Learning by Turning: Neural Architecture Aware Optimisation

Appendix A. Experimental Details

All code is available at github.com/ jxbz/nero. This
appendix records important details of the implementations.

MNIST classification These experiments used a multi-
layer perceptron (MLP) network. An L-layer architecture
consisted of (L —1) layers of dimension 784 x 784 followed
by an output layer of dimension 784 x 10. A “scaled relu”
nonlinearity was used, defined by ¢(z) := v/2 - max(0, x).
The factor of v/2 was motivated by Kaiming init (He et al.|
2015) and was not tuned. The reparameterisation experi-
ment used L. = 5 layers and trained for 5 epochs without
learning rate decay. The very deep MLP used L = 100 lay-
ers and trained for 50 epochs with the learning rate decayed
by a factor of 0.9 at the end of every epoch, and with the
initial learning rate tuned over {0.0001,0.001,0.01,0.1}.
Training took place on an unknown Google Colab GPU. On
an NVIDIA Tesla P100 GPU, the 5-layer MLP took ~ 1
minute to train and the 100-layer MLP took ~ 30 minutes.

CIFAR-10 cGAN Equal learning rates were used in the
generator and discriminator. The initial learning rate was
tuned over {0.0001, 0.001, 0.01, 0.1, 1.0} for all optimisers.
The networks were trained for 120 epochs, with the learning
rate decayed by a factor of 10 at epoch 100. The momentum
parameter in SGD and 31 in Adam and LAMB were tuned
over {0.0, 0.9}. Nero’s 5 and (5 in Adam and LAMB were
set to 0.999 without tuning. Training took around 3 hours
on an NVIDIA RTX 2080Ti GPU.

CIFAR-10 classification All models were trained for 200
epochs, with 5 epochs of linear learning rate warm-up and
learning rate decay by a factor of 0.2 at epochs 100, 150 and
180. The initial learning rates were tuned over {0.0001,
0.001, 0.01, 0.1, 1.0}. Training was performed on an
NVIDIA RTX 2080Ti GPU. Training time for the VGG-11
network was ~ 1 hour, and for ResNet-18 was ~ 2 hours.

Since the experiments in Figures[I and 2 were intended to
probe the fundamental properties of optimisers rather than
their performance under a limited tuning budget, a more fine-
grained learning rate search was conducted. Specifically,
the learning rates were tuned over {0.01, 0.02, 0.04, 0.06,
0.08, 0.1}. The best results are listed in the following table:

Optimiser Fix Mean Fix Norm Top-1Error Bestn
Nero 12.17% + 0.08 0.02
Nero v 11.99% + 0.14 0.01
Nero v 10.03% +0.24 0.02
Nero v v 8.61% +0.22 0.02

Madam 12.77% +£0.20 0.02
Madam v v 12.60% +0.12 0.06
LAMB 12.73% +0.10 0.02
LAMB v v 8.88% =+ 0.08 0.06

ImageNet classification For training with SGD + mo-
mentum + weight decay, the initial learning was set to 0.1,
momentum was set to 0.9 and weight decay was set to
0.0001. These settings follow |He et al.|(2016). One epoch
of linear learning rate warm-up was used, followed by 89
epochs of cosine annealing. The batch size was set to 400
for ResNet-50 to fit the GPU vRAM budget, and this was
in the range known to yield good performance (Goyal et al.|
2017). This paper’s SGD implementation surpassed the
target ImageNet top-1 accuracy of 76.3% for ResNet-50
(Goyal et al.,[2017;|You et al.,|2020). The training was dis-
tributed over four NVIDIA RTX 2080Ti GPUs, taking ~ 45
hours per training run. The total number of GPU hours for
all ImageNet experiments in this paper was ~ 1500.

Wikitext-2 language model The small transformer
model was trained for 20 epochs, with the learning rate
decayed by a factor of 0.1 at epoch 10. The initial learning
rate was tuned over {0.0001, 0.001, 0.01, 0.1, 1.0}. The
batch size was set to 20. Training on an NVIDIA RTX
2080Ti GPU took ~ 15 minutes.

WMT16 En-De translation The large transformer
model was trained for 100 epochs, with a linear warm-up
from epoch 0 to 50, and linear annealing from epoch 50 to
100. The maximum learning rate was tuned over {0.0001,
0.001, 0.01, 0.1, 1.0}. A batch size of 128 was used. Train-
ing took ~ 1 hour on an NVIDIA RTX 2080Ti GPU.

Reinforcement learning Hyperparameter settings fol-
lowed [Kostrikov| (2018), except for the initial learning rate
and the total number of environment steps. The number of
steps was fixed to 5 million, and the initial learning rate was
tuned over {0.0001, 0.001, 0.01, 0.1, 1.0}. The policy net-
work combined convolutional image feature extractors with
dense output layers. Training was performed on an NVIDIA
RTX 2080Ti GPU, and the training time was ~ 1.5 hours.

https://github.com/jxbz/nero

	Introduction
	Related work
	Neural Architecture Design
	Descent Methods in Deep Learning
	Homeostatic Control in Neuroscience

	Background Theory
	Balanced Network Architectures
	Stable Descent Steps

	Nero: the Neuronal Rotator
	Experiments
	Constraints Help Nero
	Per-Neuron Updates are a Good Middle Ground
	The Pitfalls of Reparameterisation
	Nero Trains Deeper Networks
	Nero Works Well Out-of-the-Box
	Nero Can Be Regularised

	Discussion and Future Work
	Convergence
	Generalisation
	Finer-Grained Architectural Awareness

	Conclusion
	Experimental Details

