
Learning by Turning: Neural Architecture Aware Optimisation

Appendix A. Experimental Details
All code is available at github.com/jxbz/nero. This
appendix records important details of the implementations.

MNIST classification These experiments used a multi-
layer perceptron (MLP) network. An L-layer architecture
consisted of pL´1q layers of dimension 784ˆ784 followed
by an output layer of dimension 784 ˆ 10. A “scaled relu”
nonlinearity was used, defined by 'pxq :“

?
2 ¨ maxp0, xq.

The factor of
?

2 was motivated by Kaiming init (He et al.,
2015) and was not tuned. The reparameterisation experi-
ment used L “ 5 layers and trained for 5 epochs without
learning rate decay. The very deep MLP used L “ 100 lay-
ers and trained for 50 epochs with the learning rate decayed
by a factor of 0.9 at the end of every epoch, and with the
initial learning rate tuned over t0.0001, 0.001, 0.01, 0.1u.
Training took place on an unknown Google Colab GPU. On
an NVIDIA Tesla P100 GPU, the 5-layer MLP took „ 1
minute to train and the 100-layer MLP took „ 30 minutes.

CIFAR-10 cGAN Equal learning rates were used in the
generator and discriminator. The initial learning rate was
tuned over {0.0001, 0.001, 0.01, 0.1, 1.0} for all optimisers.
The networks were trained for 120 epochs, with the learning
rate decayed by a factor of 10 at epoch 100. The momentum
parameter in SGD and �1 in Adam and LAMB were tuned
over {0.0, 0.9}. Nero’s � and �2 in Adam and LAMB were
set to 0.999 without tuning. Training took around 3 hours
on an NVIDIA RTX 2080Ti GPU.

CIFAR-10 classification All models were trained for 200
epochs, with 5 epochs of linear learning rate warm-up and
learning rate decay by a factor of 0.2 at epochs 100, 150 and
180. The initial learning rates were tuned over {0.0001,
0.001, 0.01, 0.1, 1.0}. Training was performed on an
NVIDIA RTX 2080Ti GPU. Training time for the VGG-11
network was „ 1 hour, and for ResNet-18 was „ 2 hours.

Since the experiments in Figures 1 and 2 were intended to
probe the fundamental properties of optimisers rather than
their performance under a limited tuning budget, a more fine-
grained learning rate search was conducted. Specifically,
the learning rates were tuned over {0.01, 0.02, 0.04, 0.06,
0.08, 0.1}. The best results are listed in the following table:

Optimiser Fix Mean Fix Norm Top-1 Error Best ⌘

Nero 12.17% ˘ 0.08 0.02
Nero X 11.99% ˘ 0.14 0.01
Nero X 10.03% ˘ 0.24 0.02
Nero X X 8.61% ˘ 0.22 0.02

Madam 12.77% ˘ 0.20 0.02
Madam X X 12.60% ˘ 0.12 0.06
LAMB 12.73% ˘ 0.10 0.02
LAMB X X 8.88% ˘ 0.08 0.06

ImageNet classification For training with SGD + mo-
mentum + weight decay, the initial learning was set to 0.1,
momentum was set to 0.9 and weight decay was set to
0.0001. These settings follow He et al. (2016). One epoch
of linear learning rate warm-up was used, followed by 89
epochs of cosine annealing. The batch size was set to 400
for ResNet-50 to fit the GPU vRAM budget, and this was
in the range known to yield good performance (Goyal et al.,
2017). This paper’s SGD implementation surpassed the
target ImageNet top-1 accuracy of 76.3% for ResNet-50
(Goyal et al., 2017; You et al., 2020). The training was dis-
tributed over four NVIDIA RTX 2080Ti GPUs, taking „ 45
hours per training run. The total number of GPU hours for
all ImageNet experiments in this paper was „ 1500.

Wikitext-2 language model The small transformer
model was trained for 20 epochs, with the learning rate
decayed by a factor of 0.1 at epoch 10. The initial learning
rate was tuned over {0.0001, 0.001, 0.01, 0.1, 1.0}. The
batch size was set to 20. Training on an NVIDIA RTX
2080Ti GPU took „ 15 minutes.

WMT16 En–De translation The large transformer
model was trained for 100 epochs, with a linear warm-up
from epoch 0 to 50, and linear annealing from epoch 50 to
100. The maximum learning rate was tuned over {0.0001,
0.001, 0.01, 0.1, 1.0}. A batch size of 128 was used. Train-
ing took „ 1 hour on an NVIDIA RTX 2080Ti GPU.

Reinforcement learning Hyperparameter settings fol-
lowed Kostrikov (2018), except for the initial learning rate
and the total number of environment steps. The number of
steps was fixed to 5 million, and the initial learning rate was
tuned over {0.0001, 0.001, 0.01, 0.1, 1.0}. The policy net-
work combined convolutional image feature extractors with
dense output layers. Training was performed on an NVIDIA
RTX 2080Ti GPU, and the training time was „ 1.5 hours.

https://github.com/jxbz/nero

	Introduction
	Related work
	Neural Architecture Design
	Descent Methods in Deep Learning
	Homeostatic Control in Neuroscience

	Background Theory
	Balanced Network Architectures
	Stable Descent Steps

	Nero: the Neuronal Rotator
	Experiments
	Constraints Help Nero
	Per-Neuron Updates are a Good Middle Ground
	The Pitfalls of Reparameterisation
	Nero Trains Deeper Networks
	Nero Works Well Out-of-the-Box
	Nero Can Be Regularised

	Discussion and Future Work
	Convergence
	Generalisation
	Finer-Grained Architectural Awareness

	Conclusion
	Experimental Details

