
Just Train Twice: Improving Group Robustness without Training Group Information

A. Training Details
In this section, we detail the model architectures and hy-
perparameters used by each approach. Within each dataset,
we used the same model architecture across all approaches:
ResNet-50 (He et al., 2016) for Waterbirds and CelebA,
and BERT for MultiNLI and CivilComments (Devlin et al.,
2019). For ResNet-50, we used the PyTorch (Paszke
et al., 2017) implementation of ResNet-50, starting from
ImageNet-pretrained weights. For BERT, we used the the
HuggingFace implementation (Wolf et al., 2019) of BERT,
also starting from pretrained weights.

We use the LfF implementation released by Nam et al.
(2020). We use the group DRO and ERM implementa-
tions released by Sagawa et al. (2020a) and also implement
CVaR DRO and JTT on top of this code base, with the CVaR
DRO implementation adapted from Levy et al. (2020). For
the group DRO experiments on Waterbirds, CelebA, and
MultiNLI, we directly use the reported performance num-
bers from Sagawa et al. (2020a). We note that these numbers
utilize group-specific loss adjustments that encourage the
model to attain lower training losses on smaller groups,
which was shown to improve worst-group generalization.
We train our own group DRO model on CivilComments-
WILDS as it was not included in Sagawa et al. (2020a); for
this, we did not implement these group adjustments. We
train our own models for all other algorithms.

For all approaches, we tune all hyperparameters as well
as early stop based on highest worst-group accuracy on
the validation set. On top of the hyperparameters shared
between all algorithms (e.g., learning rate, `2 regularization),
which we detail for each dataset below, CVaR DRO, JTT,
and LfF have additional hyperparameters that we tuned
separately for each dataset:

• For CVaR DRO, we tune the size of the worst-case
subpopulation ↵ 2 {0.1, 0.2, 0.5}. For CelebA, we
additionally tried ↵ = # smallest group examples

training examples = 0.00852.

• For LfF, we tuned the hyperparameter q by grid search-
ing over q 2 {0.1, 0.3, 0.5, 0.7, 0.9} and also sampling
two values log-uniformly from (0, 0.1] in all datasets
except CelebA, where we use the value of q = 0.7
used in Nam et al. (2020).

• For JTT, we alternated between grid searching over
(learning rate, weight decay) and (T , �up) to avoid
searching over all combinations. We first heuristi-
cally chose initial values for T and �up, and then al-
ternated between searching over learning rates and
weight decays while keeping T and �up fixed, and
searching over T and �up while keeping the learning
rate and weight decay fixed. We searched over both
pairs twice. We describe the dataset-specific grids for

learning rate and weight decay below. We used ini-
tial values of T = 50 for Waterbirds, and T = 1
for the other datasets. We additionally tuned over
T 2 {40, 50, 60} for Waterbirds and T 2 {1, 2} for
the other datasets. We used initial value of �up = 50
for Waterbirds and CelebA, and �up = 10 for MultiNLI
and CivilComments. We additionally tuned of �up 2
{5, 10, 20, 30, 40, 50, 100, |error set|

|training set|} for all datasets.
For MultiNLI and CivilComments, we found smaller
�up to perform better, so we additionally tuned over
�up 2 {3, 4, 6, 7}.

ERM has no additional algorithm-specific hyperparameters.
For group DRO, we fixed the step size ⌘q for updating
group weights to its default value of 0.01 from Sagawa et al.
(2020a), without tuning.

In general, for JTT, we fixed the initialization model and
the final model to share the same hyperparameters, with
two exceptions. First, the initialization model is trained
only for T epochs, whereas the final model is trained for
longer; exact values vary by dataset. Second, for BERT,
we found that it was helpful for JTT to be able to choose
different optimizers for the initialization model and final
model. Specifically, for the ResNet-50 models, we used
SGD with momentum 0.9 and no learning rate scheduler or
gradient clipping. For BERT, we additionally considered
the standard AdamW optimizer Loshchilov & Hutter (2017)
with a linearly-decaying learning rate and gradient clipping
(setting the max `2-norm of the gradients to 1), but we
set this as a hyperparameter and allowed the initialization
and final models to independently be optimized by SGD or
AdamW.

Waterbirds. All approaches are optimized for up to 300
epochs with batch size 64, using batch normalization (Ioffe
& Szegedy, 2015), and no data augmentation. We chose this
smaller batch size (compared to the batch size of 128 used
in Sagawa et al. (2020a)) for computational convenience.

For LfF, we adopt the learning rate, `2-regularization
strength, and optimizer from the CelebA experiments in
Nam et al. (2020). However, we note that we change the
batch size, total number of epochs, and the model from
ResNet-18 to ResNet-50 for consistency with the other meth-
ods.

Accordingly, LfF uses the Adam optimizer (Kingma & Ba,
2015), while the rest of the approaches use stochastic gradi-
ent descent (SGD) with momentum 0.9.

We apply `2-regularization with regularization weight � =
0.0001 for LfF. For the other approaches, we grid searched
between the regularization weights � 2 {0.0001, 1}. For
ERM, this yields � = 0.0001, and for JTT and CVaR DRO,
this yields � = 1.

Just Train Twice: Improving Group Robustness without Training Group Information

We use learning rate 0.0001 for LfF. For the other ap-
proaches, we also grid searched over the learning rates
{0.001, 0.00001}. For ERM, this yields learning rate 0.001,
and for JTT and CVaR DRO, this yields learning rate
0.00001.

Our grid search over ↵ for CVaR DRO yielded ↵ = 0.1.
Our grid search over q for LfF yielded q = 0.001. For JTT,
we use �up = 50 and T = 50 epochs.

CelebA. For LfF, we use the same learning rate, `2-
regularization strength, and optimizer as in Waterbirds,
which are taken from Nam et al. (2020). As above, we
note that we change the batch size, total number of epochs,
and the model from ResNet-18 to ResNet-50 for consis-
tency with the other methods. Also, we note that Nam et al.
(2020) selected those hyperparameters based on the perfor-
mance of both y 6= a groups, whereas we select all other
hyperparameters based on performance on the single worst
group.

We train all approaches for up to 50 epochs. For JTT,
CVaR DRO, and ERM, we grid searched between the reg-
ularization weights � 2 {0.1, 0.0001} and learning rates
{0.0001, 0.00001} from Sagawa et al. (2020a). For ERM,
this yields � = 0.0001 and learning rate 0.0001. For the
others, this yields � = 0.1 and learning rate 0.00001.

Following Nam et al. (2020), we use q = 0.7 for LfF. Our
grid search over ↵ for CVaR DRO yielded ↵ = 0.00852.
For JTT, we use �up = 50 and T = 1 epoch.

MultiNLI. We train each approach for up to 5 epochs
with default tokenization, dropout, batch size 32, no `2-
regularization, and an initial learning rate of 0.00002.

JTT achieves the highest validation worst-group accuracy us-
ing SGD optimization without clipping for the initial model,
and using the AdamW optimizer with clipping for the fi-
nal model. All other approaches achieve highest validation
worst-group accuracy using AdamW with clipping. Our
grid search over ↵ for CVaR DRO yielded ↵ = 0.5. Our
grid search over q for LfF yielded q = 0.1. For JTT, we use
�up = 4 and T = 2 epochs.

CivilComments-WILDS. All approaches use the details
from Koh et al. (2021) We capped the number of tokens per
example at 300 and used an initial learning rate of 0.00001.
We train all approaches for up to 5 epochs with batch size
16 and `2 regularization strength of 0.01.

JTT achieves the highest validation worst-group accuracy us-
ing SGD optimization without clipping for the initial model,
and using the AdamW optimizer with clipping for the fi-
nal model. All other approaches achieve highest validation
worst-group accuracy using AdamW with clipping. Our

grid search over ↵ for CVaR DRO yielded ↵ = 0.5. Our
grid search over q for LfF yielded q = 0.00001. For JTT,
we use �up = 6 and T = 2 epochs.

We also note that our group DRO approach uses a differ-
ent spurious attribute compared to the group DRO results
reported in Koh et al. (2021). Our group DRO uses the spu-
rious attribute of any demographic identity being mentioned,
while the one in Koh et al. (2021) uses only mentions of the
Black demographic. Both perform similarly: ours achieves
0.3% lower worst-group accuracy, but 0.5% higher average
accuracy.

B. Dataset Details
B.1. Waterbirds

We use the Waterbirds dataset introduced by Sagawa et al.
(2020a), which is constructed by cropping out images of
birds from the CUB dataset (Wah et al., 2011) and pasting
them on backgrounds from the Places dataset (Zhou et al.,
2017). In this dataset, images of seabirds (albatross, auk-
let, cormorant, frigatebird, fulmar, gull, jaeger, kittiwake,
pelican, puffin, or tern) and waterfowl (gadwall, grebe, mal-
lard, merganser, guillemot, or Pacific loon) are labeled as
waterbirds, and all other birds are labeled as landbirds.

Backgrounds from the ocean and natural lake categories in
the Places dataset are considered to have spurious attribute
a = water background, while backgrounds from the bamboo
forest or broadleaf forest categories are considered to have
spurious attribute a = land background.

There are two minority groups: (land background, water-
bird) and (water background, landbird); and two majority
groups: (land background, landbird) and (water background,
waterbird). We use the same training / valid / test splits
from Sagawa et al. (2020a). In the training data, 95% of
the waterbirds appear on water backgrounds, and 95% of
the landbirds appear on land backgrounds, so the minor-
ity groups contain far fewer examples than the majority
groups. In the validation and test sets, both the landbirds
and waterbirds are evenly split between the water and land
backgrounds.

B.2. CelebA

We use the task setup from Sagawa et al. (2020a) on the
CelebA celebrity face dataset (Liu et al., 2015). The label
y is set to be the Blond Hair attribute, and the spurious
attribute a is set to be the Male attribute: being female
spurious correlates with having blond hair. The minority
groups are (blond, male) and (not blond, female), although
the (blond, male) group is significantly smaller than the
(not blond, female) group. The majority groups are (blond,
female) and (not blond, male). We use the standard train /

Just Train Twice: Improving Group Robustness without Training Group Information

Group Enrichment ERM test acc.

(muslim, toxic) 8.58x 62.1%
(christian, toxic) 8.58x 57.4%
(LGBTQ, toxic) 8.58x 72.1%

(other religion, toxic) 8.56x 62.9%
(black, toxic) 8.53x 74.6%
(white, toxic) 8.49x 68.6%
(female, toxic) 8.49x 64.7%
(male, toxic) 8.48x 66.6%

(white, non-toxic) 0.09x 84.7%
(LGBTQ, non-toxic) 0.07x 82.2%

(black, non-toxic) 0.07x 74.6%
(male, non-toxic) 0.06x 93.0%

(muslim, non-toxic) 0.05x 89.4%
(female, non-toxic) 0.05x 94.7%

(other religion, non-toxic) 0.04x 93.4%
(christian, non-toxic) 0.03x 96.3%

Table 7. CivilComments error set breakdowns.

valid / test splits from Sagawa et al. (2020a).

B.3. MultiNLI

We use the task setup from Sagawa et al. (2020a) on the
MultiNLI natural language inference dataset (Williams et al.,
2018). Given two sentences, a premise and a hypothesis,
the task is to predict whether the hypothesis is entailed by,
neutral with, or contradicted by the premise. The spurious
attribute a is a binary indicator for when any of the negation
words nobody, no, never, or nothing appear in the second
sentence (the hypothesis), which spuriously correlates with
the contradiction label. We use the standard train / valid /
test splits from Sagawa et al. (2020a).

B.4. CivilComments-WILDS

We use the CivilComments-WILDS dataset from Koh et al.
(2021), which is derived from the Jigsaw dataset (Borkan
et al., 2019). Given a real online comment, the task is to pre-
dict whether the comment is toxic or not toxic. The spurious
attribute a is an 8-dimensional binary vector, where each
entry is a binary indicator of whether the following 8 de-
mographic identities are mentioned in the online comment:
male, female, LGBTQ, Christian, Muslim, other religion,
Black, and White.

Following Koh et al. (2021), we consider the 16 potentially
overlapping groups equal to (identity, toxic) and (identity,
not toxic) for all 8 identities. We use the standard train /
valid / test splits from Koh et al. (2021).

Figure 5. Effect on worst-group accuracy of removing the y = a
and y 6= a examples from JTT’s error set. Both upsampling y = a
examples and upsampling y 6= a examples substantially contribute
to improving worst-group accuracy.

C. Additional Experimental Results
C.1. Error set analysis for CivilComments

We include the CivilComments error set analysis in Table 7
for space constraints.

C.2. Additional analysis

Below, we present a series of analyses that involve partition-
ing the dataset into two groups: groups in which spurious
correlation holds with y = a, and groups in which spurious
correlation does not h old with 9 6= a. For this investiga-
tion, we focus on Waterbirds and CelebA, where all groups
can be clearly partitioned as above because we consider
binary classification tasks with binary spurious attributes.
In Waterbirds, the y = a groups are waterbirds on water
backgrounds and landbirds on land backgrounds; the y 6= a
groups are waterbirds on land backgrounds and landbirds
on water backgrounds. In CelebA, the y = a groups are
blond females and non-blond males; the y 6= a groups
are non-blond females and blond males. In contrast, it is
unclear how to partition the groups as above in MultiNLI,
in which we consider a multi-class classification problem,
and in CivilComments-WILDS, in which we have multiple
spurious a ttributes corresponding to different demographic
identities.

Impact of y = a and y 6= examples in the error set. We
first study how worst-group accuracy changes when we re-
move y = a examples or y 6= a examples from the error
set, as summarized in Figure 5. In both datasets, removing
either the y = a or y 6= a examples from the error set
significantly decreases worst-group accuracy. While this
reduction in worst-group accuracy could stem from the fact
that we consider a fixed set of hyperparameters including

Just Train Twice: Improving Group Robustness without Training Group Information

Worst-group Acc. Average Acc.
0

20

40

60

80

100

A
cc

ur
ac

y
(%

)
Waterbirds

Unmodified Error Set

Replace Minority

Replace Majority

Replace Both

Random Sample

Figure 6. Effect of replacing the y 6= a and y = a examples
in JTT’s error set with randomly-selected y 6= a and y = a
examples on Waterbirds. Worst-group accuracy decreases when
replacing either the y = a or y 6= a examples, suggesting that JTT
successfully automatically identifies informative examples that
improve worst-group accuracy when upsampled.

the upweight factor (which was tuned for JTT with the full
error set), it is possible that both y = a and y 6= a examples
contribute to the improvement in worst-group accuracy. In
particular, because both datasets have substantial label im-
balance, it is expected that upweighting groups from rare
labels is important to perform well on all groups, and in
fact, groups with y 6= a and with rare y are upweighted as
discussed in Section 5.3.

Next, we explore if the particular y = a or y 6= a examples
that JTT upsamples is important, or if upsampling any col-
lection of examples in these groups yields high worst-group
accuracy. To do this, we study how average and worst-group
accuracies change when we replace examples in JTT’s error
set with randomly selected examples from specific groups.
Specifically, we study what happens when we upsample the
following four variants of JTT’s error set:

• REPLACE y 6= a: We replace the y 6= a examples in
the error set with an equal number of randomly selected
y 6= a examples, leaving the y = a examples in the
error set uncha nged.

• REPLACE y = a: We replace the y = a examples in
the error set with an equal number of randomly selected
y = a examples, leaving the y 6= a examples in the
error set unchanged.

• REPLACE BOTH: We replace both the y 6= a examples
in the error set with an equal number of randomly
selected y 6= a examples, and the y = a examples
in the error set with an e qual number of randomly

Waterbirds CelebA
Avg. Worst-group Avg. Worst-group

UPSAMPLE MINORITY 92.84% 75.86% 93.44% 57.22%
JTT 90.33% 86.03% 87.96% 81.11%

Table 8. Average and worst-group test accuracies. UPSAMPLE
MINORITY, which upsamples y 6= a examples, improves worst-
group accuracy.

selected y = a examples.

• RANDOM SAMPLE: We replace all examples in the
error set with an equal number of randomly selected
examples. This yields a different fraction of y 6= a
examples in the error set compared to REPLACE BOTH.

Figure 6 compares upsampling these variants of the error
set with the original unmodified error set (UNMODIFIED ER-
ROR SET). Compared to upsampling the original error set,
upsampling REPLACE y 6= a slightly decreases worst-group
accuracy and leaves average accuracy unchanged. This sug-
gests that upsampling most y 6= a examples helps improve
worst-group accuracy, though the particular y 6= a examples
JTT identifies in the error set are still slightly better than
rand om. On the other hand, upsampling REPLACE y = a
significantly decreases worst-group accuracy, although it
slightly improves average accuracy compared to the original
error set. This suggests that the particular y = a examples
JTT identifies in the error set are important for improving
worst-group accuracy. This could be because the label bal-
ance within upsampled y = a changes, or for other reasons.
Finally, the low worst-group and average accuracies of both
REPLACE BOTH and RANDOM SAMPLE show that merely
upsampling random y = a and y 6= a examples is insuffi-
cient to achieve high worst-group accuracy.

Upsampling y 6= a groups. We present the performance
of a simple baseline, in which we upweight y 6= a examples
using ground-truth group annotations, in Table 8. While
UPSAMPLE MINORITYimproves worst-group error and JTT
outperforms UPSAMPLE MINORITY, the baseline is limited
in a few ways. First, y 6= a groups are not necessarily
groups with the worst accuracies or smallest number of ex-
amples, for example due to label imbalance. So while we
y 6= a examples are counter-examples to the spurious corre-
lations, it’s not necessarily expected that they improve the
worst-group performance well. Secondly, in the presence
of ground-truth examples, it is possible to reweight each of
the groups independently, rather than reweighting y = a
and y 6= a groups. Prior work has observed much higher
worst-group performance by reweighting the groups than
UPSAMPLE MINORITY(Sagawa et al., 2020a).

