite inefficient for reaching a stationary distribution at each
step. Meanwhile, from the view of games, GDA-type algo-
rithms have not been studied in full generality for infinite-
dimensional settings. Motivated by the two facts above,
we adapt the multi-step GDA-type algorithm to infinite-
dimensional games through particle-based approximation
and provide the first set of theoretical guarantees by analyz-
ing its behavior under infinite-dimensional settings.

We conclude our contributions as follows. (1) To model
the mixed NE of finite-dimensional games, we introduce
the generic infinite-dimensional zero-sum games. We estab-
lish the GDA-type algorithm in the Wasserstein space, also
named variational transport for infinite-dimensional games
(VTIG), for such games via Riemannian gradient propo-
sitions (Proposition 3.1 and 3.2). (2) We provide the first
thorough analysis of both statistical and optimization errors
for the theoretical version of VTIG in two scenarios. One is
the convergence to the first-order NE under a Riemannian
PL condition (Theorem 4.2), and the other is the conver-
gence to the minimax value under a stronger two-sided PL
condition (Theorem 4.4). (3) As a technical component,
we provide statistical analysis for particle-based gradient
estimation by upper bounding the `p-norm of the gradient
by the `p-norm of the function for p ≥ 1.

Related work. Finite-dimensional games under convex-
concave settings (Nemirovski, 2004; Juditsky & Nemirovski,
2016; Hamedani et al., 2018; Monteiro & Svaiter, 2010) are
adequately studied with corresponding monotonic varia-
tional inequalities (Dang & Lan, 2015; Gidel et al., 2018a)
and solved by GDA (Thekumparampil et al., 2019). Mean-
while, primal-dual schemes and negative momentum (Cham-
bolle & Pock, 2016; Daskalakis & Panageas, 2018b; Gidel
et al., 2018b) are proposed to help GDA on conver-
gence, which bypasses cyclic dynamics (Mai et al., 2018;
Mescheder et al., 2018; Daskalakis & Panageas, 2018a). To
tame nonconvexity, (Jin et al., 2019) proves theO(θ−4) rate
in gradient evaluations is required in the convergence to
an θ-first order NE with Max-oracle; (Lu et al., 2019a;b)
reached the same rate when the objective is concave w.r.t.
the max-player strategy; improved rates of O(θ−3.5) and
O(θ−2) are shown in (Sanjabi et al., 2018b) under PL-game
conditions, which is similar to our setting. However, our re-
sults are derived for infinite dimensions as a mixed-strategy
extension.

In machine learning literature, the notion of mixed NE for
GANs is originally presented in (Goodfellow et al., 2014)
without an algorithm to find it. A line of work (Grnarova
et al., 2017; Arora et al., 2017; Oliehoek et al., 2018; Hsieh
et al., 2018) seeks to further understand and find mixed NEs
of GANs. Nonetheless, the existing algorithm in (Hsieh
et al., 2018) using SGLD is computationally demanding

at each step and complicated in the idea of algorithm de-
sign without statistical analysis. Our analysis extends the
GDA-type algorithm to the Wasserstein space and shows the
existence of a provably efficient particle-based algorithm
that pushes a fix-sized set of particles instead of running
SGLD repeatedly.

Optimizing functionals of probability measures is studied
by Frank-Wolfe (Gaivoronski, 1986) and steepest descent
algorithms (Molchanov & Zuyev, 2001) in earlier times.
More recently, descent methods in the space of probability
measures (Richemond & Maginnis, 2017; Frogner & Pog-
gio, 2018) are getting popular in machine learning, where
particle-based methods (Liu et al., 2018; Chen et al., 2018)
approximate probability measures for practical implementa-
tion. Similarly, two sets of particles in our algorithm also
provide the Dirac measure approximation for probability
measures.

In addition, with similar settings, (Chizat & Bach, 2018)
performs a continuous-time gradient descent on particles’
weights and positions. SVGD (Liu, 2017) guarantees to
optimally decrease the KL divergence within a function
space. For zero-sum games, (Domingo-Enrich et al.,
2020) parametrizes mixed strategies as mixtures of particles,
whose positions and weights are updated using gradient
descent-ascent. More generally, (Lin et al., 2020) aims to
solve stochastic mean field games.

Notations. We denote by [n] the set of integers {0, 1, ..., n}
and by N+ the set of positive integers. Let C(Rd) be the set
of continuous functions over the d-dimensional real space
Rd. Let X be a convex compact set in Rd. Given a non-
negative measure µ on X , we define the `p-norm of the
function f ∈ C(Rd) on X as ‖f‖Lpµ(X ) = (

∫
X |f |

pdµ)1/p.
Let P(X ) denote the collection of all Borel probability mea-
sures on the measurable space (X ,B(X )), where B(X ) is
the Borel σ-algebra on X . We denote by P2(X ) ⊆ P(X )
the set of Borel probability measures with finite second mo-
ments. We define the metric space (M, ‖ · ‖) by a vector
space M and a metric induced by the norm ‖ · ‖.

2. Problem Formulation and Optimization
over Wasserstein Spaces

Below we state the formulation and assumptions for infinite-
dimensional games in the Wasserstein space.

2.1. From Finite-Dimensional to Infinite-Dimensional
Games

Consider the classical formulation of a two-player zero-sum
game as folows,

min
xµ∈Xµ

max
xν∈Xν

f(xµ, xν), (2.1)
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where Xµ,Xν ⊆ Rd with d ∈ N+ are convex compact
sets of pure strategies with periodic or zero-flux boundary
conditions, and f is the objective function. In nonconvex-
nonconcave regimes, as finding local Nash equilibria is NP-
hard or even impossible (Jin et al., 2019), a weaker notion
of first-order NE (FNE) for a pair (xµ∗ , x

ν
∗) ∈ Xµ × Xν is

defined as
〈∇xµf(xµ∗ , x

ν
∗), x

µ − xµ∗ 〉 ≥ 0, (2.2)
〈∇xνf(xµ∗ , x

ν
∗), x

ν − xν∗〉 ≤ 0, ∀xµ ∈ Xµ, ∀xν ∈ Xν ,
which corresponds to first-order necessary optimality con-
ditions. Observing that without a probability representa-
tion (2.1) only admits pure Nash strategies, we lift (2.1)
by considering distributions over Xµ and Xν to allow
mixed strategies. The infinite-dimensional distributional
two-player zero-sum game is defined as

min
µ∈M(Xµ)

max
ν∈M(Xν)

F (µ, ν). (2.3)

Here F : M(Xµ)×M(Xν)→ R is the objective functional.
Without loss of generality, we set Xµ = Xν = X and
writeM = M(X ). Also, M(X ) = (P2(X ),W2) is the
Wasserstein (W2-) space, an infinite-dimensional manifold
by (Villani, 2008), with the W2-distance on P2(X ) defined
as
W2(µ, ν) = inf

{
E
[
‖X − Y ‖2

] 1
2
∣∣ L(X) = µ,L(Y ) = ν

}
,

where the infimum is taken over the random variablesX and
Y in X . Here we denote by ‖ · ‖ the geodesic distance on
X and by L(X) the law of a random variable X . Without
specification, the domain of an integral is the setX . We refer
to the two players as player µ and player ν, respectively.
To further characterize the properties ofM, we introduce
geodesics, tangent vectors and tangent spaces below.

Definition 2.1. Let γ : [0, 1]→ P2(X ) be a smooth curve.
We call the curve γ a geodesic if there exists a constant
v ≥ 0 such thatW2

(
γ(t1)− γ(t2)

)
= v · |t1 − t2| for any

t1, t2 ∈ [0, 1]. A tangent vector at µ ∈M is an equivalence
class of differentiable curves through µ with a prescribed
velocity vector at µ. The tangent space at µ, denoted by
TµM, consists of all tangent vectors at µ.

The manifold M is equipped with a weak Riemannian
structure in the following sense (Villani, 2008). Given
any tangent vectors u, v at µ ∈ M and the vector fields
ũ, ṽ of the gradient form satisfying continuity equations
u = −div(µũ) and v = −div(µṽ), respectively, we de-
fine the inner product of u and v as 〈u, v〉µ =

∫
〈ũ, ṽ〉dµ,

where 〈ũ, ṽ〉 is the inner product in Rd. Such a metric
induces a norm ‖u‖µ = 〈u, u〉1/2µ for any u ∈ TµM. Un-
der such a structure, we define the directional derivative
w.r.t. u ∈ TµM of a differentiable functional g : M→ R
as ∇vg(µ) = d

dtg[γ(t)]
∣∣
t=0

, where γ(0) = µ ∈ M and
γ′(0) = u. In addition, we say g is W2-differentiable at µ if
there exists u′ ∈ TµM such that∇ug(µ) = 〈u′, u〉µ for any
u ∈ TµM, and write grad g(µ) = u′ as the (weak) Rieman-

nian gradient of g at µ. The partial gradient gradµ F (µ, ν)
is defined similarly for a functional F : M×M→ R when
fixing ν. The exponential map at µ, denoted by Expµ, sends
any u ∈ TµM to µ′ = γu(1)1, where γu is a geodesic
such that γu(0) = µ and γ′u(0) = u. For any µ, ν ∈ M,
the parallel transport Γνµ : TµM→ TνM is the map such
that 〈u, v〉µ = 〈Γνµu,Γνµv〉ν for any u, v ∈ TµM. Also,
as X is separable and complete, M is geodesically com-
plete (Villani, 2003) in the sense that the exponential map
is defined on the whole tangent bundle. See §B for more
formal definitions.

We assume the objective functional F in (2.3) to admit the
following variational forms,

F (µ, ν) = Fν(µ) = sup
f∈F

{∫
X
fdµ− F ∗ν (f)

}
,

F (µ, ν) = Fµ(ν) = − sup
f∈F

{∫
X
fdν − F ∗µ(f)

}
, (2.4)

where F is the class of square-integrable functions over X ,
F ∗µ , F

∗
ν : F → R are strongly convex and smooth function-

als w.r.t. the `2-norm. In fact, (2.4) generalize the definition
of the conjugate function, and the example in §C.2 shows
that a wide class of f -divergences admits such forms.

For theoretical analysis, we impose the following assump-
tions on the objective functional F .

Assumption 2.2. We assume that F is Lipschitz continuous
and smooth w.r.t. the Wasserstein distance in the sense that∣∣F (µ1, ν)− F (µ2, ν)

∣∣ ≤ LµW2(µ1, µ2),∣∣F (µ, ν1)− F (µ, ν2)
∣∣ ≤ LνW2(ν1, ν2),

d
(
gradFν(µ1), gradFν(µ2)

)
≤ L1 · W2(µ1, µ2),

d
(
gradFµ(ν1), gradFµ(ν2)

)
≤ L2 · W2(ν1, ν2),

d
(
gradFµ1(ν), gradFµ2(ν)

)
≤ L0 · W2(µ1, µ2),

d
(
gradFν1(µ), gradFν2(µ)

)
≤ L0 · W2(ν1, ν2) (2.5)

for any µ, µ1, µ2, ν, ν1, ν2 ∈M. Here Lµ, Lν , L1, L2, and
L0 are absolute constants and d2(u, v) =

〈
u − Γµνv, u −

Γµνv
〉
µ

for any µ, ν ∈M, u ∈ TµM, and v ∈ TνM.

Assumption 2.2 is a natural extension of Lipschitz continu-
ity and smoothness for Euclidean space to the Wasserstein
space, where the Euclidean distance is replaced by W2-
distance. The following assumption extends the notion of
PL condition, also known as gradient domination (Polyak,
1963; Nesterov & Polyak, 2006; Sanjabi et al., 2018b), to
infinite-dimensional spaces.

Assumption 2.3. (Riemannian PL condition). A W2-
differentiable functional g :M→ R with minimum value
g∗ = infµ∈M g(µ) is called ξ-PL (ξ-gradient dominated) if

1Hence, for µ1, µ2 ∈M, Exp−1
µ1

(µ2) is an analogy to x2−x1
for x1, x2 ∈ X .
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for all µ ∈M we have
〈grad g(µ), grad g(µ)〉µ ≥ 2ξ (g(µ)− g∗) . (2.6)

We call (2.3) a ξ-PL game, or simply a PL game, ifHµ(ν) ,
−F (µ, ν) is ξ-PL w.r.t. ν. We assume (2.3) to be a ξ-PL
game.

In particular, Assumption 2.3 implies that if the norm of
the gradient is small at µ ∈ M, then the functional value
at µ will be close to the optimum. In addition, it is not
restrictive since a non-convex functional can still satisfy
the PL condition (Karimi et al., 2016). To justify all the
above assumptions, we provide the following example stem-
ming from learning GANs, where the pure strategies in (2.3)
correspond to parameters xµ and xν of the GAN.

Example 2.4. Consider the mixed NE of WGANs (Ar-
jovsky et al., 2017) with Kullback-Leibler (KL) divergence
regularization,
min
µ∈M

max
ν∈M

E
xν∼ν

E
ζ∼Preal

[hxν (ζ)]− E
xν∼ν

E
xµ∼µ

E
ζ∼Pxµ

[hxν (ζ)]

− KL(ν‖µ0) + KL(µ‖µ0), (2.7)
where KL(µ‖λ) =

∫
X log( dµ/dλ) dµwith Lebesgue mea-

sures µ and λ, and µ0 is the probability measure of standard
Gaussian. Also, hv denotes the discriminator parameterized
by NNs, of which the input is ζ ∈ X . Without the expecta-
tions of xµ and xν , (2.7) is reduced to the original regular-
ized WGAN objective that admits only finite-dimensional
pure Nash strategies. Further, we define the linear operator
D : M → F by (Dµ)(xν) = Exµ∼µEζ∼Pxµ [hxν (ζ)]
for any xν ∈ X and some continuous function
hxν ∈ F . We also define g(xν) = Eζ∼Preal [hxν (ζ)].
Then the objective F in (2.7) can be rewritten as
F (µ, ν) = 〈ν, g〉 − 〈ν,Dµ〉 − KL(ν‖µ0) + KL(µ‖µ0),
It follows from the logarithmic Sobolev inequality
(LSI) (Otto & Villani, 2000) in W2-space that player
µ meets the PL condition. Since the KL divergence
is an f -divergence, the variantional forms are guaran-
teed as follows, Fν(µ) = supf∈F

{
−
∫

exp
{
f(xµ) +

Exν∼νEζ∼Pxµ [hxν (ζ)]
}

dµ0(xµ) +
∫
fdµ + F̂ν

}
,

Fµ(ν) = − supf∈F

{∫
fdν −

∫
exp

{
f(xν) +

g(xν) − (Dµ)(xν)
}

dµ0(xν) + F̂µ

}
. Here

F̂ν = 1 − KL(ν‖µ0) + Exν∼νEζ∼Preal [hxν (ζ)] and
F̂µ = 1 − KL(µ‖µ0) are constants when fixing ν
and µ, respectively. See §C.3 for details. We remark
that in practical GAN training, KL regularization
terms exist to prevent the mode collapse. More gen-
erally, the KL-regularized distributional bilinear game
minµ∈Mmaxν∈M〈ν,Aµ〉 − KL(ν‖µ0) + KL(µ‖µ0)
given a linear operator A : M → F is widely
studied in games. Similarly, we write its vari-
ational forms as Fν(µ) = supf∈F{

∫
fdµ −∫

exp
{
f(xν) − A∗ν(xν)

}
dµ0(xν) + 1 − KL(ν‖µ0)}

and Fµ(ν) = − supf∈F{
∫
fdν −

∫
exp

{
f(xµ) +

Aµ(xµ)
}

dµ0(xµ) + 1 − KL(µ‖µ0)}, where A∗ is the
adjoint of A.

2.2. Measurement of Solutions

To quantify the accuracy of solutions to (2.3), we gener-
alize the NE of finite-dimensional games to our infinite-
dimensional distributional games. Given the numerical ac-
curacy of iterative algorithms in practice, we define the
notion of infinite-dimensional first-order NE (IFNE) as a
performance measure.

Definition 2.5 (IFNE). For any µ1, ν1 ∈M, we define
Jµ(µ1, ν1) , − min

W2(µ,µ1)≤1

〈
gradµ F (µ1, ν1),Exp−1µ1

(µ)
〉
µ1
,

Jν(µ1, ν1) , max
W2(ν,ν1)≤1

〈
gradν F (µ1, ν1),Exp−1ν1 (ν)

〉
ν1

as the first-order errors (FEs). Then a point (µ∗, ν∗) ∈
M×M is called a θ-IFNE of (2.3) if

Jµ(µ∗, ν∗) ≤ θ and Jν(µ∗, ν∗) ≤ θ. (2.8)

When θ = 0, we call (µ∗, ν∗) an IFNE. Definition 2.5
characterizes how far the solutions are from the FNE in the
W2-space. Also, we characterize the upper bound θ in terms
of the problem parameters for convergence rates in §4.

3. Variational Transport Algorithm for
Infinite-Dimensional Games

In what follows, we introduce the variational transport al-
gorithm to characterize GDA for the infinite-dimensional
game defined in (2.3). Our idea is based on the multi-step
GDA algorithm in (Sanjabi et al., 2018b) with nested loops,
where multiple gradient ascent steps are run for estimating
the gradient of the inner maximization functional defined
as G(µ) = maxν∈M F (µ, ν) w.r.t. µ, which provides a de-
scent direction for the outer minimization problem. Without
specifying, statements below hold for both µ and ν although
they are presented by µ ∈M.

3.1. Gradient Descent beyond the Euclidean Space

We first show the connection between functional gradient
descent in the Wasserstein Space M and transportation
maps in the variable space X . Specifically, we expect to
update the current iterate µ ∈M of the gradient descent in
the direction of gradFν(µ) along the geodesic. Therefore,
in the ideal case, the gradient update is given by

µ← Expµ
[
−η · gradFν(µ)

]
, (3.1)

where η > 0 is the stepsize. The proposition below bridges
the Riemannian gradient of a W2-differentiable functional
on M and its functional gradient w.r.t. the `2-norm. We
denote by f∗µ ∈ F the optimal solution to (2.4) for Fν(µ).

Proposition 3.1 (Riemannian Gradients to Functional Gra-
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Figure 1. Equivalence between particle pushing in the Euclidean
space X and the exponential map in the Wasserstein space M.
The tangent vector v ∈ TxM at x induces the exponential map
Expx and its correspondence in X , the push-forward map T] =[
ExpX

(
−t · ∇f∗µ)

]
]
. Xµ

k is the set of µ-particles at timestep k in
Algorithm 1.

dients). Let F :M→ R be aW2-differentiable functional,
with its functional gradient w.r.t. the `2-norm written as
δF/δµ. Then, it follows that

gradF (µ) = −div

[
µ · ∇

(
δF

δµ

)]
, (3.2)

where div is the divergence operator on X . Furthermore,
by the variational form of (2.3), we have δFν/δµ = f∗µ and
gradFν(µ) = −div(µ · ∇f∗µ).

Proof. See §C.1 for a detailed proof.

By Proposition 3.1, to obtain a descent direction in W2-
space for Fν(µ), we first solve (2.4) for f∗µ ∈ F and then,
compute the divergence in (3.2). Also, Expµ in (3.1) needs
to be specified. As in practice we only have access to sam-
ples, or particles, from µ, we establish the proposition below
to perform approximate gradient updates in (3.1) via parti-
cles.

Proposition 3.2 (Pushing particles as an exponential map).
For any µ ∈ M and any s ∈ TµM, suppose the ellip-

tic equation −div(µ · ∇u) = s admits a unique solution
u : X → R such that∇u : X → Rd is h-Lipschitz continu-
ous. Then, for any t ∈ [0, 1/h), we have[

ExpX (t · ∇u)
]
]
µ = Expµ(t · s), (3.3)

where we use ExpX (t·∇u) to denote the transportation map
on X that sends any x ∈ X to a point Expx(t ·∇u(x)) ∈ X ,
which is also the exponential map over X . We denote by
T] : P2(X ) → P2(X ) the push-forward map of a trans-
portation map T : X → X such that for any µ ∈M and any
measurable set A ∈ X , we have T]µ(A) = µ(T−1(A)).

Proof. See §C.2 for a detailed proof.

Hence, if ∇f∗µ is h-Lipschitz, by Proposition 3.1 and 3.2,
for any t ∈ [0, 1/h) we obtain Expµ[−t · gradF (µ)] =[
ExpX

(
−t · ∇f∗µ)

]
]
µ. given µ ∈ M. This identifies the

gradient descent update in the Wasserstein spaces with the
push-forward map of probability measures over the Eu-
clidean space, which can be approximated by pushing a set
of particles. We illustrate such correspondence in Figure 1.

Further, we are left with the variational form maximization
(VFM) problem in (2.4), where difficulties lie in the follow-
ing aspects. (i) Firstly, our approach is expected to provide
the reasonable statistical error incurred by estimating f∗µ by
f̃∗µ from the empirical version of VFM,

f̃∗µ = argmax
f∈F

{∫
X
f dµ̂− F ∗ν (f)

}
= argmax

f∈F

{ 1

N

N∑
i=1

f(xi)− F ∗ν (f)
}
, (3.4)

where we replace µ in (2.4) by the empirical measure
µ̂ = 1/N

∑N
i=1 δxi , i.e., an average of Dirac measures over

samples xi’s. (ii) Secondly, maximization over F is com-
putationally intractable. To this end, we perform stochastic
gradient descent (SGD) to learn f∗µ from the following class
F̃ of neural networks (NNs) instead of F , which is a rich
class by the universal approximation theorem (Csáji et al.,
2001; Hofmann et al., 2008).
Neural Network Parametrization. We consider the fol-
lowing class of NNs,

F̃ =

{
f̃

∣∣∣∣ f̃(x) =
1√
w

w∑
i=1

bi · σ
(
[β]>i x

)}
, (3.5)

where w is the width of the neural network, [β]i ∈ Rd, β =
([β]>1 , · · · , [β]>w)> ∈ Rwd are input weights, σ(·) denotes
a smooth activation function, and bi ∈ {−1, 1} (i ∈ [w])
are the output weights. As shown in Algorithm 3, only β
is updated during training while bi (i ∈ [w]) is fixed. In
addition, at each iteration we project the input weights β
to an `2-ball centered at β(0) with radius rf defined as
B0(rf ) = {β : ‖β − β(0)‖2 ≤ rf}. See §D.1 for more
details of F̃ .

3.2. Algorithm for Two-Player Infinite-Dimensional
Games

We now put together two nested loops of gradient de-
scent/ascent updates approximated by particles as the vari-
ational transport algorithm for infinite-dimensional games
(VTIG) in Algorithm 1. In detail, we maintain two sets of
Nµ µ-particles and Nν ν-particles for player µ and player
ν. Also, VTIG output the corresponding probability mea-
sures approximated by these two sets as the solutions to
(2.3), respectively. At outer-loop timestep k, we denote
the set for player µ by Xµ

k = {xµi,k}i∈[Nµ] and the set for
player ν at inner-loop timestep l of outer-loop timestep k
by Xν

l (µ̃k) = {xνi,l(µ̃k)}i∈[Nν ]. Here we write Xν
l (µ̃k)

and xνi,l(µ̃k) to emphasize that we fix Xµ
k (resp. µ̃k) when

updating Xν
l (resp. ν̃l) in Line 7 of Algorithm 1. Also,
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{µ̃k}k≥0 and {ν̃l(µ̃k)}k,l≥0 are sequences of probability
measures of {Xµ

k }k≥0 and {Xν
l (µ̃k)}k,l≥0 constructed im-

plicitly by VTIG, which is specified later. Further, the set of
µ-particles Xµ

k is updated as follows given Xµ
0 for k ≥ 1.

At the outer-loop timestep k, VTIG computes the solution
to (3.4) following Line 10 in Algorithm 1

f̃∗k ← VFM
(
Xµ
k , F

∗
ν̃k+1

, Nµ
)

(3.6)

based on the current µ-particle set Xµ
k , the functional F ∗ν̃k+1

defined in the variational form (2.4), and the number of µ-
particles Nµ. As shown in Algorithm 3, the VFM problem
is solved by learning a neural network f̃∗k belonging to the
class F̃ defined in (3.5) via SGD. With the obtained ∇f̃∗k ,
VTIG push µ-particles in this direction as follows (Line 11
of Algorithm 1),

xµi,k+1 ← Expxµi,k
[
− ηµ · ∇f̃∗k (xµi,k)

]
(3.7)

for all i ∈ [Nµ]. Here ηµ > 0 are the stepsize specified
in Theorem 4.2. This is equivalent to updating the empir-
ical measure µ̂ = N−1µ

∑
i∈[Nµ] δxi,k by the pushforward

measure [ExpX (−ηµ · ∇f̃∗l,k)]]µ̂, which approximates the
Riemannian gradient update in (3.1) with stepsize ηµ. Also,
the exponential map in Euclidean space is reduced to a
gradient descent step on xµi,k ∈ Rd.

Similarly, to update the set of ν-particles Xν
l (µ̃k), VTIG

computes the solution to (3.4) following Line 6 in Algo-
rithm 1 at inner-loop timestep l of outer-loop timestep k.
Then, the ν-particles are pushed by

xνi,l+1(µ̃k)← Expxνi,l(µ̃k)
[
ην · ∇f̃∗l,k

(
xνi,l(µ̃k)

)]
(3.8)

for all i ∈ [Nν ] in Line 7 of Algorithm 1, with fixed µ̃k. In
particular, the sequences of probability measures {µ̃k}k≥0
and {ν̃l(µ̃k)}k,l≥0 are constructed as below. We define
sequences of transportation maps {Tµk : X → X}Kµk=0 with
Tµ0 = id and {T νm : X → X}KµKνm=0 with T ν0 = id, by

Tµk+1 = ExpX (−ηµ · ∇f̃∗k ) ◦ Tµk and

T νkl+1 = ExpX (−ην · ∇f̃∗l,k) ◦ T νkl, (3.9)
respectively for k ∈ [Kµ], l ∈ [Kν ]. Here Kµ and Kν are
the numbers of timesteps of the inner and outer loops, re-
spectively. Then for each k ≥ 1 we define µ̃k = (Tµk )]µ̃0

and ν̃k = (T νk )]ν̃0, where µ0 and ν0 are initial probability
measures. Hence, we have ν̃l(µ̃k) = ν̃lk. Also, xµi,k

i.i.d.∼ µ̃k

and xνi,l(µ̃k)
i.i.d.∼ ν̃l(µ̃k) are independent samples. Such

implicit construction of transportation maps and probabil-
ity measures also induces a theoretical version of VTIG
via resampling. See Algorithm 2 for details. Additionally,
we adopt the constructed measure ν̃k+1 to compute F ∗ν̃k+1

in (3.6) since for most objectives F such as that in Exam-
ple 2.4, we can always sample many enough particles to
approximate the expectation terms w.r.t. ν̃k+1 for k ≥ 0.

Algorithm 1 Multi-Step Variational Transport Algorithm
for Infinite-Dimensional Games (VTIG)
1: Input: Functional F :M×M→ R; initial probability mea-

sures µ̃0, ν̃0 ∈M; numbers of particles Nµ, Nν ; numbers of
iterations Kµ,Kν ; and stepsizes ηµ ∈

(
0,min{1/h, 2/L̃}

)
,

ην ∈
(
0,min{1/(4L2), 1/h}

)
.

2: Initialize Nµ (Nν) particles Xµ
0 = {xµi,0}i∈[Nµ]

(
Xν

0

)
by

drawing Nµ (Nν ) i.i.d. samples from µ̃0 (ν̃0).
3: for k = 0, 1, 2, . . . ,Kµ − 1 do
4: Set Xν

0 (µ̃k) = Xν
k

5: for l = 0, 1, 2, . . . ,Kν − 1 do
6: f̃∗l,k ← VFM

(
Xν
l (µ̃k), F

∗
µ̃k
, Nν

)
7: Push ν-particles: xνi,l+1(µ̃k) ← Expxν

i,l
(µ̃k)

[
−ην ·

∇f̃∗l,k
(
xνi,l(µ̃k)

)]
for all i ∈ [Nν ]

8: end for
9: Set Xν

k+1 = Xν
Kν (µ̃k)

10: f̃∗k ← VFM
(
Xµ
k , F

∗
ν̃k+1

, Nµ
)

11: Push µ-particles: xµi,k+1 ← Expxµ
i,k

[−ηµ · ∇f̃∗k (xµi,k)] for

all i ∈ [Nµ]
12: Set Xµ

k+1 = {xµi,k+1}i∈[Nµ]
13: end for
14: Output: µ̃∗ = N−1

µ

∑
i∈[Nµ] δxi,Kµ , ν̃∗ =

N−1
ν

∑
i∈[Nν ] δxi,Kν

4. Main Results
To ensure the independence of the particles for statistical
analysis, we adopt Algorithm 2 for theoretical analysis. We
characterize the statistical error induced by estimating Rie-
mannian gradients using finite particle samples in §4.1 for
both players. In §4.2 we establish the convergence rate of
VTIG to the IFNE under the PL condition for one player.
Furthermore, we present in §4.3 that under a stronger as-
sumption on the objective F , i.e., the two-sided PL condi-
tion, a linear convergence rate to the minimax value of the
game is achieved.

4.1. Statistical Analysis

For each player, VTIG can be viewed as a Riemannian
gradient descent method with biased gradient estimates. We
characterize the bias in terms of the generalization error of
function approximators, where lie the essential difficulties
in theory. In this section, we present the analysis for player
µ. The analysis of player ν is similar.

Gradient estimation. Recall that by Proposition 3.1, the de-
sired descent direction for timestep k ≥ 0 is gradF (µ̃k) =
−div(µ̃k · ∇f∗k ). However, with only finite samples, we
obtain an estimator f̃∗k of f∗k . Hence, the gradient es-
timate at µ̃k is −div(µ̃k · ∇f̃∗k ), and the difference be-
tween gradF (µ̃k) and its estimate is denoted by δk =

−div[µ̃k · (∇f̃∗k −∇f∗k )]. By observing that δk ∈ Tµ̃kM
and that the randomness of δk comes from the intial samples
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Xµ
0 , we define
ε̄k = EXµ0 〈δk, δk〉µ̃k

= EXµ0

∫
X

∥∥∇f̃∗k (x)−∇f∗k (x)
∥∥2
2

dµ̃k(x) (4.1)

as the (expected) gradient error. In general, it is hard to
derive upper bounds of gradients for general functions. Nev-
ertheless, we upper bounds function gradients by function
values for a specific function class, F̃ defined in Section 3.1.
Below we provide a generic assumption on F̃ to derive the
desired upper bounds of gradients.

Assumption 4.1. The set ∇F̃ = {∇f : f ∈ F̃} is closed,
bounded in (C(X ), `∞). For each ∇f ∈ ∇F̃ , ∇f is h-
Lipschitz for some h > 0.

Such an assumption can be achieved by function classes
with uniformly bounded and Lipschitz continuous gradients,
which includes the class of neural networks defined in (3.5)
with bounded parameters. See §D.1 for more details. More-
over, based on Assumption 4.1 we identify a new type of
reverse Poincaré inequality (Baudoin & Bonnefont, 2016)
in §D.1. Due to the use of fundamental topology and analy-
sis property of X and F̃ , our analysis can also be extended
to non-Euclidean space X .

Generalization error of VFM. By setting p = 2 and
f(x) = f̃∗k (x) − f∗k (x) in Lemma D.1, we are able to
upper bound the gradient errors by the generalization errors
of NNs, which is bounded in §D.3 with the orders of

ε̄µ = O(N−1/2µ ), ε̄ν = O(N−1/2ν ) (4.2)
by wide enough NNs for player µ and player ν, respectively.
Here Nµ and Nν are the numbers of particles for player
µ and player ν, respectively. Such results are standard for
the stochastic gradient descent (SGD) over neural networks,
since the number of iterations t in Algorithm 3 is also the
sample size Nµ (resp. Nν) in our algorithm.

4.2. Convergence to the IFNE for PL Games

Recall that G(µ) = maxν∈M F (µ, ν). We define LG =
maxµ∈M ‖ gradG(µ)‖µ, which is upper bounded since G
is Lipschitz (Lemma E.1) on a compact domainM (Proposi-
tion E.1). We assume that there exist constantsMH > 0 and
MG > 0 such that MH = maxµ,ν0∈M[G(µ) − F (µ, ν0)]
and MG = maxµ0∈MG(µ0) − G(µ∗), where µ∗ ∈
argminµ∈MG(µ). Under Assumption 2.3 for ξ-PL games,
we characterize the following sublinear rate to find an IFNE
defined in Definition 2.5 by VTIG with sample sizesNµ, Nν
and numbers of iterations Kµ,Kν . Recall that L0, L1, and
L2 are Lipschitz constants defined in Assumption 2.2. The
constant ξ for the PL condition is defined in Assumption 2.3.
Also, σ = 1− ξην/2 ∈ (0, 1) is a contraction factor from
Lemma E.5.

Theorem 4.2 (Convergence of Infinite-Dimensional PL
Games). Suppose that the objective F admits a variational

form under Assumption 2.2 and 2.3. Also, the function class
F̃ satisfies Assumption 4.1. We set the stepsizes to be ηµ ∈[
0,min{1/h, 2/L̃}

)
and ην ∈

(
0,min{1/(4Lν), 1/h}

)
,

where L̃ = L1 + L2
0/ξ. Then, for any θ > 0, if

Kν ≥ Kν(θ) = O
(

log
(1− σ)M̂H − ην ε̄ν

θ

/
log

1

σ

)
,

where M̂H = max
{
MH ,

ην ε̄ν + 1

1− σ

}
, (4.3)

there exists an iteration k ∈ [Kµ] such that
EX0

[
J 2
µ (µ̃k, ν̃k+1)

]
= O

((
∆ +

√
ε̄µ
)2 · ((∆ +

√
ε̄µ) +

MG

Kµ

))
,

EX0

[
Jν(µ̃k, ν̃k+1)

]
= O

(L2∆

L0

)
. (4.4)

Here ∆ = L0

√
ην ε̄ν + θ

2ξ(1− σ)
, and the gradient error terms ε̄µ

and ε̄ν are characterized in (4.2).

Proof. See §E.3 for a detailed proof and more dependencies
on other constants.

The proof of Theorem 4.2 is based on Lemma E.5 and a
Danskin-type lemma in §E.1 which ensures an appropriate
estimate of gradG provided by inner loops and the smooth-
ness of the objective defined in Assumption 2.2. Such prop-
erties imply that VTIG behaves as the gradient descent over
the inner maximization value functionalG, which concludes
the proof. The bounds for the first-order errors Jµ and Jν
are composed of the optimization error θ of player ν, the
optimization error O(K−1µ ) of player µ, and the gradient
errors ε̄µ and ε̄ν characterized in (4.2) due to finite samples.
Specifically, the term ∆ encapsulates both the statistical er-
ror and the optimization error of player ν, which are added to√
ε̄µ andO(K−1µ ) in the error bound for player µ. Consider-

ingNµ, Nν ,Kµ, andKν as dominating terms in the bounds,
if we set Nµ = Nν = O(θ−4), Kµ ≥ Kµ(θ) = O(θ−2),
and Kν ≥ Kν(θ) = O(log(θ−1)), by Definition 2.5 we
achieve a θ-IFNE. In this sense, VTIG converges at a sub-
linear rate to the IFNE defined in (2.8) under the PL game
condition.

4.3. Convergence to the Minimax Value under the
Two-Sided PL Condition

In this section, we aim to achieve a stronger convergence
result leading to the minimax value of the game by a stronger
assumption. We give the definition of two-sided Riemannian
PL games below.

Assumption 4.3 (Two-Sided Riemannian PL Game). We
define functionals Hµ(ν) = −F (µ, ν) and Fν(µ) =
F (µ, ν) for fixed µ and ν, respectively. We assume (2.3) to
be a two-sided Riemannian PL game, or simply a two-sided
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PL game, in the sense that Fν(µ) is ξ1-PL and Hµ(ν) is
ξ2-PL for some ξ1, ξ2 > 0.

Note that the definition of two-sided PL games relaxes that
of the convex-concave games even in infinite-dimensional
spaces. In fact, Example 2.4 provides a two-sided PL game
by KL regularization for both players, which is ubiquitous in
training GANs. Assumption 4.3 also guarantees a PL condi-
tion on G(µ) = maxν∈M F (µ, ν) according to Lemma F.1.
By using such a landscape, we establish the linear conver-
gence rate of finding the minimax value of the game as
below.

Theorem 4.4 (Convergence to the Minimax Value of
Two-Sided PL Games). Let the objective F satisfy (2.4),
Assumption 2.2 and 4.3. Suppose that F̃ satisfies
Assumption 4.1. With the outer-loop stepsize ηµ ∈[
0,min{1/h, 1/(4L̃)}

)
and inner-loop stepsize ην ∈(

0,min{1/(4Lν), 1/h}
)
, for k ≥ 1 it holds that

EX0

[
F
(
µ̃k, ν

∗(µ̃k)
)]
− F (µ∗, ν∗)

≤ σ̃k ·
(
EX0

[
F (µ̃0, ν̃1)

]
− F (µ∗, ν∗)

)
︸ ︷︷ ︸

(i)

+
1− σ̃k

1− σ̃
· ηµ
(
ε̄µ + ∆̃2

)
︸ ︷︷ ︸

(ii)

, (4.5)

where µ̃k and ν̃k+1 are probability measure iterates defined
in Algorithm 2, gradient error terms ε̄µ and ε̄ν are given
in (4.2). The expectation is taken w.r.t. the initial sampleX0.
The contraction factor is σ̃ = 1 − ξ1ηµ/2, and we define
the total error term for player ν as ∆̃2 = L2

0/2ξ2 ·
(
σKν ·

MH + ην ε̄ν · 1−σ
Kν

1−σ

)
, where MH is the upper bound of

F (µ, ν∗(µ))−F (µ, ν0(µ)) defined in §4.2, andKν denotes
the number of timesteps for player ν in Algorithm 2.

Proof. See §F.2 for a detailed proof.

The proof of Theorem 4.4 differs from that of Theorem 4.2
mainly by the lower bounds of gradient norms provided by
ξ1-PL condition on functional G. Under the two-sided PL
condition in Assumption 4.3, Theorem 4.4 characterizes
a linear convergence rate for VTIG of the objective func-
tional value to the minimax value F (µ∗, ν∗) of the game,
with an accumulated statistical error term (ii). In detail, the
optimization error (i) decays by a factor of σ̃ linearly. Ad-
ditionally, our statistical error is composed of the gradient
error ε̄µ of player µ and the error term ∆̃2, which is further
decomposed into the linearly decaying optimization error
σKνMH and the gradient error ε̄ν of player ν scaled by
(1− σKν )/(1− σ). Specifically, in the total bound (4.5) ε̄µ
scales at a rate of (1−σ̃k)/(1−σ̃) with the iteration k and ε̄ν
scales at the rate of (1− σ̃k)/(1− σ̃) · (1− σKν )/(1− σ),

which implies the error accumulation from the the inner
loop of Algorithm 2. Also, we adopt the objective value
instead of IFNE in Theorem 4.2 to measure the error of con-
vergence to the minimax value. Although we suffer from
the finite-sample error to approximate probability measures,
it is flexible to tune parameters Nµ, Nν ,Kµ, and Kν ac-
cording to their corresponding error terms in the bound to
optimize the algorithm in practice, especially when some
parameters are restricted.

5. Toy Experiments
In this section we report some results for a toy experiment
with a Gaussian mixture model with 8 Gaussian distribu-
tions. For simplicity, we drop the regularizer terms from
WGAN loss and consider a mixture of 8 generators and
discriminators corresponding to the particles for parame-
ters of the generator and the discriminator of WGAN. Both
generators and discriminators are MLP with 3 layers. We
also don’t tune the learning rate and set it to be 10−4. We
run the model for 20000 iterations which is small compared
to the typical number of iterations used in practice to train
a WGAN model. In our experiment we reused the code
provided by (Hsieh et al., 2018) with some simple modifi-
cation. We present some samples generated from trained
generators in Figure 2. The blue dots are generated from
real mixture models and the red ones are generated from
generators. We observe that the distribution generated by
our generator matches the groundtruth after a short train-
ing period, and the sampling procedure is faster than the
SGLD-based methd.

6. Conclusion
In this paper, we lift finite-dimensional zero-sum games to
infinite-dimensional distributional zero-sum games over a
space of probability measures, in order to find mixed NEs
for finite-dimensional games. We then propose a particle-
based variational transport algorithm in the functional space
to solve such games, by analogy with the gradient descent-
ascent algorithm in finite-dimensional spaces. Furthermore,
we provide the first complete statistical and convergence
guarantees for such particle-based method. Our analysis
applies to problems with different assumptions on non-
convexity (PL games and two-sided PL games). Toy ex-
periments show promising empirical results.
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A. Additional Algorithms

Algorithm 2 Theoretical Version of Multi-Step Variational Transport Algorithm for Infinite-Dimensional Games (VTIG)
with Resampling

1: Input: Functional F : M×M→ R; initial measures µ̃0 ∈ M, ν̃0 ∈ M; numbers of particles Nµ, Nν ; numbers of
iterations Kµ,Kν ; and stepsizes ηµk ∈

(
0,min{1/h, 2/L̃}

)
, ην ∈

(
0,min{1/(4L2), 1/h}

)
.

2: Initialize the transportation maps Tµ0 ← id, T ν0 ← id.
3: Initialize Nµ particles Xµ

0 = {xµi }i∈[Nµ] by drawing Nµ i.i.d. samples from µ̃0.
4: Initialize Nν particles Xν

0 = {xνi }i∈[Nν ] by drawing Nν i.i.d. samples from ν̃0.
5: for k = 0, 1, 2, . . . ,Kµ − 1 do
6: Generate Nµ particles Xµ

0 = {xµi }i∈[Nµ] by drawing Nµ i.i.d. samples from µ̃0.
7: Push µ-particles by letting Xµ

k ← Tµk (Xµ
0 ).

8: for l = 0, 1, 2, . . . ,Kν − 1 do
9: Generate Nν particles Xν

0 (µ̃k) = {xνi }i∈[N ] by drawing Nν i.i.d. samples from ν̃0.
10: Push ν-particles by letting Xν

l (µ̃k)← T νkKν+l(X
ν
0 (µ̃k)).

11: f̃∗l,k ← VFM
(
Xν
l (µ̃k), F ∗µ̃k , Nν

)
.

12: Update the transportation map by letting T νkKν+l+1 = [ExpX (−ην · ∇f̃∗l,k)] ◦ T νkKν+l.
13: end for
14: f̃∗k ← VFM

(
Xµ
k , F

∗
ν̃k+1

, Nµ
)
.

15: Update the transportation map by letting Tµk+1 = [ExpX (−ηµ · ∇f̃∗k )] ◦ Tµk .
16: end for
17: Output: The final transportation maps TµKµ and T νKµKν .

Algorithm 3 Variational Form Maximization via SGD
(
VFM

(
{xi}ti=1, F

∗, t
))

1: Require: Initial weights bi, [β(0)]i (i ∈ [w]), number of iterations t, sample {xi}ti=1, and projection radius rf .
2: Set stepsize η ← t−1/2

3: for s = 0, . . . , t− 1 do
4: x← xi+1

5: β(s+ 1/2)← β(s)− η
(
∇βF ∗(fβ(s)(x))−∇βfβ(s)(x)

)
6: β(s+ 1)← argminβ∈B0(rf )

{
‖β − β(s+ 1/2)‖2

}
7: end for
8: Average over path β̂ ← 1/t ·

∑t−1
s=0 β(s)

9: Output: fβ̂

Algorithm 2 provides the resampling version of VTIG (Algorithm 1) for theoretical analysis in §4. As mentioned above,
here we explicitly use two sequences of transportation maps {Tµk }

Kµ
k=0 and {T νk }

KµKν
k=0 to record the transportation plans of

mapping the initial probability measures to the current iterates of Player µ and Player ν, respectively. For simplicity, we put
the particle pushing step before the VFM step, while the essential difference between Algorithm 2 and Algorithm 1 lies only
in the resampling procedures at the beginning of each player’s loop, i.e., Line 6 and Line 9 in Algorithm 2. Thereafter, we
adopt the recorded transportation plan from timestep 0 to the current timestep k, Tµk or T νk , to push the resampled initial
particles into their states at the current timestep through k steps of transportation maps. In contrast, in Algorithm 1 we push
the two sets of particles once respectively at each timestep, with only one sampling procedure before the beginning of each
loop. Hence, We remark that Algorithm 1 is deterministic in essence; the only randomness comes from the initialization of
the particles. In addition, note that even in resampling cases, our algorithm only requires to call an oracle that is able to
sample from a fixed distribution, which is more efficient than SGLD requiring Markov-chain type sampling from different
probability measure iterates. We remark that Algorithm 2 is considered only for the sake of theoretical analysis; random
sampling is unnecessary in practical implementation.

We also remark that the exponential maps ExpX (−ηµ · ∇f̃∗k ) in Algorithm 1 and 2 are essentially translations of particles in
the direction of −∇f̃∗k with a stepsize ην in X , which implies that they are computationally efficient for infinite-dimensional
problems.
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B. Properties of Optimization over Riemannian Manifolds
B.1. Background Details

In this section, we present basic properties of functions and gradient descent on a Riemannian manifold (M, g) with a
Riemannain metric g, supposing that any two points onM uniquely determines a geodesic. By the nature of Wasserstein
spaces, these propositions also apply to our optimization process over the family of probability measures. With such a
background, we are better prepared to demonstrate the convergence results by extending the classical optimization arguments
to Riemannian manifolds. For further extensions of definitions and propositions within this section, we refer to other
literatures on geodesically convex optimization. See, e.g., (Zhang et al., 2016; Liu et al., 2017; Zhang & Sra, 2018) and the
references therein.

B.2. Riemannian Manifold

LetM be a d-dimensional smooth manifold, i.e., a topological space that is locally homeomorphic to the Euclidean space
Rd and has a globally defined smooth structure (Chern et al., 1999).

Definition B.1 (Tangent vector). A tangent vector at x ∈M is an equivalence class of differentiable curves through x with
a prescribed velocity vector at x. The tangent space at x, denoted by TxM, consists of all tangent vectors at x.

In what follows, we denote by f : M → R a differentiable function over M, and define its directional derivative as
∇vf(x) = d

dtf [γ(t)]
∣∣
t=0

, where γ is any smooth curve such that γ(0) = x and γ′(0) = v.

To compare two tangent vectors in a meaningful way, we consider a Riemannian manifold (M, g), which is a real smooth
manifold equipped with an Riemannian metric gx : TxM× TxM → R for any x ∈ M (Petersen et al., 2006). The
inner product of any two tangent vectors u1, u2 ∈ TxM is defined as 〈u1, u2〉x = gx(u1, u2), with an induced norm

‖u1‖x =
√〈

u1, u1
〉
x

. We specify how to move a point along a direction in the following definition.

Definition B.2 (Geodesic space). A metric space (X , d) consists of a set X and a distance function d : X × X → R
satisfying a few simple properties (Burago et al., 2001). A curve γ on X is a continuous function from [0, 1] to X , whose
length is defined as L(γ) = sup

∑n
i=1 d[γ(ti−1), γ(ti)], where the supremum is taken over n ≥ 1 and all partitions

0 = t0 < t1 < . . . < tn = 1 of [0, 1]. By this definition, for any curve γ, we have L(γ) ≥ d[γ(0), γ(1)]. If there exists a
constant v ≥ 0 such that, d[γ(t1), γ(t2)] = v · |t1 − t2| for any t1, t2 ∈ [0, 1], then curve γ is called a geodesic. In this case,
for any 0 ≤ t1 < t2 ≤ 1, the length of γ restricted to [t1, t2] is equal to d[γ(t1), γ(t2)]. Thus, a geodesic is everywhere
locally a distance minimizer. Moreover, (X , d) is called a geodesic space if any two points x, y ∈ X are connected by a
geodesic γ such that γ(0) = x and γ(1) = y.

Definition B.3 (Exponential map). The exponential map at x, denoted by Expx, sends any tangent vector u ∈ TxM to
y = γu(1) ∈M, where γu : [0, 1]→M is the unique geodesic determined by γu(0) = x and γ′u(0) = u.

Moreover, since γu is the unique geodesic connecting x and y, the exponential map is invertible and we have u = Exp−1x (y).
The distance between x and y satisfies d(x, y) = [〈Exp−1x (y),Exp−1x (y)〉x]1/2, which is also called the geodesic distance.
For any two points x, y ∈M, the parallel transport Γyx : TxM→ TyM specifies that how a tangent vector of x is identified
with an element in TyM. Moveover, we have 〈u, v〉x = 〈Γyxu,Γ(γ)yxv〉y for any u, v ∈ TxM. For simplicity, we denote
d2(u, v) =

〈
u− Γxyv, u− Γxyv

〉
x

for any x, y ∈M and any u ∈ TxM, v ∈ TyM. Below we define the gradient w.r.t. the
Riemannian metric, in contrast with the Euclidean space.

Definition B.4 (Gradient). Suppose there exists u ∈ TxM such that ∇vf(x) = 〈u, v〉x for any v ∈ TxM, then f is
differentiable at x, and u is called the gradient of f at x, denoted by grad f(x). We also define partial gradient of f at
(x, y) w.r.t. x by gradx f(x, y) = grad fy(x) as a natural extension, where fy(x) = f(x, y) for any fixed y ∈M. We call
function f W2-differentiable if grad f exists over its domain.

Definition B.5 (Geodesic convexity). A function f : M → R is called geodesically convex if for any x, y ∈ M and a
geodesic γ : [0, 1]→M such that γ(0) = x and γ(1) = y, we have

f [γ(t)] ≤ t · f [γ(0)] + (1− t) · f [γ(1)], ∀t ∈ [0, 1]. (B.1)

The following lemma characterizes the geodesic convexity using the gradient of f .

Lemma B.6. If f :M→ R is differentiable, then it is geodesically convex if and only if
f(y) ≥ f(x) +

〈
grad f(x),Exp−1x (y)

〉
x
, ∀x, y ∈M. (B.2)



Infinite-Dimensional Optimization for Zero-Sum Games via Variational Transport

Proof. For any x, y ∈ M, let let γ : [0, 1] → M be the unique geodesic satisfying γ(0) = x and γ(1) = y. By the
definition of exponential map, we have Expx[γ′(0)] = y, i.e., γ′(0) = Exp−1x (y). In addition, (B.1) shows that f [γ(t)] is a
convex and differentiable function on [0, 1], which implies

f [γ(1)] ≥ f [γ(0)] +
d

dt
f [γ(t)]

∣∣∣∣
t=0

. (B.3)

By the definition of directional derivative, we have
d

dt
f [γ(t)]

∣∣∣∣
t=0

= ∇γ′(0)f(x) =
〈
grad f(x), γ′(0)

〉
x

=
〈
grad f(x),Exp−1x (y)

〉
x
. (B.4)

Thus, combining (B.3) and (B.4) we obtain (B.2).

It remains to show (B.1) assuming (B.2) holds. For any geodesic γ : [0, 1]→M, we will show that f [γ(t)] is convex on
[0, 1]. To see this, for any 0 ≤ t1 ≤ t2 ≤ 1, let x = γ(t1) and y = γ(t2). Note that we can reparametrize γ to obtain a new
geodesic γ̂ with γ̂(0) = x and γ̂(1) = y by letting

γ̂(t) = γ[t1 + (t2 − t1) · t]
for any t ∈ [0, 1]. Since γ̂ is a geodesic, by the definition of exponential map, we have

Exp−1x (y) = γ̂′(0) = (t2 − t1) · γ′(t1).
Thus, by (B.2), we have

f [γ(t2)] = f(y) ≥ f(x) +
〈

grad f(x),Exp−1x (y)
〉
x

= f [γ(t1)] +
〈
grad f [γ(t1)], (t2 − t1) · γ′(t1)

〉
γ(t1)

= f [γ(t1)] + (t2 − t1) · d

dt
f [γ(t)]

∣∣∣∣
t=t1

,

which implies that f [γ(t)] is a convex function on [0, 1]. Thus, (B.1) holds and we conclude the proof of this lemma.

In the following, we extend the concepts of strong convexity and smoothness to manifold optimizaiton.

Definition B.7 (Geodesic strong convexity and smoothness). For any µ > 0, a differentiable function f : M→ R is called
geodesically µ-strongly convex if

f(y) ≥ f(x) +
〈
grad f(x),Exp−1x (y)

〉
x

+ µ/2 · d2(x, y),
where d is the distance function induced by the Riemannian metric. Moreover, f is said to be geodesically L-smooth if
grad f is L-Lipschitz continuous. That is, for any x, y ∈M, we have〈

grad f(x)− Γxy [grad f(y)], grad f(x)− Γxy [grad f(y)]
〉
x
≤ L2 · d2(x, y), (B.5)

where Γxy : TyM→ TxM is the parallel transport from the tangent space at y to that at x.

Note that we apply the parallel transport in (B.5) to compare grad f(x) and grad f(y), which belong to two different tangent
spaces. In the following, we introduce the notion of gradient dominated function.

Definition B.8 (Gradient dominance). Let µ > 0 and f : M→ R be a differentiable function with f∗ = minx∈M f(x).
Then f is µ-gradient dominated if

2µ · [f(x)− f∗] ≤
〈
grad f(x), grad f(x)

〉
x
, ∀x ∈M. (B.6)

In the following lemma, we show that, similar to functions in the Euclidean space, grad f being Lipschitz smooth implies
that f can be upper bounded by the distance function. More importantly, we show that, gradient dominance is implied by
geodesically strong convexity and thus is a weaker condition.

Lemma B.9. If f :M→ R is geodesically µ-strongly convex, then f is also µ-gradient dominated. In addition, if f has
L-Lipschitz continuous gradient, then, we have

f(y) ≤ f(x) +
〈

grad f(x),Exp−1x (y)
〉
x

+ L/2 · d2(x, y), ∀x, y ∈M. (B.7)

Proof. For the first part, let f be a geodesically µ-strongly convex function. Since (M, g) is a geodesic space, we have
d2(x, y) = 〈Exp−1x (y),Exp−1x (y)〉x. Thus, by direct computation, we have

f(y) ≥ f(x) +
〈
grad f(x),Exp−1x (y)

〉
x

+ µ/2 ·
〈
Exp−1x (y),Exp−1x (y)

〉
x

= f(x) + µ/2 ·
〈

Exp−1x (y) + 1/µ · grad f(x),Exp−1x (y) + 1/µ · grad f(x)
〉
x

− 1/(2µ) ·
〈
grad f(x), grad f(x)

〉
x

≥ f(x)− 1/(2µ) ·
〈
grad f(x), grad f(x)

〉
x
. (B.8)
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Setting y = x∗ such that f(x∗) = f∗ in (B.8), we establish (B.6).

For the second part of Lemma B.9, for any x, y ∈ M, let γ be the unique geodesic satisfying γ(0) = x and γ(1) = y.
Then we have Exp−1x (y) = γ′(0). Moreover, for any t ∈ [0, 1], note that γ′(t) ∈ Tγ(t)M. By the definition of the parallel
transport, we have Γxγ(t)γ

′(t) = γ′(0) = Exp−1x (y). Thus, by (B.4) it holds that

f(y)− f(x)−
〈
grad f(x),Exp−1x (y)

〉
x

= f [γ(1)]− f [γ(0)]− d

dt
f [γ(t)]

∣∣∣∣
t=0

=

∫ 1

0

{〈
grad f [γ(t)], γ′(t)

〉
γ(t)
−
〈
grad f(x), γ′(0)

〉
x

}
dt

=

∫ 1

0

(〈
Γxγ(t)

{
grad f [γ(t)]

}
− grad f(x),Exp−1x (y)

〉
x

)
dt, (B.9)

where in the last equality we transport the tangent vectors to TxM. Besides, by (B.5) and Cauchy-Schwarz inequality, for
any z ∈M, we have∣∣〈grad f(x)− Γxz [grad f(z)],Exp−1x (y)

〉
x

∣∣
≤
{〈

grad f(x)− Γxz [grad f(z)], grad f(x)− Γxz [grad f(z)]
〉
x

}1/2 · [〈Exp−1x (y),Exp−1x (y)
〉
x

]1/2
≤ L · d(x, y) · d(z, x). (B.10)

Finally, combining (B.9) and (B.10), we have

f(y)− f(x)−
〈
grad f(x),Exp−1x (y)

〉
x
≤ L ·

∫ 1

0

d(x, y) · d[γ(t), x] dt = L/2 · d2(x, y),

where the last equality follows from the fact that d[γ(t), x] = d[γ(t), γ(0)] = t · d(x, y). Therefore, we establish (B.7) and
conclude the proof of Lemma B.9.

C. Auxiliary Results
In this section, we collect a set of supportive proofs and concrete examples to characterize gradient descent over Wasserstein
spaces by pushing particles in Euclidean spaces and to illustrate the feasibility of the variational form. First, we show that
the Riemannain gradient in Wasserstein spaces can be expressed in the functional gradient in vector variable spaces.

C.1. Proof of Proposition 3.1

Proof. We start from the definition of directional derivative to introduce the link between Riemannain gradients and
derivatives w.r.t. `2-norm. For any s ∈ TµM and any µ ∈ M with corresponding density p, suppose γ : [0, 1] → M
represents a curve satisfying γ(0) = p and γ′(0) = s. Then, the directional derivative of F gives ( Definition B.4 )

d

dt
F
[
γ(t)

] ∣∣∣∣
t=0

=
〈
gradF (µ), s

〉
µ
. (C.1)

Furthermore, by the chain rule of functional gradient of F with respect to the `2-Euclidean structure, the directional
derivative at p in the direction of s can be expressed as

d

dt
F
[
γ(t)

] ∣∣∣∣
t=0

=

∫
X

δF

δp
(x) · s(x) dx. (C.2)

On the other hand, let u : X → R be the unique solution to elliptic equation
−div

[
p(x) · (∇u)(x)

]
= s(x), ∀x ∈ X , (C.3)

where div is the divergence operator on X . Thus, plugging (C.2) into (C.3) we have
d

dt
F
[
γ(t)

] ∣∣∣∣
t=0

= −
∫
X

δF

δp
(x) · div

[
p(x) · (∇u)(x)

]
dx (C.4)

= −
∫
X

{
div

[
p(x) · δF

δp
(x) · (∇u)(x)

]
−
〈
∇
(
δF

δp

)
(x), (∇u)(x)

〉
· p(x)

}
dx,

where the second equation follows from integration by parts and the property of the divergence operator that
div(f · v) = 〈∇f, v〉+ f · div(v)

holds for any scalar function f and any vector field v. It is well known that given some regularity condition, one can show
that the first term on the right-hand side of (C.4) vanishes. For example, when X is a convex compact region with periodic
boundary condition, this is implied by the divergence theorem (Rudin, 1976). Therefore, again combining (C.1) and (C.4)
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we obtain that 〈
gradF (µ), s

〉
µ

=

∫
X

〈
∇
(
δF

δp

)
(x), (∇u)(x)

〉
· p(x) dx. (C.5)

Meanwhile we rewrite (C.3) in gradF (µ), i.e., another tangent vector at µ, with v : X → R as the solution to elliptic
equation

−div
[
p(x) · (∇v)(x)

]
= [gradF (µ)](x), ∀x ∈ X .

Since both gradF (µ) and s lie in the same tangent space TµM, their inner product is characterized by the Riemannian
metric on (M,W2), that is, 〈

gradF (µ), s
〉
µ

=

∫
X

〈
(∇u)(x), (∇v)(x)

〉
· p(x) dx. (C.6)

Now combining (C.5) and (C.6) we have that∫
X

〈
∇
(
δF

δp

)
(x), (∇u)(x)

〉
· p(x) dx =

〈
gradF (p), s

〉
p

=

∫
X

〈
(∇u)(x), (∇v)(x)

〉
· p(x) dx (C.7)

holds for any s ∈ TµM. Since s is arbitrarily picked, (C.7) indicates that∇(δF/δp) = ∇v. To conclude, we have

gradF (µ) = −div (p∇v) = −div

[
p · ∇

(
δF

δp

)]
, (C.8)

which implies the desired result of (3.2).

In what follows, we turn to obtain the explicit form of δF/δp for F defined in (2.4), while writing F as a functional F (p)
in p. Following the definition of the functional derivative by limits with respect to the `2-Euclidean structure, for any
square-integrable function ϕ : X → R in F , we can write∫

X

δF

δp
(x) · ϕ(x) dx = lim

ε→0

1

ε
·
[
F (p+ ε · ϕ)− F (p)

]
. (C.9)

For simplicity of notations, we denote by f∗ε the optimal dual solution to the optimization problem

sup
f∈F

{∫
X
f(x) · [p(x) + ε · ϕ(x)] dx− F ∗(f)

}
(C.10)

for any ε sufficiently small. Then by setting f to f∗p in the definition of the variational form for F (p+ ε · ϕ), the difference
in (C.9) satisfies the following lower bound,

F (p+ ε · ϕ)− F (p)

≥
[∫
X
f∗p (x) · [p(x) + ε · ϕ(x)] dx− F ∗(f∗p )

]
−
[∫
X
f∗p (x) · p(x) dx− F ∗(f∗p )

]
= ε ·

∫
X
f∗p (x) · ϕ(x) dx. (C.11)

Meanwhile, we obtain an upper bound of F (p+ ε · ϕ)− F (p) by using f∗ε for both variational maximization objectives as
follows,

F (p+ ε · ϕ)− F (p)

≤
[∫
X
f∗ε (x) · [p(x) + ε · ϕ(x)] dx− F ∗(f∗ε )

]
−
[∫
X
f∗ε (x) · p(x) dx− F ∗(f∗ε )

]
= ε ·

∫
X
f∗ε (x) · ϕ(x) dx. (C.12)

Combining (C.11) and (C.12) with the sandwich theorem of limits (Stewart, 2008), we obtain that F (p+ ε ·ϕ)−F (p) tends
to zero as ε goes to zero. Nevertheless, to derive a characterization for the right hand side of (C.9), it remains to quantify
some distance measure between f∗p and f∗ε . Fortunately, since F ∗ is strongly convex, we are able to set a constant γ > 0
such that, for any two measurable functions f1 and f2, we have∫

X

[
∂F ∗

∂f1
(x)− ∂F ∗

∂f2
(x)

]
· [f1(x)− f2(x)] dx ≥ γ ·

∫
X
|f1(x)− f2(x)|2 dx. (C.13)

Moreover, since f∗p and f∗ε are maximizers of the optimization problems in (2.4) and (C.10), respectively, we observe that
∂F ∗/∂f∗p = p and ∂F ∗/∂f∗ε = p+ ε · φ. Hence, by applying Cauchy-Schwarz inequality to the left hand side of (C.13),
we have

γ ·
∫
X

(f∗ε − f∗p )2 dx ≤ ε ·
∫
X
ϕ · (f∗ε − f∗p ) dx ≤ ε ·

(∫
X
ϕ2 dx

)1/2

·
[∫
X

(f∗ε − f∗p )2 dx

]
, (C.14)
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which implies that ‖f∗ε − f∗p ‖`2 ≤ ε · ‖ϕ‖`2 and consequently f∗ε converges to f∗p as ε tends to zero. Then, the sandwich
theorem of limits can be applied to the whole right hand side of (C.9), by plugging (C.11) and (C.12) into (C.9), to obtain
that ∫

X

δF

δp
(x) · ϕ(x) dx = lim

ε→0

1

ε
·
[
F (p+ ε · ϕ)− F (p)

]
=

∫
X
f∗p (x) · ϕ(x) dx

holds for any ϕ ∈ F , which implies the result δF/δp = f∗p .

To conclude, by combining (3.2) for F defined in (2.4), we obtain the final explicit form of the Riemannian gradient
gradF = −div[p · ∇(f∗p )]. Therefore, the proof of this proposition is completed.

C.2. Proof of Proposition 3.2

Proof. According to the definition of exponential maps, to prove (3.3), it is sufficient to show the following results for a
curve γ : [0, 1/h)→M defined by setting γ(t) = [ExpX (t · ∇u)]]µ for all t ∈ [0, 1/h), where u ∈ F and h denotes the
Lipschitz constant of ∇u.

(i) γ(0) = µ.

(ii) γ′(0) = s.

(iii) γ(t) is a geodesic onM for t ∈ [0, 1/h).

Please note that γ(0) = id] µ = µ, where id : X → X is the identity mapping. First of all, we will adopt the following
lemma to demonstrate that γ(t) is a geodesic onM.

Lemma C.1. Suppose that X denotes Rd or a closed convex subset of Rd with periodic boundary conditions. Let
u : X → X be a twice continuously differentiable function over X with a h-Lipschitz continuous gradient ∇u : X → X .
Then, for any µ ∈M, a curve γ : [0, 1/h)→M defined by γ(t) = [ExpX (t · ∇u)]]µ is a geodesic onM.

Proof. We consider separately the two cases where (i) X is Rd or (ii) X denotes a subset of Rd with periodic boundary
condition. The former case is first considered, where γ(t) can be formulated as (C.18).

(i) X is Rd. For completeness, we first need to verify that γ according to the definition is indeed a curve inM, i.e., the
pushforward maps admit γ(t) ∈M for all t ∈ [0, 1/h). To proceed in this direction, we define a potential function

ϕt(x) = ‖x‖22/2 + t · u(x) (C.15)
for all t ∈ [0, 1/h). As a result, we have the corresponding vector field ∇ϕt = id +t · ∇u exactly induced by our
pushforward mapping in the definition, which indicates that γ(t) = [∇ϕt]]µ. Since ∇u is h-Lipschitz continuous, we
observe that ϕt is strongly convex for all t ∈ [0, 1/h). In addition, ϕt is also twice continuously differentiable as u possesses
continuous second-order derivative, which implies the Jacobian of ∇ϕt, i.e.,, ∇2ϕt is continuous and positive definite.
Therefore, we conclude that ∇ϕt : Rd → Rd is an invertible mapping. Thus, [∇ϕt]]µ still lies in the distribution family
which admits absolute continuity with respect to the Lebesgue measure and positive density everywhere. To summarize, it
has been shown that γ(t) ∈M for all t ∈ [0, 1/h).

It follows to prove that the curve γ onM is a geodesic. To show this, we apply the Brenier’s Theorem (see, for example,
Theorem 2.12 in (Villani, 2003)) to conclude that there exists a unique optimal transport plan between µ and γ(t), which
can be written as the gradient of a convex function ϕ. Meanwhile, the theorem further implies that ∇ϕ serves as the
unique gradient of some convex function such that γ(t) can be expressed as [∇ϕ]]p. Combining with the definition that
γ(t) = [∇ϕt]]µ for all t ∈ [0, 1/h), we assert that ∇ϕt represents the optimal transportation plan between p and γ(t).
With such useful characterization, we fix any t ∈ [0, 1/h) below and show that γ is a geodesic when confined to [0, t]. It is
observed that

∇ϕt = id +t · ∇u = [1− (t/t)] · id +(t/t) · ∇ϕt,
holds for any t ∈ [0, t], where ϕt is a strongly convex function. Hence, we can write γ(t) in terms of {[1− (t/t)] · id +(t/t) ·
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∇ϕt}]µ. To compute the Wasserstein distance of two points on the curve, for any 0 ≤ t1 < t2 ≤ t, we have
W2[γ(t1), γ(t2)]

=

[∫
X

∥∥∥{[1− (t1/t)]x+ (t1/t) · ∇ϕt(x)
}
−
{

[1− (t2/t)]x+ (t2/t) · ∇ϕt(x)
}∥∥∥2 dp(x)

]1/2
= (t2 − t1)/t ·

[∫
Rd

∥∥x−∇ϕt(x)
∥∥2 dp(x)

]1/2
= (t2 − t1)/t ·W2[µ, γ(t)], (C.16)

which implies that {γ(t)}t∈[0,t] is a reparametrized geodesic. Since t is arbitrarily chosen within [0, 1/h), it then holds that
γ(t) is a geodesic for 0 ≤ t < 1/h.

(ii) X denotes a subset of Rd with periodic boundary condition. We are left to prove the lemma for the case where X is a
closed convex subset of Rd with periodic boundary condition. In this case, any x ∈ X can be identified with an equivalence
class of Rd. Moreover, each probability measure µ ∈ P(X ) is unique identified with a periodic measure µ̄ ∈ P(Rd) such
that µ̄ coincides with µ on X . We say µ̄ is the periodic extension of µ. Since µ is absolutely continuous with respect to the
Lebesgue measure and admits positive density, so is µ̄. Moreover, u : X → R can also be extended as a periodic function on
Rd, and ϕt(x) = ‖x‖22/2 + t · u(x) is a strongly convex, twice continuously differentiable, and periodic function on Rd.
Then it can be shown that (id +t · ∇u)]µ̄ is the periodic extension of [ExpX (t · ∇u)]]µ (Carlen & Gangbo, 2003). Thus,
these two measures coincide on X , i.e.,

[ExpX (t · ∇u)]]µ = (id +t · ∇u)]µ̄
∣∣
X , (C.17)

where ·|X denotes the restriction to X . Note that we have shown that [∇φt]]µ̄ is absolutely continuous with respect to
the Lebesgue measure and has positive density. Thus, by restricting [∇φt]]µ̄ to X , (C.17) implies that γ(t) ∈ M for all
t ∈ [0, 1/h), i.e., γ is a curve onM.

Furthermore, to show that γ is a geodesic, we utilize the generalization of Brenier’s theorem to probability distributions over
a Riemannian manifold (Gigli, 2011). For any t ∈ [0, 1/h), since γ(t) ∈M, there exists a unique optimal transportation
plan Υ: X → X between µ and γ(t) such that γ(t) = Υ]µ. Moreover, Υ takes the form of Υ(x) = Expx[−∇ψ(x)] for
some ψ : X → R such that ‖x‖22/2 − ψ(x) is convex. Hence, due to the uniqueness and the fact that ∇u is h-Lipschitz,
ExpX (−t · ∇u) is the optimal transportation plan between µ and γ(t).

Similarly in what follows we fix any t ∈ [0, 1/H) and show that γ is a geodesic for t ∈ [0, t]. For any 0 ≤ t1 < t2 ≤ t,
following the derivations in (C.16) and combining (C.17), we have

W2[γ(t1), γ(t2)] = W2

{
[ExpX (t1 · ∇u)]]µ, [ExpX (t2 · ∇u)]]µ

}
= W2

{
(id +t1 · ∇u)]µ̄

∣∣
X , (id +t2 · ∇u)]µ̄

∣∣
X

}
= (t2 − t1)/t ·W2

{
µ̄
∣∣
X , (id +t2 · ∇u)]µ̄

∣∣
X

}
= (t2 − t1)/t ·W2[µ, γ(t)],

where the second and the last equality follows from (C.17). Thus, we obtain that {γ(t)}t∈[0,t] is a geodesic up to
reparametrization, which concludes the proof of Lemma C.1.

With the required Lemma in place, to finish the proof of Proposition 3.2, it remains to show that γ′(0) = s. Similar to the
proof of the above lemma, we distinguish the two cases where X is Rd and X is a closed convex subset of Rd with periodic
boundary condition. In the former case,

[ExpX (t · ∇u)]]µ = (id +t · ∇u)]µ, ∀t ∈ [0, 1/h). (C.18)
To simplify the notation, we denote Tt = id +t · ∇u, which is invertible for t ∈ [0, 1/h). By the definition of pushforward
measures, we have

γ(t)(x) =
[
(Tt)]µ

]
(x) = µ

[
T−1t (x)

]
·
∣∣∣∣ d

dx

[
T−1t (x)

]∣∣∣∣,
where the second equality follows from the change-of-variable formula and | d

dx [T−1t (x)]| is the determinant of the Jacobian.
Moreover, when t is sufficiently small, for any x ∈ X , Taylor expansion in t yields that T−1t (x) = x− t · (∇u)(x) + o(t),
which further implies that

γ(t)(x) = µ
[
x− t · (∇u)(x) + o(t)

]
·
∣∣Id − t · (∇2u)(x) + o(t)

∣∣
=
[
µ(x)− t ·

〈
(∇u)(x), (∇µ)(x)

〉
+ o(t)

]
·
{

1− t · Tr[(∇2u)(x)] + o(t)
}

= µ(x)− t ·
〈
(∇u)(x), (∇µ)(x)

〉
− t · Tr[(∇2u)(x)] · µ(x) + o(t). (C.19)
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where in the second equality we apply Taylor expansion to µ[x− t · (∇u)(x) + o(t)]. Moreover, since〈
(∇u)(x), (∇p)(x)

〉
+ Trace[(∇2u)(x)] · p(x) = div

[
p(x) · (∇u)(x)

]
,

by (C.19) we obtain that
γ(t)(x) = µ(x)− t · div

[
p(x) · (∇u)(x)

]
+ o(t),

which implies that γ′(0) = −div(p · ∇u) = s.

It remains to show γ′(0) = −div(p · ∇u) = s when X is a closed compact subset of Rd with periodic boundary condition.
As shown in the proof of Lemma C.1, p can be periodically extended to a measure µ̄ on Rn and that such an extension
is unique. Furthermore, the solution u to the elliptic equation −div(−p · ∇u) = s can also also be viewed as a periodic
function on Rd. Then it can be shown that (id +t · ∇u)]µ̄ is the periodic extension of [ExpX (t · ∇u)]]µ and that (C.17)
holds. Note that we have shown that γ̃(t) = (id +t · ∇u)]µ̄ satisfies that γ̃(0) = µ̄ and γ̃′(0) = s. Therefore, restricting to
X , we conclude that γ′(t) = s, which completes the proof of the proposition.

C.3. Examples for functionals with the variational form

The following example shows that if the entropy functional is f-divergence, the conjugate function F ∗ will be strongly
smooth when the link function ψ is strongly convex, with respect to `2-norm.

Example C.2. Let p, q be two density function over a compact domain X , then the f -divergence

Iψ(p, q) =

∫
X
p(x) · ψ

(
p(x)

q(x)

)
dx (C.20)

with a strongly convex and smooth function ψ admits the following variational forms (as functionals of p and q respectively),

Iψ(p, q) = Iψ,q(p) = sup
f∈Fp

{∫
X
f(x)p(x) dx− F ∗q (f)

}
, (C.21)

Iψ(p, q) = Iψ,p(q) = sup
f∈Fq

{∫
X
f(x)q(x) dx− F ∗p (f)

}
, (C.22)

where

F ∗q (f) =

∫
X
−(ψ∗)−1(−f(x))q(x) dx (C.23)

and

F ∗p (f) =

∫
ψ∗(f(x))p(x) dx (C.24)

are strongly convex and smooth functionals, Fp and Fq are the same set of all measurable functions on X . We denote by γ
its strong convexity parameter and by L the smoothness parameter.

Proof. Following (Nguyen et al., 2010), Fenchel convex duality (Rockafellar, 1970) ensures that we have Iψ(p, q) in the
form of the conjugate of ψ as:

Iψ(p, q) = sup
g

{∫
g(x)q(x) dx−

∫
ψ∗(g(x))p(x) dx

}
, (C.25)

where ψ∗ is a strongly convex and smooth function since the convexity and smoothness of ψ, and the superemum is taken
over all measurable function g : X → R. Hence by replacing g with f formally we obtain (C.22).

Moreover, by letting f(x) = −ψ∗(g(x)), we have

Iψ(p, q) = sup
f

{∫
f(x)p(x) dx−

∫
−(ψ∗)−1(−f(x))q(x) dx

}
. (C.26)

By setting F ∗(f) =
∫
−(ψ∗)−1(−f(x))q(x) dx, which can be verified to be strongly convex and smooth w.r.t. function f ,

we show the desired result in (C.21).

Please note that by convex duality and optimality condition in Lemma 1 of (Nguyen et al., 2010), the function class Fp (Fq)
over which the superemum is taken can be restricted to a smaller one F̃ as long as F̃ contains the differential ∂Iψ(p, q)/∂p

(∂Iψ(p, q)/∂q), In this sense, Assumption 4.1 for a smaller function class F̃ is feasible since it is natural for the smooth
(with continuous first-order gradient and Hessian) function ∂Iψ(p, q)/∂q over a compact domain X to possess a closed,
bounded and equicontinuous gradient mapping by Weierstrass theorem (Cotter, 1990).
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D. Proof of Convergence of Variational Form Maximization
We first illustrate our reverse Poincaré inequality with more details. To this end, we restate Lemma D.1 and prove with a
compact domain X as follows.

D.1. Approximation function class and reverse Poincaré inequality

Recall that F̃ is the function class of NNs, defined in (3.5). We first state the following inequality for gradient error bounds.

Lemma D.1 (Reverse Poincaré inequality). Under Assumption 4.1, for every f ∈ F̃ and p ≥ 1, there exists a constant K̃
such that ∫

X
‖∇f‖pdµ ≤ K̃

∫
X
|f |pdµ, (D.1)

where X is a compact set, and µ is a nonnegative measure on X .

To prove this lemma, we present and prove a more general lemma as below.

Lemma D.2 (Generalization of Lemma D.1). We consider a function class F̃ that is ∇F̃ is closed, bounded, and equicon-
tinuous. More precisely,

(a) “∇F̃ is bounded” means that there exists a positive constant M <∞ such that ‖∇f(x)‖ ≤M for each x ∈ X and
each f ∈ F̃ .

(b) “∇F̃ is equicontinuous” implies that for every ε > 0 there exists δ > 0 (which depends only on ε) such that for any
x, y ∈ X with the metric d(·, ·), if d(x, y) < δ, then it follows that

‖∇f(x)−∇f(y)‖ < ε, ∀f ∈ F̃ . (D.2)

Then we have for every p ≥ 1, there exists a constant K̃ such that∫
X
‖∇f(x)‖pdµ ≤ K̃

∫
X
|f(x)|pdµ, (D.3)

for any f ∈ F̃ , where X is a compact subset of a metric space, µ is a nonnegative measure over X .

Proof of Lemma D.2

Proof. With the notations of Lpµ(X ) norm, (D.3) can be rewritten as

‖∇f‖Lpµ(X ) ≤ K̃‖f‖Lpµ(X ), (D.4)
On the other hand, Poincaré inequality (See, e.g., Chapter 5 of (Evans, 2010)) claims that there exists some constant K ′

such that

‖f − 1

µ(X )

∫
X
fdµ‖Lpµ(X ) ≤ K ′‖∇f‖Lpµ(X ), (D.5)

We define an equivalence relation ∼ on Lpµ(X ) such that for any f, g ∈ Lpµ(X ), we have

f ∼ g if and only if f − g = C (D.6)
for some constant C. Then we denote by L̃pµ(X ) = Lpµ(X )/ ∼ the new function space consisting of equivalence classes f̃
’s of locally summable functions f : X → R. Consequently, we define the norm in L̃pµ(X ) as ‖f̃‖L̃pµ(X ) = ‖f‖Lpµ(X ), and

a new gradient operator ∇̃ : L̃pµ(X )→ L̃pµ(X ) such that for any f̃ ∈ L̃pµ(X ), ∇̃ acts as ∇̃f̃ = ∇f . Moreover, the inverse of
∇̃ exists, denoted by ∇̃−1.

Therefore, (D.5) implies that the inverse gradient operator ∇̃−1 is continuous. Our goal is reduced to showing that the
gradient operator is continuous, i.e., the preimage of open sets in L̃pµ(X ) under such mapping are also open in L̃pµ(X ).

According to (D.3) and the properties of continuous mappings between topological spaces (See, e.g., Appendix of (Lee,
2001)), for every compact subset X ⊆ L̃pµ(X ), the image (preimage of ∇̃) under ∇̃−1, i.e., ∇̃−1(X), is compact in L̃pµ(X ),
and closed in L̃pµ(X ) since L̃pµ(X ) is a Hausdorff space. On the other hand, by Arzela-Ascoli Theorem the set L̃pµ(X )∩∇F̃
is compact. Then for every closed subset Y ⊆ L̃pµ(X )∩∇F̃ , we have Y is also a compact subset, of which the image under
∇̃−1 is closed in L̃pµ(X ). According to the definition the continuity of ∇̃ is shown, hence (D.3) is proved.
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Remark D.3. Specifically, we remark that the conditions above which enable the gradient bound (Lemma D.1) to hold keep
consistent with all the other restrictions on function class F̃ , and can be easily realized by a general class of neural networks.

First, the small function class F̃ is designed to solve VFM defined in (2.4) numerically efficiently and meanwhile to provide
a decent characterization of Riemannian gradient estimation error bounds. We also observe that to achieve an equivalence
between pushing particles and the exponential map, functions in this smaller class are also required to admit uniformly
h-Lipschitz continuous gradients. Fortunately, the equicontinuity of∇F̃ can be implied by h-Lipschitzness of∇f ∈ ∇F̃ .
In other words, the overall assumptions of function class F̃ for our whole analysis are concluded as below.

Assumption D.4 (Overall assumptions of approximation function class). The class of functions F̃ over a compact domain
X satisfies the condition that∇F̃ is closed, bounded, and for each f ∈ F̃ ,∇f is h-Lipschitz continuous with h > 0.

Then we check that our neural network parametrized function class is indeed qualified for such F̃ . Recall that without loss
of generality, we parametrize a function f : X → R, i.e., the decision variable for VFM, by the class of two-layer neural
networks below, which is denoted as NN(β;w), with each member function as

fβ(x) =
1√
w

w∑
i=1

bi · σ([β]>i x), (D.7)

where x ∈ X denotes the input data point, w gives the width of the neural network, bi ∈ {−1, 1} for i ∈ [w] denotes the
output weights, σ(·) is a smooth activation function, and β = ([β]>1 , . . . , [β]>w)> ∈ Rwd with [β]i ∈ Rd (i ∈ [w]) are the
overall input weights. For initialization, we consider the random strategy

bi
i.i.d.∼ Unif({−1, 1}), [β(0)]i

i.i.d.∼ N(0, Id/(wd)), for all i ∈ [w]. (D.8)
Note that for technical analysis reason, we restrict the input weights β to an bounded `2-ball centered at the initializer β(0)
by an additional projection step ΠB0(rf )(β̄) = argminβ∈B0(rf )

{‖β − β̄‖2}, where B0(rf ) = {β : ‖β − β(0)‖2 ≤ rf}.
During the training process, we only backpropagate w.r.t. β, while keeping bi ∼ (i ∈ [w]) intact at the initialization, which
accounts for the feasibility to omit the dependency on bi (i ∈ [w]) in NN(β;w) and fβ(x) in what follows. Therefore, we
can directly observe that each fβ ∈ NN(β;w) is closed, and the `2-norm of the gradient ∇βfβ is always bounded over a
compact domain X . Furthermore, we require the Hessian for fβ w.r.t. parameter β ∈ Rwd to possess a bounded norm,
which is easy to check for neural networks. It turns out that the qualified function class encompasses a wide range of normal
neural networks without “sharp points” or “high frequency oscillation” as functions.

D.2. Statistical error of approximating the solution of VFM

In what follows, we proceed to derive the gradient error bound. According to (D.3) of Lemma D.1, we turn to bound the
approximation error of a two-layer neural network for the following variational form maximization (VFM) problem defined
in (3.4),

max
β∈Rwd

{ 1

N

N∑
i=1

fβ(xi)− F ∗(fβ)
}
. (D.9)

Note that for notational simplicity and applicability of results to both players, in this section we omit the references to µ and
ν. To emphasize we fixed the bi’s throughout the training, we write fβ(x) while omitting the dependency on bi’s. We first
show that the overparameterization of the NN, fβ parametrized by β, guarantees that it bahaves as its local linearization at
the random initialization β(0). To this end, we define

f0β(x) =
1√
w

w∑
i=1

bi · σ′([β(0)]>i x) · [β]>i x, (D.10)

whereby the linear structure of f0β(x) indicates

f0β(x) = 〈∇βf0β(x), β〉. (D.11)
We write β(s) as the value of the parameter β at the s-th iteration of VFM (Algorithm 3). For the simplicity of notations, we
denote by

Gβ(s)(x) = −∇βfβ(s)(x) +∇βF ∗(fβ(s)) (D.12)
the stochastic gradient vector. Similarly, we also define

G0
β(s)(x) = −∇βf0β(s)(x) +∇βF ∗(f0β(s)). (D.13)
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Furthermore, let µ be the probability measure corresponding to input data distribution for the NNs. We denote by

Ḡβ(s) = Eµ
[
Gβ(s)(x)

]
=

∫
X
Gβ(s)(x)dµ(x) (D.14)

the population mean of the stochastic gradient vector at the s-th iteration, and by Ḡ0
β(s) its localization version. Without loss

of generality, we assume ‖x‖ ≤ 1 for the data.

We first present the following assumption for bounding the variance of the stochastic gradient vector Gβ(s)(x), which casts
the analysis of global convergence into tracking the mean of the gradient vector. We denote by Einit[·] the expectation over
the random initialization for neural network parameter β, and Eµ[·] the expectation over the input x ∈ X conditioned on the
random initialization.

Assumption D.5 (Variance of the Stochastic Update Vector). For any s ≤ t, there exists a constantC2
G = O(r2f ) independent

of s such that
Einit‖Gβ(s) − Ḡβ(s)‖2L2

µ(X ) ≤ C
2
G. (D.15)

The following theorem provides the final characterization of the gradient error. Recall that in Algorithm 3, t is the number
of iterations as well as the sample size denoted by N for either Nµ or Nν , w is the width of neural networks, and rf is the
projection radius.

Furthermore, to formalize the smoothness of the activation function, we have the following assumption.

Assumption D.6 (Smooth Activation Function). There exits an absolute constant h > 0 such that for any x1, x2 ∈ Rd we
have

|σ′(x1)− σ′(x2)| ≤ h‖x1 − x2‖. (D.16)
For technical consideration, we also assume σ(0) = 0.

The following lemma quantifies the variance by the introduced function f0β and the generic function fβ in terms of rf and w.

Lemma D.7. Under Assumption D.5 and D.6, given β ∈ B0(rf ), we have
Einit‖fβ − f0β‖2L2

µ(X ) = O(w−1r4f ). (D.17)

Proof. By the definition of fβ and f0β , we have∣∣fβ(x)− f0β(x)
∣∣

≤ 1√
w

∣∣∣∣ w∑
i=1

(
σ([β]>i x)− σ′([β(0)]>i x)[β]>i x

)∣∣∣∣
≤ 1√

w

w∑
i=1

∣∣∣∣σ([β]>i x)− σ′([β(0)]>i x)[β]>i x

∣∣∣∣
≤ 1√

w

w∑
i=1

∣∣∣∣σ([β(0)]>i x)− σ′([β(0)]>i x)[β(0)]>i x

∣∣∣∣
+

1√
w

w∑
i=1

∣∣∣∣(∫ 1

0

(
σ′
(
(1− η)[β(0)]>i x+ η[β]>i x

)
− σ′

(
[β(0)]>i x

))
· dη
)
· x>

(
[β]i − [β(0)]i

)∣∣∣∣, (D.18)

where the last inequality holds by the Taylor expansion, the second last inequality follows from the triangle inequality, and
the second equality holds as |bi| = 1. The expectation of the first term on the right-hand side of (D.18) is bounded by

1√
w
Einit

w∑
i=1

∣∣∣∣σ([β(0)]>i x)− σ′([β(0)]>i x)[β(0)]>i x

∣∣∣∣ = O
(

1√
w
Einit

w∑
i=1

∣∣∣σ(0) +
(
[β(0)]>i x

)2∣∣∣)

≤ O
(

1√
w
Einit

w∑
i=1

‖[β(0)]i‖2
)

= O
(

1√
w

)
, (D.19)

where we use the Taylor expansion of σ at 0, the fact that σ(0) = 0, ‖x‖ ≤ 1, and (D.8).
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By squaring both sides of (D.18) and applying Assumption D.6 to the right-hand side of (D.18), we obtain

Einit,µ
∣∣fβ(x)− f0β(x)

∣∣2 = O
(

1

w

)
+O

(( h√
w
Einit

w∑
i=1

‖[β]i − [β(0)]i‖2
)2)

= O
(( h√

w

w∑
i=1

‖[β]i − [β(0)]i‖2
)2)

(D.20)

= O
(
h

w
‖β − β(0)‖4

)
= O

(
r4f
w

)
. (D.21)

Hence, it follows that
Einit‖fβ − f0β‖2L2

µ(X ) = O(w−1r4f ), (D.22)
which concludes the proof.

The following lemma characterizes the difference between the expected gradients of the the original neural network
approximator and the locally linearized one.

Lemma D.8. For any 0 ≤ s ≤ t, we have the following linear approximation error at each iteration:
Einit‖Ḡβ(s) − Ḡ0

β(s)‖
2
2 = O(w−1r4f + w−1r2f ). (D.23)

Proof. By the definition of Ḡβ(s) and Ḡ0
β(s), we have

Einit‖Ḡβ(s) − Ḡ0
β(s)‖

2
2

≤ Einit,µ‖ − ∇βfβ(s)(x) +∇βF ∗(fβ(s)) +∇βf0β(s)(x)−∇βF ∗(f0β(s))|
2
2

≤ 2Einit,µ‖∇βfβ(s)(x)−∇βf0β(s)(x)‖22︸ ︷︷ ︸
(i)

+2Einit,µ‖∇βF ∗(fβ(s))−∇βF ∗(f0β(s))‖
2
2︸ ︷︷ ︸

(ii)

. (D.24)

In what follows, we upper bound term (i) and (ii) respectively.

Upper Bounding (i): Recall that

∇βfβ(x) = 1/
√
w ·
(
b1 · σ′([β]>1 x) · x>, . . . , bw · σ′([β]>wx) · x>

)>
,

and
∇βf0β(x) = 1/

√
w ·
(
b1 · σ′([β(0)]>1 x) · x>, . . . , bw · σ′([β(0)]>wx) · x>

)>
.

We have

‖∇βfβ(s)(x)−∇βf0β(s)(x)‖22 =
1

w

w∑
i=1

(
σ′([β]>i x)− σ′([β(0)]>i x)

)2 · ‖x‖2
≤ h2

w

w∑
i=1

‖[β]i − [β(0)]i‖2

=
h2r2f
w

. (D.25)

Here the last inequality follows from the condition ‖x‖2 ≤ 1, which is also used to derive (D.18). By taking expectation on
(D.25) we obtain

Einit,µ‖∇βfβ(s)(x)−∇βf0β(s)(x)‖22 = O(w−1r2f ). (D.26)
Therefore, we have bounded term (i) in (D.24).

Upper Bounding (ii): By the L-smoothness of the dual functional F ∗, it follows that
Einit,µ‖∇βF ∗(fβ(s))−∇βF ∗(f0β(s))‖

2
2

≤ Einit,µ‖fβ(x)− f0β(x)‖22, (D.27)
where the right-hand side of (D.27) is exactly the left-hand side of (D.17). Hence by Lemma D.7, the term (ii) is bounded
by O(w−1r4f ). Combining (i) and (ii) concludes the proof for Lemma D.8.
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In what follows, with the explicit linearized learning target f0β∗ , we are able to characterize the global convergence of
Algorithm 3 by the difference between output estimated function and f0β∗ .

Lemma D.9. Suppose that t > 64 iterations of Algorithm 1 are run, and the stepsize is set to be η = t−1/2. Then, under
Assumption D.5 and D.6 we have

Einit‖fβ̂ − f
0
β∗‖2L2

µ(X ) = O(r2f t
−1/2 + w−1/2r3f + w−1r4f ), (D.28)

where β∗ is the approximate stationary point such that
β∗ = ΠB0(rf )(β

∗ − ηḠ0
β∗), (D.29)

and β̂ = 1/t ·
∑t−1
s=0 β(s).

Proof. First we bound the progress of the one-step update. By the convexity of B0(rf ) and the approximate stationary
condition (D.29), for each s < t we have

Eµ[‖β(s+ 1)− β∗‖22|β(s)]

= Eµ
[∥∥ΠB0(rf )

(
β(s)− ηGβ(s)

)
−ΠB0(rf )

(
β∗ − ηḠ0

β∗
)∥∥2

2
|β(s)

]
≤ Eµ

[∥∥(β(s)− β∗)− η
(
Gβ(s) − Ḡ0

β∗
)∥∥2

2
|β(s)

]
= ‖β(s)− β∗‖22 − 2η〈β(s)− β∗, Ḡβ(s) − Ḡ0

β∗〉+ η2‖Gβ(s) − Ḡ0
β∗‖2L2

µ(X ). (D.30)
Then our target is reduced to upper bound the last two terms above. For the inner product term, by applying Hölder’s
inequality we have

〈β(s)− β∗, Ḡβ(s) − Ḡ0
β∗〉 = 〈β(s)− β∗, Ḡβ(s) − Ḡ0

β(s)〉+ 〈β(s)− β∗, Ḡsβ(s) − Ḡ
0
β∗〉

≥ −‖Ḡβ(s) − Ḡ0
β(s)‖2 · ‖β(s)− β∗‖2 + 〈β(s)− β∗, Ḡ0

β(s) − Ḡ
0
β∗〉

(a)

≥ −rf‖Ḡβ(s) − Ḡ0
β(s)‖2 + 〈β(s)− β∗, Ḡ0

β(s) − Ḡ
0
β∗〉, (D.31)

where (a) uses the fact that ‖β(s)− β∗‖2 ≤ rf . For the rest inner product term in (D.31), by plugging in the definition of
stochastic gradient vectors we obtain

〈β(s)− β∗, Ḡ0
β(s) − Ḡ

0
β∗〉 = Eµ

〈
β(s)− β∗,∇βf0β∗(x)−∇βf0β(s)(x)

〉
+ Eµ

〈
β(s)− β∗,∇βF ∗

(
f0β(s)

)
−∇βF ∗

(
f0β∗
)〉

= Eµ
〈
β(s)− β∗,∇βF ∗

(
f0β(s)

)
−∇βF ∗

(
f0β∗
)〉
, (D.32)

where we use the fact that ∇βf0β(x) is independent of the value of β. We proceed to derive the lower bound by the explicit
functional gradient form,

Eµ
〈
∇βF

(
f0β(s)

)
−∇βF

(
f0β∗
)
, β(s)− β∗

〉
= Eµ

〈(
δF ∗

δf

(
f0β(s)

)
− δF ∗

δf

(
f0β∗
))
· ∇βf0β , β(s)− β∗

〉
= Eµ

〈
δF ∗

δf

(
f0β(s)

)
− δF ∗

δf

(
f0β∗
)
, f0β(s) − f

0
β∗

〉
(b)

≥ γ‖f0β(s) − f
0
β∗‖2L2

µ(X ), (D.33)
where (b) is due to the γ-strong convexity of functional F ∗.

On the other hand, the third norm term in (D.30) is estimated using the Cauchy-Schwarz inequality as follows,
‖Gβ(s) − Ḡ0

β∗‖2L2
µ(X ) ≤ 2‖Gβ(s) − Ḡβ(s)‖2L2

µ(X ) + 2‖Ḡβ(s) − Ḡ0
β∗‖2L2

µ(X )

≤ 2Einit‖Gβ(s) − Ḡβ(s)‖2L2
µ(X ) + 4‖Ḡβ(s) − Ḡ0

β(s)‖
2
2 + 4‖Ḡ0

β(s) − Ḡ
0
β∗‖22 (D.34)

where the first term herein is upper bounded by the variance of Gβ(s) in (D.15) of Assumption D.5, and the second one is
controlled by lemma D.7. Thus it suffices to upper bound the last term, i.e., the squared difference between the expected
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gradient of time-step s and the optimal one of linearization approximation. We have
‖Ḡ0

β(s) − Ḡ
0
β∗‖22 = ‖∇βEf0β∗ −∇βEf0β(s) +∇βF ∗(f0β(s))−∇βF

∗(f0β∗)‖22
≤ 2‖∇βEf0β∗ −∇βEf0β(s)‖

2
2 + 2‖∇βF ∗(f0β(s))−∇βF

∗(f0β∗)‖22
≤ 2‖f0β∗ − f0β(s)‖

2
L2
µ(X ) + 2L‖f0β∗ − f0β(s)‖

2
L2
µ(X ) (D.35)

= 2(1 + L)‖f0β∗ − f0β(s)‖
2
L2
µ(X ), (D.36)

where (D.35) follows from the L-smoothness of the entropy dual functional by Example C.2. To conclude, we have
Eµ[‖β(s+ 1)− β∗‖22 | β(s)]

≤ ‖β(s)− β∗‖22 + 2ηrf‖Ḡβ(s) − Ḡ0
β(s)‖

2
2

+ 2η2Einit‖Gβ(s) − Ḡβ(s)‖2L2
µ(X ) + 4η2‖Ḡβ(s) − Ḡ0

β(s)‖
2
2

+ 2η(4η(1 + L)− γ)‖f0β(s) − f
0
β∗‖2L2

µ(X ). (D.37)

By rearranging (D.37), we have
‖fβ(s) − f0β∗‖2L2

µ(X ) ≤ 2‖fβ(s) − f0β(s)‖
2
L2
µ(X ) + 2‖f0β(s) − f

0
β∗‖2L2

µ(X )

≤
(
γη − 4η2(L+ 1)

)−1(‖β(s)− β∗‖22 − Eµ[‖β(s+ 1)− β∗‖22 | β(s)]

+ 2C2
Gη

2 +O
(
w−1/2r3f + w−1r4f

))
, (D.38)

where the second inequality follows from lemma D.7 and D.8, as well as the fact η < γ/8(L + 1) resulted from
t > 64(L + 1)2/γ2 and η = t−1/2. We proceed to take total expectation on both sides of (D.38) and telescoping for
s+ 1 ∈ [t] (t ≥ 1) to obtain

Einit‖fβ̂ − f
0
β∗‖2L2

µ(X ) = Einit,µ
[(
fβ̂(x)− f0β∗(x)

)2]
≤ 1

t

t−1∑
s=0

Einit,µ
[(
fβ(s)(x)− f0β∗(x)

)2]
≤ t−1 ·

(
γη − 4η2(L+ 1)

)−1 · (Einit
[(
‖β(0)− β∗‖22

]
+ 2tC2

Gη
2

+O
(
w−1/2r3f + w−1r4f

))
. (D.39)

By plugging the conditions on t and η, we have

t−1 ·
(
γη − 4η2(L+ 1)

)−1
= t−1/2 · 1

γ − 4η(L+ 1)

η<γ/8(L+1)

≤ t−1/2 · 1

γ − γ/2

=
2

γ
√
t
, (D.40)

Then, we obtain the following bound,
Einit‖fβ̂ − f

0
β∗‖2L2

µ(X )

≤ 2

γ
√
t

(
Einit[‖β(0)− β∗‖22] + 2C2

G

)
+O(r

5/2
f w−1/4 + r3fw

−1/2) (D.41)

≤
2(r2f + 2C2

G)

γ
√
t

+O(r
5/2
f w−1/4 + r3fw

−1/2)

= O
(
r2f t
−1/2 + w−1/2r3f + w−1r4f

)
. (D.42)

Hence we complete the proof.

Now it is straightforward to prove the main theorem for VFM with neural network parametrized function class as follows.
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D.3. Gradient Error of Neural Networks

Theorem D.10. Under Assumption 4.1, D.5 and D.6, within the k-th iteration of Algorithm 2, the gradient error ε̄k defined
in (4.1) satisfies

ε̄k = ε̄k(N) = O
(
ε̄(N)

)
= O

(
K̃

(
r2f
N1/2

+
r3f
w1/2

+
r4f
w

))
. (D.43)

Here ε̄(N) is defined as

ε̄(N) = K̃

(
r2f
N1/2

+
r3f
w1/2

+
r4f
w

)
. (D.44)

We remark that the order of the gradient error is independent of iteration k and can be decomposed into the generalization
error of O(r2f/N

1/2) for SGD over the neural tangent kernel and the error of O(r3f/w
1/2), O(r4f/w) for approximating

the neural network by a linear function. In particular, the overall gradient errors decay to zero at the rate of 1/
√
N with a

sufficiently large width w of the neural network.

Proof. By Jensen’s inequality with respect to squared L2
µ-norm, we have

Einit‖fβ̂ − fβ∗‖
2
L2
µ(X )

≤ 2Einit‖fβ̂ − f
0
β∗‖2L2

µ(X ) + 2Einit‖f0β∗ − fβ∗‖2L2
µ(X ). (D.45)

On one hand, by Lemma D.9 the first term above can be bounded withO(r2f t
−1/2 +w−1/2r3f +w−1r4f ). On the other hand,

the second term in (D.45) is bounded by O(r4fw
−1) through setting β = β∗ in Lemma D.7. To conclude, the total bound

for (D.45) turns out to be O(r2f t
−1/2 + w−1/2r3f + w−1r4f ), which completes the proof for the first part of the theorem.

To verify (D.43), we invoke Lemma D.1 by setting f to f̃∗k − f̂∗k with all possible iteration k for both players and p to 2,
combining with (4.1) to obtain for any k ∈ N, we have

ε̄k = EX0

∫
X

∥∥∇f̃∗k (x)−∇f̂∗k (x)
∥∥2
2

dρ̃k

(D.3)
≤ K̃EX0

∫
X

∣∣f̃∗k (x)− f̂∗k (x)
∣∣2
2

dρ̃k

= K̃EX0Einit‖fβ̂ − fβ∗‖
2
L2
ρ̃k

(X )

= O

(
K̃

(
r2f
N1/2

+
r3f
w1/2

+
r4f
w

))
, (D.46)

where the last equality follows from (D.45) and the measure ρ̃k accounts for either distribution iterates at some iteration k,
µ̃k or ν̃k in the paper. Therefore, we conclude the whole proof of the theorem for the statistical errors of VFM steps.

E. Proof of Convergence for Distributional Game Optimization
In this section, we layout the complete proof of the convergence rate of the particle-based infinite-dimensional game
optimization, for which some intermediate lemmas are also listed below. We define ν∗(µ) ∈ IF (µ) , argmaxν F (µ, ν) for
simplicity. Also note that according to the definition in Algorithm 1, we have νk+1 = νKν (µk) as the last iterate of the inner
loop for the k-th outer loop. Moreover, in the formal description of VTIG in Algorithm 1, we adopt sets of discrete particles
to represent the underlying distribution iterates being updated, where Xν

l (µ̃k) denotes the set of particles for player ν at the
l-th iteration given µ̃k as the current distribution iterate for player µ. Recall that we use notations µ̃k, ν̃l(µ̃k) to indicate the
distribution iterate derived from constructed transportation maps {Tµk }k∈[Kµ] and {T νkl}k∈[Kµ],l∈[Kν ] defined in (3.9).

For simplicity we define Hµ(ν) , −F (µ, ν). The following proposition identifies thatM(X ) is well defined.
Proposition E.1. The manifoldM(X ) is compact, that is, there exists R > 0 such that for any µ1, µ2 ∈M(X ) we have
W2(µ1, µ2) ≤ 2R.

Proof. Since X is defined as a compact domain, according to the topological properties in Theorem 6.16 of (Villani, 2008),
the manifoldM(X ) is also compact. Also, as the underlying variable space X is bounded, the Wasserstein distance defined
overM(X ) over X is bounded, by setting 2R = supµ1,µ2∈M(Xµ)W2(µ1, µ2) we arrive at the conclusion.



Infinite-Dimensional Optimization for Zero-Sum Games via Variational Transport

Before proceeding, we first state the following additional definitions and lemmas.

Definition E.2. We say that a function G :M(X ) → R satisfies the Quadratic Grouth (QG) condition w.r.t. W2 metric
with constant γ > 0 if

G(µ)−G(µ∗) ≥ γ

2
W 2

2 (µ, µ∗), ∀µ ∈M(X ), (E.1)
where µ∗ is the minimizer of the function. Note that if function G is PL with constant ξ, then G satisfies the QG condition
with constant γ = 4ξ (Karimi et al., 2016).

The next lemma demonstrates the stability of ν∗(µ) controlled by the variation of µ.

Lemma E.3. Given that IF (µ) is closed, then for any µ1, µ2 ∈M and ν1 ∈ IF (µ1), there exists a ν2 ∈ IF (µ2) such that

W2(ν1, ν2) ≤ L0

2ξ
W2(µ1, µ2). (E.2)

Proof. By Assumption 2.2 and the PL condition of F , we have
2ξ
(
G(µ2)− F (µ2, ν1)

)
≤ ‖ gradFµ2

(ν1)‖2ν1
= d2

(
gradFµ2

(ν1), gradFµ1
(ν1)

)
≤ L2

0W2
2 (µ1, µ2). (E.3)

Here the equality holds by gradFµ1
(ν1) = 0 a.e. ν1. Moreover, by the QG property of Hµ(ν) it follows that there exists a

ν2 ∈ IF (µ2) such that

W2
2 (ν1, ν2) ≤ 1

2ξ
·
(
G(µ2)− F (µ2, ν1)

)
≤ L2

0

4ξ2
W2

2 (µ1, µ2), (E.4)

where we use (E.3) for the second inequality. This concludes the result.

At the two-player game optimization scale (VFM not involved), considering the interaction of the two players, our algorithm
runs multiple gradient ascent steps in the inner loop to estimate the inner maximization value functional defined as
G(µ) , maxν∈M(Xν) F (µ, ν), of which the Riemannian gradient w.r.t. µ at the optimum ν∗(µ) is adopted to estimate the
Riemannian gradient of G(µ). Inspired by this, we rewrite (2.3) as minµ∈M(Xµ)G(µ) and observe that the overall VTIG
behaves as a gradient descent-like algorithm over the inner maximization value functional G. Hence we can make use of
nonconvex optimization techniques to analyze the overall convergence properties of such zero-sum two-player games.

It is not straightforward to see gradG(µ) = gradµ F (µ, ν∗(µ)) as there may be multiple ν∗(µ)’s under Assumption 2.3,
breaking the condition of Danskin’s theorem (Bernhard & Rapaport, 1995) even for finite cases. Fortunately, we show in the
following with Riemannian PL condition, we can still prove a Danskin-type result. In a nutshell, our proposed algorithm is a
gradient descent-like algorithm on the inner maximization value functional. To proceed with two-player games of a higher
hierarchy for Problem (2.3), we follow the assumptions of smoothness in different aspect of F and provide a Danskin-type
lemma in the following section.

E.1. Danskin-type Lemma

Lemma E.4. Under Assumption 2.2 and 2.3, we have
gradG(µ) = gradµ F

(
µ, ν∗(µ)

)
a.e. µ, ∀ ν∗(µ) ∈ argmin

ν∈M(Xν)
Hµ(ν).

In addition, G is L̃1-Lipschitz and L̃-smooth with L̃1 = Lµ + LνL0/(2ξ) and L̃ = L1 + L2
0/(2ξ).

Proof. By the definition of the directional derivative and gradient in Section B.2, we take the curve γ, which starts with
γ(0) = µ ∈M(X ) and γ′(0) = u ∈ TµM(X ), as the geodesic. Then by Taylor series expansion at γ(0), we have for any
scalar τ

G[γ(τ)]−G(µ) = F (γ(τ), ν∗(γ(τ)))− F (µ, ν∗(µ))

=
〈
gradµ F (µ, ν∗(µ)), τu

〉
µ

+
〈

gradν F (µ, ν∗(µ)),Exp−1ν∗(µ)
(
ν∗
(
γ(τ)

))〉
ν∗(µ)

+O(τ2)

=
〈
gradµ F (µ, ν∗(µ)), τu

〉
µ

+O(τ2). (E.5)
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Here the last equality follows from the optimal condition on ν: gradν F (µ, ν∗(µ)) = 0, and the additional higher order
term in τ integrates terms inW2(ν∗(γ(τ)), ν∗(µ)) since by Lemma E.3 there exists ν∗(γ(τ)) ∈ IF (γ(τ)) such that

W2(ν∗(γ(τ)), ν∗(µ)) ≤ L0

2ξ
τ‖u‖. (E.6)

In the meanwhile, by the limit form of directional derivative we have
〈gradG(µ), u〉µ = ∇uG(µ)

=
d

dτ
G [γ(τ)]

∣∣
t=0

= lim
τ→0+

G[γ(τ)]−G[γ(0)]

τ

=
〈
gradµ F (µ, ν∗(µ)), u

〉
µ
. (E.7)

Due to the arbitrarity of u, we conclude that gradG(µ) = gradµ F (µ, ν∗(µ)) a.e. µ.

In what follows we show the Lipschitzness and smoothness of G. For µ1, µ2 ∈ M(X ), let ν∗(µ1) ∈ IF (µ1) and
ν∗(µ2) ∈ argminν∈IF (µ2)W

2
2 (ν, ν∗(µ1)), then

|G(µ1)−G(µ2)|
= |F (µ1, ν

∗(µ1))− F (µ2, ν
∗(µ1)) + F (µ2, ν

∗(µ1))− F (µ2, ν
∗(µ2))|

≤ LµW2(µ1, µ2) + LνW2(ν∗(µ1), ν∗(µ2))

≤
(
Lµ +

LνL0

2ξ

)
W2(µ1, µ2), (E.8)

where the last inequality holds by Lemma E.3. Hence by setting L̃1 = Lµ + LνL0/(2ξ) we obtain that function G is
L̃1-Lipschitz. In addition, for the difference between gradients we have

d (gradG(µ1), gradG(µ2)) = d
(
gradµ F (µ1, ν

∗(µ1)), gradµ F (µ2, ν
∗(µ2))

)
≤ d

(
gradµ F (µ1, ν

∗(µ1)), gradµ F (µ2, ν
∗(µ1))

)
+ d

(
gradµ F (µ2, ν

∗(µ1)), gradµ F (µ2, ν
∗(µ2))

)
≤ L̃1W2(µ1, µ2) + L0W2(ν∗(µ1), ν∗(µ2))

≤
(
L̃1 +

L2
0

2ξ

)
W2(µ1, µ2), (E.9)

where the second inequality holds by Assumption 2.2 and the last inequality still follows from Lemma E.3. Therefore, by
setting L̃ = L̃1 + L2

0/(2ξ) we conclude the proof.

E.2. Convergence Results for Player ν

Considering the nested loops in Algorithm 2, we first present the following linear convergence rate with statistical
errors for player ν. Recall that F̃ defined in (3.5) is the function class over which we solve (2.4). We define ν∗(µ) =
argmaxν∈M F (µ, ν) given µ ∈M. Also, we write ν̃l(µ̃k) as ν̃l given any fixed k ≥ 0 for notational simplicity.

Lemma E.5. Let F admit the variational form under Assumptions 2.2 and 2.3. Suppose that F̃ satisfies Assumption 4.1.
Also, we set the stepsize ην ∈

(
0,min{1/(4Lν), 1/h}

)
. Then, for any l ≥ 1 and a fixed µ ∈M, we have

F
(
µ, ν∗(µ)

)
− E

[
F (µ, ν̃l)

]
≤ σl ·

[
F (µ, ν∗(µ))− F (µ, ν̃0)

]
+ ηνσl

l−1∑
m=0

ε̄mσ
−(m+1), (E.10)

where σ = 1 − ξην/2 ∈ (0, 1) is the contraction coefficient, the expectation is taken w.r.t. the initial samples Xν
0 =

{xνi,0}i∈[Nν ], and ε̄m (m ∈ [l − 1]) is the (expected) gradient error at timestep m defined in (4.1).

Proof. Our proof is based on quantifying some contraction between errors of adjacent iterates. Recall that we denote
Hµ(ν) = −F (µ, ν). For fixed µ ∈ M(X ), we write Hµ(ν) as H(ν) below. To begin with, by Proposition 3.2, we can
equivalently write the iteration of VTIG for ν̃l as

ν̃l+1 = Expν̃l
{
−ην · [gradH(ν̃l) + δl]

}
, δl = −div

[
ν̃l · (∇f̃∗l −∇f∗l )

]
. (E.11)

Notice that δl ∈ Tν̃lM is a tangent vector at point ν̃l. Moreover, by Assumption 2.2 functional H is L2-smooth. Combining
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this property with (E.11), we have
H(ν̃l+1) ≤ H(ν̃l)− ην ·

〈
gradH(ν̃l), gradH(ν̃l)

〉
ν̃l
− ην

〈
gradH(ν̃l), δl

〉
ν̃l

+
(ην)2L2

2

〈
gradH(ν̃l) + δl, gradH(ν̃l) + δl

〉
ν̃l

= H(ν̃l)−
(
ην − (ην)2L2

2

)
·
〈
gradH(ν̃l), gradH(ν̃l)

〉
ν̃l

+
(
ην + (ην)2 · L2

)
·
∣∣〈gradH(ν̃l), δl

〉
ν̃l

∣∣+
(ην)2L2

2

〈
δl, δl

〉
ν̃l
, (E.12)

where 〈·, ·〉ν̃l is the Riemannain metric ofM at ν̃l. By basic inequality 2ab ≤ a2 + b2, we have∣∣〈gradH(ν̃l), δl
〉
ν̃l

∣∣ ≤ 1

2

〈
gradH(ν̃l), gradH(ν̃l)

〉
ν̃l

+
1

2

〈
δl, δl

〉
ν̃l
. (E.13)

Thus, plugging (E.13) into (E.12), we obtain

H(ν̃l+1) ≤ H(ν̃l)−
ην(1− 2ηνL2)

2
·
〈
gradH(ν̃l), gradH(ν̃l)

〉
ν̃l

+
ην(1 + 2ηνL2)

2
·
〈
δl, δl

〉
ν̃l
. (E.14)

Furthermore, since H is ξ-gradient dominated under Assumption 2.3, based on (E.14) we have

H(ν̃l+1) ≤ H(ν̃l)− ξην · (1− 2ηνL2) ·
[
H(ν̃l)− inf

ν∈M(X )
H(ν)

]
+
ην(1 + 2ηνL2)

2
·
〈
δl, δl

〉
ν̃l
. (E.15)

As we have introduced in Section 2.1 and 4.1, 〈δl, δl〉ν̃l is equal to εl defined in (4.1). Thus, (E.15) can be equivalently
written as

H(ν̃l+1)− inf
ν∈M(X )

H(ν) ≤ [1− ξην · (1− 2ηνL2)] ·
[
H(ν̃l)− inf

ν∈M(X )
H(ν)

]
+
ην(1 + 2ηνL2)

2
· ε̄l. (E.16)

Hence, we have derived the performance of a single step of variational transport with regard to the objective value.

Moreover, recall that we set the stepsize for player ν to be a constant ην ≤ 1/(4L2), which guarantees
1− ξ · ην · (1− 2ηνL2) ≤ 1− ην · ξ/2 ∈ (0, 1), (1 + 2ηνL2)/2 ≤ 1. (E.17)

For simplicity of the notation, we define σ = 1− ην · ξ/2. Thus, by (E.17), it follows that
H(ν̃l+1)− inf

ν∈M(X )
H(ν) ≤ σ ·

[
H(ν̃l)− inf

ν∈M(X )
H(ν)

]
+ ηνεl. (E.18)

By multiplying σ−(l+1) to both sides of (E.18), we obtain
σ−(l+1) ·

[
F (ν̃l+1)− inf

ν∈M(X )
H(ν)

]
≤ σ−l ·

[
H(ν̃l)− inf

ν∈M(X )
H(ν)

]
+ σ−(l+1) · ηνεl. (E.19)

Therefore, {σ−l · [H(ν̃l) − infν∈M(X )H(ν)]}l≥0 admits a telescoping sequence and thus by summing (E.19) over l it
holds that

σ−l ·
[
H(ν̃l)− inf

ν∈M(X )
H(ν)

]
≤

l−1∑
m=0

σ−(m+1) · ην · εm +
[
H(ν̃0)− inf

ν∈M(X )
H(ν)

]
, (E.20)

which is equivalent to

σ−l ·
[
F (µ, ν̃∗(µ))− F (µ, ν̃l)

]
≤

l−1∑
m=0

σ−(m+1) · ην · εm +
[
F (µ, ν̃∗(µ))− F (µ, ν̃0)

]
(E.21)

for all l ≥ 1. Thus, we obtain the desired result by taking expectation with respect to the intial particle sampling Xν
0 for

player ν.

Lemma E.5 characterizes the expected error of the inner loop upper bounded by the sum of an optimization error decaying at
a linear rate and a statistical error term of the orderO(N

−1/2
ν ) according to §4.1. Moreover, (E.10) justifies that the particle-

based functional gradient descent in W2-space for a Riemannian PL objective behaves similarly as in finite-dimensional
spaces (Sanjabi et al., 2018b) up to a scaled statistical error.

By Integrating the convergence result for one-player variational transport processes, together with the properties of relation
between the inner loop and outer loop as well as objective landscape, we are now ready to demonstrate the proof of main
theorem for infinite-dimensional distributional game optimizaiton.
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E.3. Proof of Theorem 4.2

Theorem E.6 (Convergence of Infinite-Dimensional PL Games, Formal). Suppose that the objective F admits a variational
form under Assumption 2.2 and 2.3. Also, the function class F̃ satisfies Assumption 4.1. We set the stepsizes to be
ηµ ∈

[
0,min{1/h, 2/L̃}

)
and ην ∈

(
0,min{1/(4Lν), 1/h}

)
, where L̃ = L1 + L2

0/ξ. Then, for any θ > 0, if

Kν ≥ Kν(θ) = O
(

log
(1− σ)M̂H − ην ε̄ν

θ

/
log

1

σ

)
, where M̂H = max

{
MH ,

ην ε̄ν + 1

1− σ

}
, (E.22)

there exists an iteration k ∈ [Kµ] such that

EX0

[
J 2
µ (µ̃k, ν̃k+1)

]
= O

(
2

L̂

(
∆ +

√
ε̄µ + 2L̃R+ LG

)2 · (2R(∆ +
√
ε̄µ) +

MG

Kµ

))
, (E.23)

EX0

[
Jν(µ̃k, ν̃k+1)

]
= O

(L2∆

L0

)
. (E.24)

Here ∆ = L0

√
ην ε̄ν + θ

2ξ(1− σ)
, L̂ = 1/ηµ − L̃/2, R = supµ1,µ2∈MW2(µ1, µ2)/2, and the gradient error terms ε̄µ and ε̄ν are

characterized in (4.2).

Proof of Theorem 4.2 . We write ĝradµF (µ̃k, ν̃k+1) = −div
(
µ̃k · ∇f̃∗k ), where ∇f̃∗k is the solution to the VFM problem

in timestep k, as the gradient estimate w.r.t. µ at timestep k. By the particle pushing step in Algorithm 2 we have〈
ĝradµF (µ̃k, ν̃k+1),Exp−1µ̃k (µ̃k+1)

〉
µ̃k

= − 1

ηµ
〈
Exp−1µ̃k (µ̃k+1),Exp−1µ̃k (µ̃k+1)

〉
µ̃k
. (E.25)

It follows that 〈
gradµ F (µ̃k, ν

∗(µ̃k)),Exp−1µ̃k (µ̃k+1)
〉
µ̃k

=
〈
gradµ F (µ̃k, ν̃

∗(µ̃k))− ĝradµF (µ̃k, ν̃k+1),Exp−1µ̃k (µ̃k+1)
〉
µ̃k

− 1

ηµ
〈
Exp−1µ̃k (µ̃k+1),Exp−1µ̃k (µ̃k+1)

〉
µ̃k

=
〈
∆k − δk,Exp−1µ̃k (µ̃k+1)

〉
µ̃k
− 1

ηµ
〈
Exp−1µ̃k (µ̃k+1),Exp−1µ̃k (µ̃k+1)

〉
µ̃k
, (E.26)

where ν∗(µ̃k) ∈ IF (µ̃k) and

δk = − div
[
µ̃k · (∇f̃∗k −∇f∗k )

]
, (E.27)

∆k = gradG(µ̃k)− gradµ F (µ̃k, ν̃k+1). (E.28)
Hence, we have ∆k − δk = gradµ F (µ̃k, ν

∗(µ̃k)) − ĝradµF (µ̃k, ν̃k+1) = gradG(µ̃k) − ĝradµF (µ̃k, ν̃k+1) for any
k ∈ [Kµ]. Note that the error term ∆k is incurred by using ν̃k+1 to approximate ν∗(µ̃k).

By Assumption 4.1, ∇f is h-Lipschitz continuous on X for all f ∈ F̃ . Since ηµ < 1/h, by Proposition 3.2, we can
equivalently write one timestep of the outer loop in VTIG as

µ̃k+1 = Expµ̃k
{
−ηµk · ĝradµF (µ̃k, ν̃k+1)

}
= Expµ̃k

{
−ηµk · [gradµ F (µ̃k, ν̃k+1) + δk]

}
(E.29)

= Expµ̃k
{
−ηµ · [gradG(µ̃k)−∆k + δk]

}
, (E.30)

Note that δk ∈ Tµ̃kM is a tangent vector at point µ̃k. Since G is L̃-smooth under Lemma E.4, combining (E.26) and (E.29),
we obtain

G(µ̃k+1) ≤ G(µ̃k) +
〈
gradµ F (µ̃k, ν

∗(µ̃k)),Exp−1µ̃k (µ̃k+1)
〉
µ̃k

+
L̃

2

〈
Exp−1µ̃k (µ̃k+1),Exp−1µ̃k (µ̃k+1)

〉
µ̃k

(E.31)

(E.26)
= G(µ̃k) +

〈
∆k − δk,Exp−1µ̃k (µ̃k+1)

〉
µ̃k
−

(
1

ηµ
− L̃

2

)〈
Exp−1µ̃k (µ̃k+1),Exp−1µ̃k (µ̃k+1)

〉
µ̃k
.
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Since ηµ < 2/L̃, a lower bound of ‖Exp−1µ̃k (µ̃k+1)‖ is needed. On the other hand, we have for any µ ∈M,〈
ĝradµF (µ̃k, ν̃k+1),Exp−1µ̃k (µ)

〉
µ̃k
≥ −‖ĝradµF (µ̃k, ν̃k+1)‖µ̃k · ‖Exp−1µ̃k (µ)‖µ

≥ −‖ĝradµF (µ̃k, ν̃k+1)‖µ̃k
(
‖Exp−1µ̃k+1

(µ)‖µ + ‖Exp−1µ̃k (µ̃k+1)‖µ̃k+1

)
≥ − 1

ηµ
‖Exp−1µ̃k (µ̃k+1)‖µ̃k+1

‖Exp−1µ̃k+1
(µ)‖µ

−
(
‖∆k‖+ ‖δk‖+ ‖ gradG(µ̃k)‖

)
‖Exp−1µ̃k (µ̃k+1)‖µ̃k+1

, (E.32)
where the first inequality follows from Cauchy-Schwartz inequality (E.32) is implied by triangle inequality w.r.t. Riemannian
metric, and the last one follows from (E.25) and (E.26). Then by definitions ‖ gradG(µ̃k)‖ ≤ Gmax and ‖Exp−1µ̃k (µ̃k+1)‖ ≤
2R. Additionally, by Theorem E.5 using fixed Eεm = ε̄ν with expectation w.r.t. initial sampled particles, we have

E‖∆k‖ ≤ L0EW2(ν̃k+1, ν
∗(µ̃k))

≤ L0

√
σKν [F (µ̃k, ν∗(µ̃k))− F (µ̃k, ν̃0)] + ην ε̄ν · 1−σ

Kν

1−σ
2ξ

≤ L0

√
ην ε̄ν + θ

2ξ(1− σ)
, (E.33)

where the second inequality holds by applying Definition E.2 to the gradient dominated functionHµ(ν) = −F (µ, ν) together
with Theorem E.5, and the last inequality follows from the choice of Kν in the theorem. Then by ‖ gradG(µ̃k)‖ ≤ Gmax

and ‖Exp−1µ̃k (µ̃k+1)‖ ≤ 2R, combining (E.32) we obtain

−Jµ(µ̃k, ν̃k+1) ≥ − (‖∆k‖+ ‖δk‖+Gmax + 2R/ηµ) ‖Exp−1µ̃k (µ̃k+1)‖, (E.34)
that is,

‖Exp−1µ̃k (µ̃k+1)‖ ≥ Jµ(µ̃k, ν̃k+1)

‖∆k‖+ ‖δk‖+Gmax + 2L̃R
. (E.35)

Plugging (E.35) into (E.31), we obtain the following progress made by pushing µ-particles in the outer loop.

G(µk+1) ≤ G(µ̃k) +
〈
∆k − δk,Exp−1µ̃k (µ̃k+1)

〉
µ̃k
−

(1/ηµ − L̃/2)J 2
µ (µ̃k, ν̃k+1)(

‖∆k‖+ ‖δk‖+Gmax + 2L̃R
)2

≤ G(µ̃k) + 2R (‖∆k‖+ ‖δk‖)−
(1/ηµ − L̃/2)J 2

µ (µ̃k, ν̃k+1)(
‖∆k‖+ ‖δk‖+Gmax + 2L̃R

)2 , (E.36)

where the last inequality holds by applying the Cauchy-Schwartz inequality to the inner product term
〈
∆k −

δk,Exp−1µ̃k (µ̃k+1)
〉
µ̃k

and µ̃k’s lie in a ball of radius R.

Therefore, we have a telescoping sequence and by summing (E.36) over k for the whole loop while taking expection with
respect to initial sampled particles on both sides we get

1

Kµ

Kµ∑
k=0

EJ 2
µ (µ̃k, ν̃k+1)

≤ 2

1/ηµ − L̃/2
E
(

2L̃+Gmax + ‖∆k‖+ ‖δk‖
)2
·
(

2R (‖∆k‖+ ‖δk‖) +
G(µ̃0)−G(µ̃Kµ)

Kµ

)

≤ O

(
2

1/ηµ − L̃/2

(
∆ +

√
ε̄µ + 2L̃R+Gmax

)2
·
(

2R(∆ +
√
ε̄µ) +

MG

Kµ

))
, (E.37)

(E.38)
where the last inequality follows from (E.33). Here

∆ = L0

√
ην ε̄ν + θ

2ξ(1− σ)
, (E.39)
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and

√
ε̄k = O


√√√√K̃

(
r2f
N1/2

+
r3f
w1/2

+
r4f
w

) .

Therefore, by the Pigeonhole principle there must exists k ∈ [Kµ] such that

EJ 2
µ (µ̃k, ν̃k+1) = O

(
2

1/ηµ − L̃/2

(
∆ +

√
ε̄µ + 2L̃R+Gmax

)2
·
(

2R(∆ +
√
ε̄µ) +

MG

Kµ

))
.

Hence we complete the proof of the first term in (4.4) of Theorem 4.2.

For the second result on Jν(µk, νk+1), we follow the similar technique by the Cauchy-Schwartz inequality and smoothnes
of function F with respect to ν in Assumption 2.2 to obtain

EJν(µ̃k, ν̃k+1) ≤ E‖ gradν F (µ̃k, ν̃k+1)‖ν̃k+1

= Ed
(

gradν F (µ̃k, ν
∗(µ̃k)), gradν F (µ̃k, ν̃k+1)

)
≤ L2EW2

(
ν̃k+1, ν̃

∗(µk)
)

(E.1)
≤ L2

√
F (µ̃k, ν̃∗(µk))− EF (µ̃k, ν̃k+1)

2ξ

≤ L2

√
σKν [F (µ̃k, ν∗(µ̃k))− F (µ̃k, ν̃0)] + ην ε̄ν · 1−σ

Kν

1−σ
2ξ

≤ L2

L0
·∆, (E.40)

where (E.1) relates Wasserstein distance to the objective difference, the last but one inequality follows from Theorem E.5,
the last inequality holds by the definition of ∆ in (E.39) and the same choice of Kµ in the proof for a desired Jµ(µ̃k, ν̃k+1)
(k ∈ [Kµ]). Therefore, the second term in (4.4) of Theorem 4.2 is proved.

To sum up, we conclude the proof of our main theorem and the sketch of proof ideas.

We additionally remark that for our convergence rate to the approximate IFNE coincides with the finite-dimensional case
regardless of the order of numbers of particles adopted. More clearly, we resort to writing our result in terms of the θ-IFNE
for some θ > 0. First, we can alternatively claim that there exists k ∈ [Kµ] such that the following equivalent result holds,

EJµ(µ̃k, ν̃k+1) = O

((
∆ +

√
ε̄µ + 2L̃R+Gmax

)
·
√

2

1/ηµ − L̃/2

(
2R(∆ +

√
ε̄µ) +

MG

Kµ

))
, (E.41)

EJν(µ̃k, ν̃k+1) = O
(
L2

L0
·∆
)
. (E.42)

By fixing Nµ and Nν for any θ > 0, we observe that when we set Kµ ≥ Kµ(θ) = O(θ−2) and Kν ≥ Kν(θ) =
O(2 log(θ−1)) simultaneously, we are able to obtain a θ-IFNE in expectation since

EJµ(µ̃k, ν̃k+1) ≤ θ, (E.43)
EJν(µ̃k, ν̃k+1) ≤ θ, (E.44)

which is exactly the order in (Sanjabi et al., 2018b), implying the PL-condition and smoothness in infinite-dimensional
settings work similarly as in finite-dimensional problems.

On the other hand, when the order of Nµ and Nν dominate, we can compute that when Nµ ≥ Nµ(θ) = O(θ−4) and
Nν ≥ Nν(θ) = O(θ−4) for any θ > 0, we obtain the θ-IFNE in expectation. Such a result implies that we need more
particles than timesteps to guarantee a given precision of the solution. This also implies that the statistical error induced by
measure approximation in infinite-dimensional spaces is more prominent than the optimization error.

F. Proof of Convergence to the Minimax Value of Two-Sided PL Games
F.1. PL Condition on the Inner Maximization Functional

Lemma F.1. For a two-sided PL-game depicted by Assumption 4.3, the functional G(µ) = maxν∈M F (µ, ν) satisfies the
ξ1-PL condition.
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Proof. Since Fν(µ) = F (µ, ν) satisfies the ξ1-PL condition for any given ν ∈M(Xν), we have

2ξ1 ·
(
F (µ, ν∗(µ))− min

µ̃∈M(Xµ)
F
(
µ̃, ν∗(µ)

))
≤
〈
gradF (µ, ν∗(µ)), gradF (µ, ν∗(µ))

〉
µ

=
〈
gradG(µ), gradG(µ)

〉
µ
, (F.1)

where the last equality follows from Lemma E.4. On the other hand, we have by definition
min

µ̃∈M(Xµ)
F (µ̃, ν∗(µ)) ≤ min

µ̃∈M(Xµ)
max

ν∈M(Xν)
F (µ̃, ν) = min

µ∈M(Xµ)
G(µ). (F.2)

By plugging (F.2) into (F.1), we arrive at

2ξ1 ·
(
G(µ)− min

µ∈M(Xµ)
G(µ)

)
≤
〈
gradG(µ), gradG(µ)

〉
µ
, (F.3)

which implies that G(µ) satisfies ξ1-PL condition.

F.2. Proof of Theorem 4.4

Proof. The proof is based on Lemma E.5 while different from the proof of Theorem 4.2 by the fact that we are now able to
bound the norm of the Riemannian gradient of G(µ) from below. By the smoothness of G under Lemma E.4, we have

G(µ̃k+1) ≤ G(µ̃k) +
〈
gradµ F (µ̃k, ν

∗(µ̃k)),Exp−1µ̃k (µ̃k+1)
〉
µ̃k

+
L̃

2

〈
Exp−1µ̃k (µk+1),Exp−1µ̃k (µk+1)

〉
µ̃k

(F.4)

(E.29)
= G(µ̃k)− ηµ

〈
gradG(µ̃k), gradG(µ̃k)

〉
µ̃k
− ηµ

〈
gradG(µ̃k), δk −∆k

〉
µ̃k

+
L̃

2

〈
gradG(µ̃k)−∆k + δk, gradG(µ̃k)−∆k + δk

〉
µ̃k

≤ G(µ̃k)−

(
ηµ − (ηµ)2 · L̃

2

)
·
〈
gradG(µ̃k), gradG(µ̃k)

〉
µ̃k

+
(
ηµ + L̃(ηµ)2

) ∣∣〈gradG(µ̃k), δk −∆k

〉
µ̃k

∣∣+
(ηµ)2L̃

2

〈
δk −∆k, δk −∆k

〉
µ̃k
. (F.5)

Here δk = ĝradµF (µ̃k, ν̃k+1) − gradµ F (µ̃k, ν̃k+1) = −div
[
p̃k · (∇f̃∗k − ∇f∗k )

]
and ∆k = gradG(µ̃k) −

gradµ F (µ̃k, ν̃k+1) are defined in (E.27). Since
〈
·, ·
〉
µ̃k

serves as the Riemannian metric of M(Xµ) at µ̃k, then by
the Cauchy-Schwartz inequality we obtain

2
∣∣〈gradG(µ̃k), δk −∆k

〉
µ̃k

∣∣ ≤ 〈gradG(µ̃k), gradG(µ̃k)
〉
µ̃k

+
〈
δk −∆k, δk −∆k

〉
µ̃k

≤
〈
gradG(µ̃k), gradG(µ̃k)

〉
µ̃k

+ 2
〈
δk, δk

〉
µ̃k

+ 2
〈
∆k,∆k

〉
µ̃k
. (F.6)

Hence by plugging (F.6) into (F.4), we have

G(µ̃k+1) ≤ G(µ̃k) +
ηµ(2ηµL̃− 1)

2
·
〈
gradG(µ̃k), gradG(µ̃k)

〉
µ̃k

+ ηµ
(

1 + 2(ηµ)2L̃
)
·
(〈
δk, δk

〉
µ̃k

+
〈
∆k,∆k

〉
µ̃k

)
. (F.7)

Since ηµ ≤ 1/(2L̃), we require a lower bound on
〈
gradG(µ̃k), gradG(µ̃k)

〉
µ̃k

. Following from the ξ1-PL condition of G
in Lemma F.1, we can further obtain

G(µ̃k+1) ≤ G(µ̃k) + ξ1η
µ(2ηµL̃− 1) ·

(
G(µ̃k)− min

µ∈M(Xµ)
G(µ)

)
+ ηµ

(
1 + 2(ηµ)2L̃

)
·
(〈
δk, δk

〉
µ̃k

+
〈
∆k,∆k

〉
µ̃k

)
, (F.8)

which can be rewritten as

G(µ̃k+1)− min
µ∈M(Xµ)

G(µ) ≤ [1− ξ1ηµ(1− 2ηµL̃)] ·
(
G(µ̃k)− min

µ∈M(Xµ)
G(µ)

)
+ ηµ

(
1 + 2(ηµ)2L̃

)
·
(〈
δk, δk

〉
µ̃k

+
〈
∆k,∆k

〉
µ̃k

)
. (F.9)
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Now we invoke the upper bounds on ‖δk‖µ̃k in (D.43) and ‖∆k‖µ̃k in (E.33) to further develop a contraction for the value
of G at each timestep,

EG(µ̃k+1)− min
µ∈M(Xµ)

G(µ) ≤ [1− ξ1ηµ(1− 2ηµL̃)] ·
(
EG(µ̃k)− min

µ∈M(Xµ)
G(µ)

)
+ ηµ

(
1 + 2ηµL̃

)
·
(
E
〈
δk, δk

〉
µ̃k

+ ∆̃2
)
, (F.10)

where we define

∆̃2 = L2
0 ·
σKν ·MH + ην ε̄ν · 1−σ

Kν

1−σ
2ξ2

, (F.11)

with ξ2 as the parameter of PL condition for the inner-loop player, Kν as the number of timesteps for the inner-loop
player defined in Algorithm 1, and the expectation is taken with respect to the randomness of initial particles. Also, by
the definitions of L̃, ξ1, and ηµ ∈

(
0, 1/(4L̃)

)
, we have 1 − ξ1ηµ(1 − 2ηµL̃) < 1 − ξ1ηµ/2 < 1. For simplicity, let

σ̃ = 1− ξ1ηµ/2, by multiplying σ̃−(k+1) to (F.10) we have
σ̃−(k+1) · [EG(µ̃k+1)− min

µ∈M(Xµ)
G(µ)] ≤ σ̃−k · [EG(µ̃k)− min

µ∈M(Xµ)
G(µ)]

+ σ̃−(k+1) · ηµ ·
(
E
〈
δk, δk

〉
µ̃k

+ L2
0 ·

ην ε̄ν + θ

2ξ(1− σ)

)
, (F.12)

Note that E〈δk, δk〉µ̃k = ε̄k, which is bounded in (D.43).. Then by summing up over the telescoping sequence {σ̃−k ·
[EG(µ̃k)−minµ∈M(Xµ)G(µ)]}k≥0 in (F.12), we obtain the following optimization error bound at iteration k for k ≥ 1,

EG(µ̃k)− min
µ∈M(Xµ)

G(µ) ≤ σ̃k · [G(µ̃0)− min
µ∈M(Xµ)

G(µ)]

+

k−1∑
m=0

σ̃k−(m+1) · ηµ ·
(
ε̄m + L2

0 ·
ην ε̄ν + θ

2ξ(1− σ)

)
(D.43)
≤ σ̃k · [G(µ̃0)− min

µ∈M(Xµ)
G(µ)]

+
1− σ̃k

1− σ̃
· ηµ ·

(
ε̄µ + L2

0 ·
ην ε̄ν + θ

2ξ(1− σ)

)
, (F.13)

where

ε̄µ = O

(
K̃

(
r2f

N
1/2
µ

+
r3f
w1/2

+
r4f
w

))
,

∆̃2 = L2
0 ·
σKν ·MH + ην ε̄ν · 1−σ

Kν

1−σ
2ξ2

. (F.14)

By the definition of G, we have minµ∈M(X )G(µ) = F (µ∗, ν∗). As a result, (F.13) gives the error bound in objective value
F at iteration k. Hence we conclude the proof of Theorem 4.4.


