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Figure 7: Learning rate dependence of the generalization performance. Nonlinear feedforward neural networks of different
depths are trained on a simple task with varying learning rates. We see that, when the learning rate is vanishingly small
so that the continuous-time approximation is good, the continuous neural tangent kernel (NTK) provides an accurate
characterization of the result of training. However, as the learning rate becomes large, the learning deviates significantly and
qualitatively from the NTK prediction, sometimes for the better, sometimes for the worse. Reproduced from Mori and Ueda
(2020b). For other interesting experiments concerning large learning rate, see Lewkowycz et al. (2020).

A. Example of Failure of Continuous-Time Theory
See Figure 7 for an example on the generalization performance with different learning rates. For small learning rates, the
continuous-time neural tangent kernel (NTK) theory successfully predicts the correct behavior. For a slightly larger λ, the
prediction given by continuous theory deviates significantly from the experiments.

B. Effect of Overparametrization
One particular topic that is of interest in the recent deep learning literature is the role of overparametrization (Neyshabur
et al., 2018b). Modern neural networks, defying the traditional way of thinking in statistical learning, often perform better
when the number of parameters is larger than the number of data points. We comment that our formalism can also be
extended straightforwardly to deal with this. In the overparametrized regime, many directions in the loss landscape are
degenerate, and have zero curvature; this means that the Hessian matrix in a local minimum is positive semi-definite with
many zero eigenvalues. In this situation, the difference between artificially added noise that is usually full-rank and a
low-rank noise that is, e.g., proportional to the Hessian becomes important: on the one hand, when the Hessian is low rank,
a full-rank noise causes an unconstrained Brownian motion in the null space, the model will thus diverge and one cannot
expect to obtain good generalization here; on the other hand, a noise that is proportional to the Hessian only diffuses in the
subspace spanned by the Hessian and will not diverge; this is exactly the result obtained in Hodgkinson and Mahoney (2020)
using the formalism of iterated random functions. This implies that the generalization performance induced by minibatch
sampling is better than that of an artificially injected Gaussian noise, which has been observed frequently in experiments
(Hoffer et al., 2017; Zhu et al., 2019).
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C. Additional Experiments for Non-Gaussian Noise
See Figure 8. We show that, for example, the theory agrees with the cases when the noise obeys the Student’s t-distribution
(heavy tail) and the χ2 distribution (asymmetric); the setting is the same as in the 1d experiments in section 5. Also, this
result remains valid even if C = C(Σ) is dependent on the Σ itself.

Figure 8: Comparison of the theoretical prediction with different kinds of noise. We choose the Student’s t-distribution
with ν = 4 as an example of heavy-tail noise with a tail exponent 5, and a centered χ2 distribution (by subtracting the mean
from a standard χ2 distribution with degree of freedom 3). The agreement is excellent, independent of the underlying noise
distribution.

D. Additional Experiments for SGD with Momentum

(a) White noise (b) Minibatch noise

Figure 9: Comparison between the continuous-time theory and the discrete-time theory in the presence of momentum. (a)
White noise with λk = 1. In this case, the fluctuation does not diverge when µ < 1. However, the error of the continuous-time
approximation does not diminish even if µ gets large. (b) Minibatch noise with λk = 2. Even in the presence of minibatch
noise, the proposed theory agrees much better with the experiments.

In Figure 9(a), we plot the model fluctuation with white noise with λk = 1; this is the case in which there is no divergence
for µ < 1. Here, we see that the continuous-time theory predicts an error that does not diminish even if µ is close to 1. In
Figure 9(b), we show the experiments with minibatch noise for the same linear regression task adopted in section 5. The
predicted discrete-time result agrees better than the continuous-time one. On the other hand, the agreement becomes worse
as the fluctuation in w becomes large. This again suggests the limitation of the commonly used approximation of minibatch
noise, i.e., C ∼H(w) =K.
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E. Proofs and Additional Theoretical Considerations
E.1. Proofs in Section 4

E.1.1. PROOF OF THEOREMS 1, 2 AND 3

Because Theorems 1 and 2 can be derived from Theorem 3 by assuming a scalar λ and µ = 0 accordingly, we first prove
Theorem 3.

Proof. We assume that the stationary distributions of both m and w exist and limt→∞E[wtw
T
t ] ∶= Σ. The goal is to find Σ.

We assume that w0 and m0 are sampled from the stationary distribution. This is valid as long as we are interesting in the
asymptotic behavior of wt. By definition,

Σ ∶= E[wtw
T
t ] = E[(wt−1 − µΛmt−1 −ΛKwt−1 −Ληt−1)(wt−1 − µΛmt−1 −ΛKwt−1 −Ληt−1)T]

= E[(ID −ΛK)wt−1w
T
t−1(ID −KΛ)] + µ2ΛMΛ +ΛCΛ − (A +AT), (28)

where A ∶= µ(ID −ΛK)E [wt−1m
T
t−1]Λ and M ∶= E [mt−1m

T
t−1]. Notice that w0 is initialized according to the stationary

distribution. Therefore, the distribution does not depend on t, namely E[wtw
T
t ] = E[wt−1w

T
t−1] = Σ. For the covariance

matrix of the momentum, similarly,

ΛMΛ = E[(wt−1 −wt−2)(wt−1 −wt−2)T]
= 2Σ −E[wt−1w

T
t−2] −E[wt−2w

T
t−1]. (29)

For the final two terms A +AT, we have

A = µ(ID −ΛK)E [wt−1m
T
t−1]Λ

= µ(ID −ΛK)E[wt−1(wt−2 −wt−1)T]
= −µ(ID −ΛK)Σ + µ(ID −ΛK)E[wt−1w

T
t−2], (30)

AT = −µΣ(ID −KΛ) + µE[wt−2w
T
t−1](ID −KΛ). (31)

Therefore, we are left to solve for E[wt−1w
T
t−2] and its transpose. Using the fact that the expectation values are time-

independent for the stationary state, we obtain

E[wt−1w
T
t−2] = E[wtw

T
t−1] = E[(wt−1 − µΛmt−1 −ΛKwt−1 −Ληt−1)wT

t−1]
= (ID −ΛK)Σ − µΛE[mt−1w

T
t−1]

= (ID −ΛK)Σ + µΣ − µE[wt−2w
T
t−1], (32)

E[wt−2w
T
t−1] = Σ(ID −KΛ) + µΣ − µE[wt−1w

T
t−2]. (33)

From the above two equations, we have

E[wt−1w
T
t−2] =

1

1 − µ2
[(ID −ΛK)Σ + µΣ − µΣ(ID −KΛ) − µ2Σ] , (34)

E[wt−2w
T
t−1] =

1

1 − µ2
[Σ(ID −KΛ) + µΣ − µ(ID −ΛK)Σ − µ2Σ] . (35)

Finally, substituting these results back into (28) yields

(1 − µ)(ΛKΣ +ΣKΛ) − 1 + µ2

1 − µ2
ΛKΣKΛ + µ

1 − µ2
(ΛKΛKΣ +ΣKΛKΛ) = ΛCΛ. (36)

While Theorems 1 and 2 can be proven via the similar method as above, it is easier to derive them from Theorem 3. For
Theorem 2, we assume a scalar learning rate λ.
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Proof. Let Λ = λID. Then from Eq. (9), we have

(1 − µ)λ(KΣ +ΣK) − 1 + µ2

1 − µ2
λ2KΣK + µ

1 − µ2
λ2(K2Σ +ΣK2) = λ2C. (37)

Theorem 1 can be derived from Theorem 2 by setting µ = 0.

Proof. Let λ be a scalar and µ = 0. Then from Eq. (7), we have

ΣK +KΣ − λKΣK = λC. (38)

E.1.2. PROOF OF COROLLARY 1

We first prove a lemma about commutation relations.

Lemma 1. [Σ,K] = 0, if and only if [C,K] = 0.

Proof. 1. We first prove that if [Σ,K] = 0, then [C,K] = 0, which is straightforward. Equation. (7) implies that C is a
analytical function of Σ and K, i.e., C = C(K,Σ). The commutator is

[C,K] = [C(K,Σ),K]. (39)

If [Σ,K] = 0, it directly follows that [C,K] = 0.

2. Now we prove the if [C,K] = 0, then [Σ,K] = 0, which is not so straightforward. We introduce simplified notations:
X ∶= (1 − µ)ID and Y ∶= ID − λK. By iteration, we have

wt = (X + Y )wt−1 −Xwt−2 + ληt−1

. . .

= gt−1w1 −Xgt−2w0 + λ
t−1

∑
i=0

giηt−1−i, (40)

where the coefficient matrices gi satisfy the following recurrence relation

gt = (X + Y )gt−1 −Xgt−2, for t ≥ 2, (41)

where the initial terms are given by

g0 = ID, g1 =X + Y. (42)

It follows from the relation limt→∞ gt = 0 that

lim
t→∞

wt = lim
t→∞

λ
t−1

∑
i=0

giηt−1−i ∼ N (0, λ2 lim
t→∞

t−1

∑
i=0

giCgi) ∶= N (0,Σ) . (43)

Because every gi is a function of K, [C,K] = 0 is equivalent with [Σ,K] = 0.

With this lemma, we prove Corollary 1.
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Proof. The matrix equation (7) satisfied by the parameter covariance matrix can be equivalently written in the form
containing commutators as

(1 − µ)λK (2ID − λ

1 + µK)Σ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
commuting contribution

+(1 − µ)λ(ID − λ

1 + µK) [Σ,K] + µ

1 − µ2
λ2 [K, [K,Σ]]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
non-commuting contribution

= λ2C, (44)

where the non-commuting contribution is finite if [C,K] ≠ 0. Otherwise, if [C,K] = 0, we have [Σ,K] = 0 such that the
non-commuting term vanishes and the model fluctuation is

Σ = [ λK
1 + µ (2ID − λK

1 + µ)]
−1 λ2C

1 − µ2

∶= [λ̃K(2ID − λ̃K)]−1C̃, (45)

where we introduce the following rescaling:

λ̃ ∶= λ

1 + µ, C̃ ∶= 1 + µ
1 − µC. (46)

Remark. We notice that together with [C,K] = 0, the form of the matrix equation satisfied by Σ is invariant under this
rescaling:

λ̃(KΣ +ΣK) − λ̃2KΣK = λ̃2C̃. (47)

This suggests that the learning rate can be 1 + µ times larger.

E.1.3. PROOF OF THEOREM 4 AND COROLLARIES 2 AND 3

We first prove Theorem 4.

Proof. According to Theorem 1, if the algorithm is updated under Gaussian noise with covariance matrix C, the stationary
distribution of the model parameters w isN(0,Σ), where Σ satisfies Eq. (6). Due to Lemma 1, we have [Σ,K] = 0 because
C = σ2ID + aK commutes with K. Referring to Corollary 1, the model fluctuation is

Σ = λ(σ2ID + aK)[K(2ID − λK)]−1. (48)

Corollaries 2 and 3 can be easily proven from Theorem 4.

Proof. If σ2 = 0, then Σ = aλ(2ID − λK)−1. If a = 0, then Σ = σ2λ[K(2ID − λK)]−1.

E.1.4. PROOF OF THEOREM 5

Proof. In the presence of momentum, we multiply both sides of Eq. (44) by R ∶= (2ID − λ
1+µ

K)
−1

to the left to obtain

(1 − µ)λKΣ +RA1 +RA2 = λ2RC, (49)

where A1 ∶= (1 − µ)λ (ID − λ
1+µ

K) [Σ,K] and A2 ∶= µ
1−µ2λ

2 [K, [K,Σ]] are terms involving commutators. Taking the
trace on both sides yields

(1 − µ)λTr[KΣ] +Tr[RA1] +Tr[RA2] = λ2Tr [(2ID − λ

1 + µK)
−1

C] . (50)
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Because the commuting terms A1 and A2 are anti-symmetric by definition and R is symmetric, the traces Tr[RA1] and
Tr[RA2] vanish. Finally, we have

Ltrain ∶=
1

2
Tr[KΣ] = λ

4(1 − µ)Tr

⎡⎢⎢⎢⎢⎣
(ID − λ

2(1 + µ)K)
−1

C

⎤⎥⎥⎥⎥⎦
. (51)
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E.2. Proofs in Section 6

E.2.1. PROOF OF THEOREM 6

Proof. The goal of this approximate Bayesian inference task is to find the optimal learning rate which minimizes the KL
divergence between the SGD stationary distribution q(w) given in Theorem 1 and the posterior (15). The KL divergence is

DKL(q∣∣f) = −Eq(ln f) +Eq(ln q)

= 1

2
[NTr[KΣ] − ln ∣NK ∣ − ln ∣Σ∣ −D] ,

where ∣ ⋅ ∣ is the determinant and D is the dimension of the parameters w.

Suppose that the noise covariance is C = N−S
NS

K, which is an approximation of the noise induced by minibatch sampling
(Hoffer et al., 2017). According to Theorem 4, the covariance of the model is

Σ = λN − S
NS

(2ID − λK)−1. (52)

Therefore, up to constant terms, the KL divergence is

DKL
c= λN − S

S
Tr[(2ID − λK)−1K] −D lnλ + ln ∣2ID − λK ∣ −D. (53)

Taking the derivative with respect to λ yields

∂

∂λ
DKL = N − 2S

S
Tr[(2ID − λK)−1K] + λN − S

S
Tr[(2ID − λK)−2K2] − D

λ
. (54)

The optimal λ is obtained by solving ∂
∂λ
DKL = 0, namely

N − 2S

S
Tr[(2ID − λK)−1K] + λN − S

S
Tr[(2ID − λK)−2K2] = D

λ
. (55)

Equivalently, it can be written into Eq. (16), because K and (2ID − λK)−1 are simultaneously diagonalizable.

E.2.2. PROOF OF THEOREM 7

We first derive the discrete-time version of the escaping efficiency (18) presented in Theorem 7.

Proof. Because the initial state is the exact minimum, namely w0 = 0, the parameters evolve at time t to

wt = λ
t−1

∑
i=0

(ID − λK)iηt−1−i. (56)

The loss for such parameters is

L(wt) =
λ2

2

t−1

∑
i=0

ηT
t−1−iK(ID − λK)2iηt−1−i + cross − terms, (57)

where the cross-terms involve not-equal-time contributions. The expectation value of the loss at time t is

E ∶= E[L(wt)] =
λ2

2

t−1

∑
i=0

Tr [CK(ID − λK)2i]

= λ
4

Tr [(ID − λK
2

)
−1

[ID − (ID − λK)2t]C] , (58)

where the cross-terms vanish due to the Gaussian property of the noise and in the second line we use the Neumann series
that ∑ni=0Ai = (ID −A)−1(ID −An+1).
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E.2.3. PROOF OF COROLLARY 4

Proof. As a necessary condition, if each component inside the trace of Ed is greater than that of Ec, then the trace itself
should be so as well. Specifically, we wish to show that

(1 − λk
2

)
−1

[1 − (1 − λk)2t] ≥ 1 − e−2λkt, ∀ 0 < λk < 2 and t ≥ 0. (59)

Equivalently, we wish to show that

(1 − λk
2

) e−2λkt ≥ (1 − λk)2t − λk
2
. (60)

Because e−x ≥ 1 − x for all x ≥ 0, we have

lhs ∶= (1 − λk
2

) e−2λkt

≥ (1 − λk
2

) (1 − λk)2t = (1 − λk)2t − λk
2

(1 − λk)2t

≥ (1 − λk)2t − λk
2
∶= rhs. (61)

E.2.4. PROOF OF THEOREM 8

Proof. We first elaborate on the condition about the alignment assumption. As in Zhu et al. (2019), we denote the maximal
eigenvalue and the corresponding eigenvector of C as c1 and v1, respectively. We have uT

1 Cu1 ≥ uT
1 v1c1v

T
1 u1 = c1⟨u1, v1⟩2.

If the maximal eigenvalues of C and K are aligned in proportion, namely c1/Tr[C] ≥ a1k1/Tr[K], and the angle between
their eigenvectors is so small that ⟨u1, v1⟩2 ≥ a2, then we can conclude that uT

1Cu1 ≥ ak1
Tr[C]

Tr[K]
with a ∶= a1a2.

We then derive the efficiency ratio (20). For a single step, it is the same as the continuous-time one (Zhu et al., 2019).
Decomposing Tr[KC], we have

Tr[KC] =
D

∑
i=1

kiu
T
i Cui ≥ k1u

T
1 Cu1 ≥ ak2

1

Tr[C]
Tr[K] . (62)

For the isotropic equivalence of the noise, we have

Tr[KC̄] = Tr[C]
D

Tr[K]. (63)

Therefore, we obtain

Tr[KC]
Tr[KC̄] ≥ aD

k2
1

(Tr[K])2
≥ aD k2

1

[lk1 + (D − l)D−dk1]2
≈ aD 1

[l + (D − l)D−d]2
= O(aD2d−1). (64)

Next, for a long-time, the alignment argument should be slightly modified. While the order of eigenvalues of K is the same
as that of (2ID − λK)−1 and they share the same set of eigenvectors, the only thing that should be modified in the argument
is that the maximal eigenvalues of C and (2ID − λK)−1 are aligned in proportion such that

c1
Tr[C] ≥ a3

(2 − λk1)−1

Tr [(2ID − λK)−1] , (65)

where a3 is different from a1 in general. Then the final ratio should contain a′ ∶= a3a2, instead of a = a1a2. The remaining
derivation is the same as above.
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E.2.5. PROOF OF THEOREM 9

Proof. First we propose a new approximation on P (w ∈ Va). The width of the well a is approximated by 2
√

∆L
k

, where
∆L ∶= L(b) −L(a) is the height of the potential barrier and b is the position of the barrier top as shown in Figure 6(a). The
probability inside well a is approximated by a finite-range Gaussian integral as

P (w ∈ Va) ≈ ∫

√
∆L
k

−

√
∆L
k

P (w)dw

= P (a)
√

2πC

λk(2 − λk)erf
⎛
⎝

√
λ(2 − λk)∆L

C

⎞
⎠
, (66)

where erf(z) is the error function. This probability is strictly smaller than 1, which is consistent with our expectations.

The probability current J can be rewritten as

∇[exp(L(w) −L(l)
T

)Pc(w)] = −JD−1 exp(L(w) −L(l)
T

) , (67)

where l is a midpoint on the most probable escape path between a and b such that k(w) ≈ ka in the path a → l and
k(w) ≈ kb in l → b. In a stationary state, the probability current J is a constant and it can be obtained by integrating both
sides of the above equation from a to b:

lhs = − exp(L(a) −L(l)
Ta

)Pc(a), (68)

and

rhs = −J ∫
b

a
D−1 exp(L(w) −L(l)

T
)dw

≈ −JD−1
b ∫

∞

−∞

exp(
L(b) −L(l) + 1

2
(w − b)Tkb(w − b)
Tb

)dw

= −JD−1
b exp(L(b) −L(l)

Tb
)
√

2πTb
∣kb∣

, (69)

where we have approximated the integrand on the right-hand side (rhs) because it is peaked around the point b and Db = Tb.
When the noise covariance is C = 1

S
ka, the two “temperatures” are given by Ta = λ

2S
ka and Tb = λ

2S
∣kb∣.

We propose two corrections to the approximation of the current: (1) we replace the continuous-time distribution Pc(w) by
the discrete-time one P (w) = P (a) exp (− 1

2
wTΣ−1w); (2) the effective “temperature” at point a is enlarged because the

fluctuation is larger. From the distribution, the “temperature” should be Ta = λ
2S

ka
1−λka/2

. Specifically, the current is now
approximated as

J ≈ P (a) exp(−1

2
wTΣ−1w) exp(L(a) −L(l)

Ta
− L(b) −L(l)

Tb
)
√

∣kb∣
2πTb

. (70)

Substituting everything into the definition (22) yields the approximated Kramers rate:

γ ≈ 1

2π
∣kb∣

√
2

2 − λka
erf

⎛
⎝

√
S(2 − λka)∆L

λka

⎞
⎠

exp [−2S∆L

λ
( l(1 − λka/2)

ka
+ 1 − l

∣kb∣
)] , (71)

Remark. We emphasize that our corrections are not precise because the current is a dynamical quantity. To precisely
characterize the Kramers rate, it may be necessary to develop a discrete-time version of the Fokker-Planck equation (21).
Hence, our corrections do not guarantee the accuracy of the coefficients in the expressions.
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E.2.6. MORE ON APPROXIMATION ERROR

In this subsection we derive the matrix equations satisfied by the stationary distribution of a class of SGD with a more
general form of momentum called Quasi-Hyperbolic Momentum (QHM) (Ma and Yarats, 2018; Gitman et al., 2019). The
update rule is given by

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

gt =Kwt−1 + ηt−1;

mt = µmt−1 + (1 − µ)gt;
wt =wt−1 − λ [(1 − ν)gt + νmt] ,

(72)

where the additional parameter ν ∈ [0,1] interpolates between the usual SGD (5) without momentum (ν = 0) and a
normalized version of SGD with momentum (5) (ν = 1). The covariance of the model parameters is given in the following
theorem.

Theorem 11. (Model parameters covariance matrix of QHM) Let the algorithm be updated according to Eqs. (72). Then
the covariance matrix Σ of the model parameters satisfies the following set of matrix equations:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

µ(1 + µ)(X +XT) + λ [1 − µν(2 + µ)] (XK +KXT) + aΣ + b(KΣ +ΣK) + cKΣK = dλ2C;

X = µαK2Σ + λ[−1 + µ(1 + µ − µν)]KΣK − λµ(1 − ν)αK(KQ +QK)K + (1 − µ2)Q;

Q −AQA = Σ,

(73)

where

a ∶= −2µ(1 + µ), b ∶= λµ2(1 − ν), c ∶= λ2 [1 − µ2 − 2µν(1 − µ)] , d ∶= 1 + µ[µ − 2ν − 2µν(1 − ν)],

Q ∶=
∞

∑
i=0

AiΣAi, A ∶= µ[ID − λ(1 − ν)K], α ∶= λ[1 − ν + ν(1 − µ)]. (74)

Remark. By setting ν = 0 or ν = 1, the previous unnormalized result (6) or (7) can be recovered with reparametrization of
λ→ λ/(1 − µ) (Gitman et al., 2019). Therefore, this result is the most general one in this work.

Proof. The proof of this theorem is essentially similar to that in Appendix E.1.1 for SGD with momentum, but more
complicated. By definition, we have

E[wtw
T
t ] ∶= Σ = E [(ID − αK)wt−1w

T
t−1(ID − αK)] + λ2ν2µ2E[mt−1m

T
t−1] + λ2α2C

− λνµE [(ID − αK)wt−1m
T
t−1 +mt−1w

T
t−1(ID − αK)]

= (ID − αK)Σ(ID − αK) + λ2ν2µ2M + λ2α2C − (G +GT), (75)

where G ∶= λνµ(ID −αK)E[wtm
T
t ], M ∶= E[mtm

T
t ] and α ∶= λ[1−ν +ν(1−µ)]. For momentum, the update rule gives

λνmt = −wt + [ID − λ(1 − ν)K]wt−1 − λ(1 − ν)ηt−1. (76)

Therefore, we have

λ2ν2M = 2Σ + λ2(1 − ν)2KΣK + λ2(1 − ν)2C − λ(1 − ν)(ΣK +KΣ) − (X +XT) + λ(1 − ν)(XK +KXT), (77)

where X ∶= E[wtw
T
t−1]. Similarly, this X satisfies

X = (ID − αK)Σ − λνµE[mt−1w
T
t−1]

= (ID − αK)Σ + µΣ − µ[ID − λ(1 − ν)K]XT, (78)

XT = Σ(ID − αK) + µΣ − µX[ID − λ(1 − ν)K]. (79)

The relations between G and X are

G = −µ(ID − αK)Σ + µ(ID − αK)X[ID − λ(1 − ν)K], (80)

GT = −µΣ(ID − αK) + µ[ID − λ(1 − ν)K]XT(ID − αK). (81)
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Although no simple expression of X can be obtained, it is possible to provide a set of equations satisfied by Σ. Substituting
everything back into Eq. (75) yields a matrix equation involving Σ and X:

µ(1 + µ)(X +XT) + λ [1 − µν(2 + µ)] (XK +KXT) + aΣ + b(KΣ +ΣK) + cKΣK = dλ2C, (82)

where a ∶= −2µ(1 + µ), b ∶= λµ2(1 − ν), c ∶= λ2 [1 − µ2 − 2µν(1 − µ)], d ∶= 1 + µ[µ − 2ν − 2µν(1 − ν)].

Then we try to express X in terms of Σ. Notice that X and XT satisfy a set of equations with the following form:

⎧⎪⎪⎨⎪⎪⎩

X +AXT = B,
XT +XA = BT,

(83)

where A ∶= µ[ID − λ(1 − ν)K] and B ∶= (1 + µ)Σ − αKΣ. From them we have

X −AXA = B −ABT ∶=D. (84)

Therefore, by iteration, we have

X =D +AXA =D +A(D +AXA)A =D +ADA +A2XA2 = ⋯ =
∞

∑
i=0

AiDAi (85)

= µαK2Σ + λ[−1 + µ(1 + µ − µν)]KΣK − λµ(1 − ν)αK(KQ +QK)K + (1 − µ2)Q, (86)

where we define Q ∶= ∑∞i=0AiΣAi.
Finally, it can be shown by expanding everything that Q satisfies

(ID −A)Q(ID +A) + (ID +A)Q(ID −A) = 2Σ. (87)

After simplification, we have

Q −AQA = Σ. (88)

From Eqs. (73), the approximation error for QHM can be calculated.
Corollary 7. The training error for QHM is

Ltrain = λ
2

2
Tr[h(K)−1KC], (89)

where

h(K) ∶= 1

d
{aID + 2bK + cK2 + [µ(1 + µ)f(K) + λ[1 − µν(2 + µ)]g(K)](ID −A2)−1}, (90)

f(K) ∶= 2(1 − µ2)K + λ [−2 + µ[3 + µ(2 − 3ν)]K2, (91)

g(K) ∶= 2(1 − µ2)ID + 2λ[−1 + µ(2 + µ − 2µν)]K − 2λµ(1 − ν)αK2. (92)

Remark. We emphasize that our result (89) is exact, whereas the result in Gitman et al. (2019) is obtained with a low-order
approximation.

Proof. By using the similar technique in Appendix E.1.4, Eq. (73) results in

h(K)KΣ +R = λ2KC, (93)

where R denotes the terms involving commutative factors such as [Σ,K], etc, and

h(K) ∶= 1

d
{aID + 2bK + cK2 + [µ(1 + µ)f(K) + λ[1 − µν(2 + µ)]g(K)](ID −A2)−1}, (94)

f(K) ∶= 2(1 − µ2)K + λ [−2 + µ[3 + µ(2 − 3ν)]K2, (95)

g(K) ∶= 2(1 − µ2)ID + 2λ[−1 + µ(2 + µ − 2µν)]K − 2λµ(1 − ν)αK2. (96)
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By definition, the approximation error is

Ltrain = 1

2
Tr[KΣ] = λ

2

2
Tr[h(K)−1KC]. (97)

E.2.7. PARAMETER FLUCTUATIONS OF SECOND-ORDER OPTIMIZATION METHODS

In this subsection, we deal with the covariance of the stationary distribution obtained by second-order optimization methods.
We first deal with the stationary distribution of Damped Newton’s Method (DNM), which is the oldest and most important
second-order optimization method, first invented by Newton (Nesterov et al., 2018). It is of interest to investigate how the
second-order methods behave asymptotically in a stochastic setting.

Theorem 12. (Model fluctuation of DNM) Let the learning rate matrix be a matrix: Λ ∶= λK−1. Then,

Σ = 1 + µ
1 − µ

λ

2(1 + µ) − λK
−1CK−1. (98)

Proof. Due to Theorem 3, while Λ ∶= λK−1, Eq. (9) gives

λ
1 − µ
1 + µ [2(1 + µ) − λ]Σ = λ2K−1CK−1. (99)

Therefore, we have

Σ = 1 + µ
1 − µ

λ

2(1 + µ) − λK
−1CK−1. (100)

Corollary. Suppose that the noise is due to minibatch sampling with the noise covariance being C = N−S
NS

K. The model
fluctuation is

Σ = 1 + µ
1 − µ

λ

2(1 + µ) − λ
N − S
NS

K−1. (101)

Proof. Substituting C = N−S
NS

K into Eq. (98) yields

Σ = 1 + µ
1 − µ

λ

2(1 + µ) − λ
N − S
NS

K−1. (102)

From Theorem 12, the approximation error for DNM can be calculated.

Corollary 8. The approximation error for DNM is

Ltrain =
⎧⎪⎪⎨⎪⎪⎩

1
2
Tr[KΣgeneral] = 1+µ

1−µ
λ

4(1+µ)−2λ
Tr[K−1C];

1
2
Tr [KΣminibatch] = 1+µ

1−µ
Dλ

4(1+µ)−2λ
N−S
NS

.
(103)

Proof. The proof is simple by substituting Σ into the definition Ltrain = 1
2
Tr[KΣ].

Next, we consider the natural gradient descent (NGD) algorithm. In traditional statistics, the efficiency of any statistical
estimator is upper bounded by the Cramér-Rao’s inequality (CR bound) (Rao, 1992). An estimator that achieves the equality
in the CR bound is said to be Fisher-efficient. A Fisher-efficient method is the fastest possible method to estimate a given
statistical quantity. When the gradient descent is used, it is shown (Amari, 1998; Amari and Nagaoka, 2007) that if one
defines the learning rate as a matrix, Λ ∶= λJ(w)−1, where J(w) ∶= E[∇L(∇L)T] is the Fisher information, then this
optimization algorithm becomes Fisher-efficient in the limit of t→∞. This algorithm is called the natural gradient descent
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because the Fisher information is the “natural” metric for measuring the distance in the probability space. The NGD
algorithm has therefore attracted great attention both theoretically and empirically (Pascanu and Bengio, 2013; Amari, 1998).
However, previous literature often takes the continuous-time limit and nothing is known about NGD in the discrete-time
regime. We apply our formalism to derive the covariance of the stationary distribution of NGD in the discrete-time regime.
To the best of our knowledge, this is the first work to treat the discrete-time NGD and to derive its asymptotic model
fluctuations.

Theorem 13. (Model covaraince matrix of NGD) Let the learning rate matrix be Λ ∶= λJ(w)−1, where J(w) =
E[KwwTK] = KΣK is the Fisher information. Then the model parameter covariance matrix satisfies the following
quadratic matrix equation

(KΣ)2 − λ

2(1 + µ)KΣ − λ

2(1 − µ)CK
−1 = 0. (104)

Proof. By setting Λ = λ(KΣK)−1 in Eq. (9), we have

2(1 − µ)K−1 − 1 − µ
1 + µλK

−1Σ−1K−1 = λK−1Σ−1K−1CK−1Σ−1K−1. (105)

Multiplying by KΣK to the left and KΣ to the right yields

(KΣ)2 − λ

2(1 + µ)KΣ − λ

2(1 − µ)CK
−1 = 0. (106)

This matrix equation can be solved while C does not depend on Σ explicitly (Higham and Kim, 2001).

Corollary 9. Suppose that the noise covariance C is a constant matrix that does not depend on Σ explicitly. Then the
solution to Eq. (104) is

Σ = 1

2
K−1 [Q + λ

2(1 + µ)ID] , (107)

where Q ∶= [ λ2

4(1+µ)2 ID + 2λ
1−µ

CK−1]
1
2

.

Remark. This result does not seem quite satisfactory, especially because it does not seem to reduce to any meaningful
distribution. This means that, when the noise is arbitrary and not related to the use of minibatch sampling, one is not
recommended to use NGD4.

Proof. By referring to the conclusion in Higham and Kim (2001) that the solution to a quadratic matrix equation of the form
AX2 +BX +C = 0 with A = ID and [B,C] = 0 is X = − 1

2
B + 1

2
(B2 − 4C)1/2, Eq. (104) can be solved explicitly:

Σ = 1

2
K−1 [Q + λ

2(1 + µ)ID] , (108)

where Q ∶= [ λ2

4(1+µ)2 ID + 2λ
1−µ

CK−1]
1
2 .

Now we consider the case where the noise is induced by minibatch sampling. Instead of using the conventional Hessian
approximation that C ≈K, we here consider a better approximation that C ≈ N−S

NS
E[∇L∇LT ] = N−S

NS
KΣK. The model

fluctuation can be calculated.

Corollary. Let the NGD algorithm be updated with noise covariance being C = N−S
NS

KΣK. Then,

Σ = λ
(1 + µ)N−S

NS
+ 1 − µ

2(1 − µ2) K−1. (109)

4Recall that the NGD is derived in an online learning setting, where the noise is by definition proportional to the minibatch noise with
N →∞ and minibatch size 1 (Amari, 1998).
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Proof. Substituting C = N−S
NS

KΣK into Eq. (104) yields

(KΣ)2 − λ
(1 + µ)N−S

NS
+ 1 − µ

2(1 − µ2) KΣ = 0. (110)

Because KΣ is positive definite, we have

Σ = λ
(1 + µ)N−S

NS
+ 1 − µ

2(1 − µ2) K−1. (111)

From Theorem 13, the approximation error can be calculated.

Corollary 10. The approximation error for NGD is

Ltrain =
⎧⎪⎪⎨⎪⎪⎩

1
2
Tr[KΣgeneral] = 1

4
Tr [Q + λ

2(1+µ)
ID] ;

1
2
Tr [KΣminibatch] = λ (1+µ)N−S

NS +1−µ

4(1−µ2)
D.

(112)

Proof. The proof is simple by substituting Σ into the definition Ltrain = 1
2
Tr[KΣ].

E.2.8. PROOF OF THEOREM 10

Proof. Using the non-diagonal approximation, the preconditioning matrix at asymptotic time is

Λ = λE[ggT]− 1
2

= λE [(Kw + η)(Kw + η)T]−
1
2

= λ(KΣK +C)− 1
2

= λ√
1 + c

(KΣK)− 1
2 . (113)

Substituting it into Eq. (9), we have

ΛKΣ +ΣKΛ −ΛKΣKΛ = cΛKΣKΛ, (114)

which can be rewritten as
Λ−1K−1 +K−1Λ−1 = (1 + c)ID. (115)

It can be solved to give that

Σ = λ
2(1 + c)

4
ID. (116)

Remark. The approximation error can be obtained easily as

Ltrain = 1

2
Tr[KΣ] = λ

2(1 + c)
8

Tr[K]. (117)
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