Event Outlier Detection in Continuous Time

Siqi Liu'2 Milos Hauskrecht '

A. Continuous-Time LSTM with Context

The input to the continuous-time LSTM consists of the
marked events in the combined sequence, (¢;,u;) € Si.
That is, we not only use the target events but also the context
events as input, although we only model the CIF of the target
events, A(t). The output consists of the hidden states h(t;)
corresponding to the input. It is a nonlinear mapping from
the content in the memory cell ¢(¢;) of the LSTM at time
t;. As in a traditional LSTM, each continuous-time LSTM
unit also has an input gate ¢, an output gate o, and a forget
gate f. The relations between the memory cells, the hidden
states, the input, and these gates are summarized as follows.

Let u; be a vector representation of the mark u;, which is a
learnable embedding. For ¢t € (t;_1, t;], ¢(t) is a continuous
function changing over time from ¢; to ¢;, and for ¢; and ¢;
there are separate input gates and forget gates:

h(t) = 0; ® tanh(c(?)) A1)
c(t)=¢;+ (c;—¢;)exp(—0;(t —t;—1)) (A.2)
[3i41;0i11; fiv1] = o(Wu; + Uh(t;) +d)  (A3)
[6iyi; fir1] = o(Wu; + Uh(t;) + d) (A4)
zit1 = tanh(W,u,; + U h(t;) + d,) (AS)
Ciy1 = fir1 ©c(ts) + 441 © Zita (A.6)
Cit1 = Fit1 ©C + 141 O i1 (A7)
0iv1 = 9(Wsu; + Ush(t;) + ds, 1) (A.3)

where [a; b] denotes the concatenation of the vectors a
and b, © is the elementwise product, o(-) is the logistic
function, and g(z, s) = slog(1 + exp (z/s)) is the scaled
softplus function with parameter s. All the W, U and
d with/without different subscripts and bars are learnable
parameters of the continuous-time LSTM.

Finally, to convert the output of the continuous-time LSTM
to the CIF of the target events, A(t), we have A(t) =
g(wTh(t),s) where wy and s are learnable parameters.
The model is learned by maximizing the likelihood (Eq. 1)
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for all sequences in the training data. Monte-Carlo integra-
tion is used to evaluate [ A(s)ds.

B. Generalization to Nonconstant
Commission

We generalize the method we have developed in Section 3.3
to cases when the rate of commission is not a constant.
Treating A;(¢,,) as a random variable, based on what we
have already developed, we have

(Zn = 1t M(tn)) =1 — ;Zgz;
=1 >‘O(tn)
Seltn)
=N - sltn)

To avoid cluttering, we omit ¢,, in Ay, A1, and s. from now.
By marginalizing out \;, we get

p(Zn = 1|tn) = E>\1 [p(Zn = 1|tna A1)]

where we defined

We assume
1
Ey, [—| <00
. [AJ

which is easy to satisfy, since it is sufficient that either
A1 > e for some € > 0 or the distribution of \; is one
of the common distributions including any finite discrete
distribution, Gamma distribution, etc.

It is not hard to see that f is an increasing function of s, for
any given g, as s, € (—00,0), A; € (0,00), and
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Therefore, we can show that

OEx, [f(se; M)] _ 9f(se, M)
08¢ =B [ 08e ] >0

using the Dominated Convergence Theorem. This implies
that p(Z,, = 1|¢,,) is an increasing function of s...

C. Generalization to Nonconstant Omission

Similar to commission outliers, we generalize the method
we have developed in Section 3.4 to cases when the prob-
ability of omission is not a constant and the normal point
process is an inhomogeneous Poisson process. Treating
p1 as a random variable, based on what we have already
developed, we have

p(Zi = 1IN(B) = 0,p1) = 1 exp (—m / Ao<s>ds)

=1 —exp(—p150(B))

To avoid cluttering, we omit B in s, from now. By marginal-
izing out p;, we get

p(Zp = 1N(B) =0) =1—E,, [exp (—p15o)]
=1-E,, [9(s0,p1)]

where we defined
9(S0,p1) = exp (—p15,)

Apparently g is an decreasing function of s, for any given

p1,as s, € (0,00), p1 € [0,1], and

0

8890 = (=p1)exp (=p18,) <0
Meanwhile,

22 = |(pr)exp (-pisa)| < 1

Therefore, we can show that

OEp, [9(s0,P1)] 99(s0, p1)
AT R NP <0

ds, P 05, -
using the Dominated Convergence Theorem. This implies
that p(Zg = 1|N(B) = 0) is an increasing function of s,,.

D. Proofs of the Theorems
D.1. Theorem 3.1

Proof. From Eq. 4 and implicitly conditioned on the event
t,, and the history

Xo(tn)
c(tn) =0) =p(Z, =0) = —————
P(Ye(tn) ) =n( ) No(tn) + M
Given that §.(t,) = 1, i.e., —Ao(tn) > 0., we get
p yc n yC n _gc )\1

D.2. Theorem 3.2

Proof. Let T, be the random variable for the inter-event
time corresponding to the observed inter-event interval B,
assuming it is generated from the normal point process.
From Eq. 18

p(Jo(B) = 1|yo(B) = 0)
=p </ Xo(s)ds > b, |yo(B) = 0)

—p <exp< / Nols > < exp (—0,)

=p (p(Tn > |B|) < exp (—b,))
=exp (—b,)
The last equality is because p(T,, > |B|) =1 — p(T;, <

|B|), and p(T,, < |B|) is the cumulative distribution func-
tion of 7T},, implying it follows a uniform distribution. [

Yo(B) = 0)

D.3. Theorem 3.3

Proof. From Eq. 17 and implicitly conditioned on N (B) =
0 and the history

= p(Kp =0) = exp <—p1 /B /\O(s)ds>

Given that j,(B) = 1,1i.e., [5 Ao(s

P(yo(B) = 0)
)ds > 0,, we get

P(Yo(B) = 0|go(B) = 1) < exp (—p10,)

E. Simulation of Commission and Omission
Outliers

To define outliers, we simulate commission and omission
outliers on top of the existing data. In this way, we can
obtain ground-truth labels for testing.
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To define commission outliers, we simulate a new sequence
of target events independently from the existing data, and
then merge the new events with the existing events. We
use an (inhomogeneous) Poisson process with an intensity
Ac(t) to generate the outliers. . controls the rate of such
outliers. In the experiments, for each dataset, we set A.(t) =
(t) Asest, Where a(t) is either a constant or a function over
time depending on the settings, and Atest is the empirical
rate of the target events calculated from the original test
data.

To define omission outliers, we randomly remove target
events in the original sequences according to independent
Bernoulli trials. That is, each event is removed with proba-
bility p; and kept with probability 1 — p;. We always keep
the event if it marks the start time of the sequence. In the ex-
periments, we set p; = «(t), where, similar to commission,
a(t) is either a constant or a function over time depending
on the settings.

F. Detection of Commission and Omission
Outliers

We detect the presence of commission and omission outliers
differently. To test for commission outliers, each method
outputs an outlier score at the time of each target event. That
is, whenever there is a new target event, we ask the question:
is this event a commission outlier or not?

Testing for omission outliers is trickier, because we need
to decide the checkpoints more carefully, i.e., when to ask
for outlier scores. The simplest thing to do is to only check
at the target event times. That is, whenever there is a new
target event, we ask the question: is there any omission
outlier since the previous target event till now?

However, this may become unsatisfactory in real-world ap-
plications, because there could be cases when the target
events just stop occurring for a long period of time or even
forever (potentially due to malfunctions of the underlying
system). These are interesting and important cases we are
supposed to detect, but the above testing method will not
work. Therefore, we use a combined approach. We still
have a checkpoint at each target event time, but on top of
that, we also randomly generate checkpoints in long blank
intervals.

Specifically, we have a parameter w set to 2/ j\traina where
Xtmm is the empirical rate of the target events estimated
from the training data for each dataset, so within w, on av-
erage, we should see two events normally. Then, whenever
the blank interval from the previous checkpoint till now is
longer than w, we generate a new checkpoint within the in-
terval by uniform sampling, and set the previous checkpoint
to the generated checkpoint. We keep generating check-

points until we reach the next target event or the end of the
sequence.

G. Outlier Ratios

The outlier ratio, i.e., the number of outliers divided by the
total number of test points, for each dataset is summarized
in Table G.1.

Table G. 1. Outlier ratios of the datasets. Dataset: name abbrevia-
tion (C=commission, O=omission) [«].

Dataset | Ratio | Dataset | Ratio
Gam (C) [0.05]]0.047 | Gam (O) [0.05]]|0.034
Gam (C) [0.1] |{0.095| Gam (O) [0.1] |0.072
Gam (C) [sin] |0.089 | Gam (O) [sin] |0.069
Gam (C) [pc] |0.088 | Gam (O) [pc] |0.067
Poi (C) [0.05]]|0.046 | Poi (O) [0.05]]0.033
Poi (C) [0.1] |0.092|Poi (O) [0.1] |0.070
Poi (C) [sin] |0.088 |Poi (O) [sin] |0.066
Poi (C) [pc] |0.086|Poi (O) [pc] |0.065
INR (C) [0.05]]|0.057 |INR (O) [0.05]]0.033
INR (C) [0.1] |0.102|INR (O) [0.1] |0.065
INR (C) [sin] |0.111|INR (O) [sin] |0.072
INR (C) [pc] [0.096 |INR (O) [pc] |0.063
Cal (C) [0.05]]0.048 |Cal (O) [0.05]]0.028
Cal (C) [0.11 |0.092|Cal (O) [0.1] |0.054
Cal (C) [sin] |0.099 [Cal (O) [sin] |0.061
Cal (C) [pc] |0.096|Cal (O) [pc] |0.050
Pot (C) [0.05]|0.049 |Pot (O) [0.05]|0.030
Pot (C) [0.1] |0.095|Pot (O) [0.1] |0.059
Pot (C) [sin] |0.102 | Pot (O) [sin] |0.067
Pot (C) [pc] 0.089 [ Pot (O) [pc] 0.059
Nor (C) [0.05]]|0.052|Nor (O) [0.05]]0.023
Nor (C) [0.1] |0.086|Nor (O) [0.1] |0.047
Nor (C) [sin] |0.100 | Nor (O) [sin] | 0.058
Nor (C) [pc] 0.098 | Nor (O) [pc] 0.050

H. Empirical Verification of the Bounds on
FDR and FPR

We show the results of empirically verifying the bounds
proved in Section 3.5, continuing the results in Section 4.2.
We use GT (Ground Truth): our outlier scoring methods
combined with the ground-truth point-process model, which
is only available on synthetic data. Figure H.1 shows the
empirical FDR (commission outlier), FDR (omission out-
lier), and FPR (omission outlier) with means and standard
deviations on data simulated from inhomogeneous Poisson
processes along with the theoretical bounds. As we can see,
the empirical FDRs have high variance when the threshold
is high, because there are smaller number of samples above
a higher threshold. Nonetheless, the empirical FDRs con-
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form with the theoretical bounds, and so does the empirical
FPR.

I. Additional Experiment Results

Using Ground-Truth Model We also compared with GT
(Ground Truth): our outlier scoring methods combined with
the ground-truth point-process model (only available on syn-
thetic data). Figure 1.1 and 1.2 show the receiver operating
characteristic (ROC) curves of the outlier detection meth-
ods on the synthetic data generated from inhomogeneous
Poisson processes and Gamma processes with o = 0.1. We
note that the curves of GT and CPPOD are almost iden-
tical. The fact that CPPOD almost has the same perfor-
mance as GT is an evidence that the model based on the
continuous-time LSTM is flexible enough to represent these
context-dependent point processes.

Varying Outlier Rate We also experimented with chang-
ing ag = 0.05 for the constant rate to see its effect. Table I.1
and Table 1.2 show the full AUROC results for synthetic
and MIMIC data respectively. As we can see, the relative
performance for each method does not change in almost all
cases.
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Figure H.1. From left to right: FDR (commission outlier), FDR (omission outlier), and FPR (omission outlier) on synthetic data (Poisson
process).
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Figure I.1. ROC curves on synthetic data (Poisson process). Left: commission. Right: omission.
1.0 1.0 +
0.8 0.8
0.6 0.6
o o
o o
[= [
0.4 + 0.4
0.2 1 0.2
0.0 - 0.0
I I I I I I I I I I I I
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
FPR FPR

Figure 1.2. ROC curves on synthetic data (Gamma process). Left: commission. Right: omission.
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Table 1.1. AUROC on synthetic data. Dataset: name abbreviation (C=commission, O=omission) [«].

Dataset | RND LEN PPOD CPPOD
Poi (C) [0.05] | 0.493 (£0.011) 0.627 (£0.011) 0.684 (£ 0.014) 0.716 (& 0.019)
Poi (C) [0.11 | 0.500 (% 0.010) 0.601 (£ 0.008) 0.684 (£ 0.010) 0.711 (£ 0.012)
Poi (C) [sin] | 0.493 (& 0.007) 0.575(£0.006) 0.661 (£ 0.016) 0.707 (£ 0.017)
Poi (C) [pc] | 0.512(%0.009) 0.584 (£0.011) 0.664 (& 0.009) 0.697 (£ 0.014)
Poi  (O) [0.05] | 0.491 (£ 0.018) 0.650 (£ 0.008) 0.736 (£ 0.007) 0.776 (- 0.009)
Poi (0) [0.11 | 0.503 (% 0.008) 0.650 (£ 0.006) 0.737 (£ 0.006) 0.778 (£ 0.005)
Poi  (O) [sin] | 0.498 (& 0.013) 0.659 (£0.007) 0.741 (£ 0.012) 0.791 (= 0.010)
Poi  (0) [pc] | 0.491 (£0.007) 0.652(£0.011) 0.734 (£ 0.013) 0.784 (£ 0.010)
Gam (C) [0.05] | 0.479 (£ 0.018) 0.776 (£ 0.011) 0.840 (£ 0.010) 0.897 (* 0.006)
Gam (C) [0.1]1 | 0.485(%0.007) 0.754 (£ 0.006) 0.816 (& 0.008) 0.871 (= 0.006)
Gam (C) [sin] | 0.493 (& 0.008) 0.762 (£ 0.008) 0.817 (+ 0.006) 0.886 (& 0.004)
Gam (C) [pc] | 0.506 (& 0.007) 0.757 (£0.005) 0.813 (& 0.005) 0.870 (= 0.007)
Gam (0) [0.05] | 0.503 (£ 0.013) 0.803 (£ 0.009) 0.919 (£ 0.008) 0.960 (* 0.007)
Gam (0) [0.11 | 0.505(%0.012) 0.799 (£0.005) 0.901 (& 0.007) 0.956 (& 0.003)
Gam (O) [sin] | 0.503 (& 0.010) 0.809 (£ 0.006) 0.902 (+ 0.006) 0.956 (& 0.004)
Gam (0) [pc] | 0.515(%£0.010) 0.813 (£0.005) 0.905 (& 0.006) 0.955 (= 0.004)
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Table I.2. AUROC on MIMIC data. Dataset: name abbreviation (C=commission, O=omission) [«a].

Dataset | RND LEN PPOD CPPOD
INR () [0.05] | 0.486 (£ 0.014) 0.613 (£0.018) 0.702 (+ 0.014) 0.701 (£ 0.018)
INR (C) [0.1] | 0496 (£0.010) 0.596 (% 0.009) 0.682(+0.010) 0.687 (£ 0.009)
INR (C) [sin] | 0.508(£0.009) 0.588 (& 0.010) 0.675 (£ 0.009) 0.680 (& 0.009)
INR (C) [pe] | 0.488(£0.010) 0.607 (+0.010) 0.673 (£ 0.008) 0.681 (& 0.010)
INR (O) [0.05] | 0487 (£0.013) 0.736 (£0.011) 0.779 (= 0.012) 0.782 (£ 0.012)
INR (0) [0.1] |0.498(£0.011) 0.726 (+0.008) 0.748 (= 0.009) 0.746 (& 0.010)
INR (0) [sin] |0516(£0.012) 0.717 (+0.011) 0.760 (£ 0.010) 0.764 (& 0.009)
INR  (0) [pc] | 0508 (£0.009) 0.720 (+0.011) 0.773 (£ 0.009) 0.770 (& 0.009)
Cal (C) [0.05] | 0.470 (£0.020) 0.753(£0.017) 0.843 (£ 0.012) 0.885 (£ 0.010)
Cal (C) [0.1] | 0.504(£0.013) 0.739 (+0.012) 0.830 (+0.010) 0.866 (& 0.006)
Cal (C) [sin] | 0.502(£0.016) 0.688 (4 0.015) 0.797 (£ 0.010) 0.835 (& 0.009)
Cal (C) [pe] | 0508 (£0.011) 0.742(40.011) 0.837 (£ 0.009) 0.860 (& 0.011)
Cal (0) [0.05] [ 0.513(£0.021) 0.531(£0.014) 0.760 (£ 0.014) 0.761 (£ 0.014)
Cal (0) [0.1] | 0.493(£0.016) 0.526(40.009) 0.759 (+0.008) 0.775 (& 0.008)
Cal (O) [sin] | 0.518(£0.017) 0.529(4+0.012) 0.758 (£ 0.009) 0.777 (& 0.010)
Cal (O) [pc] | 0.496(£0.017) 0.541(40.010) 0.759 (£ 0.011) 0.780 (& 0.009)
Pot  (C) [0.05] | 0.488(£0.020) 0.707 (+0.016) 0.827 (£0.012) 0.878 (& 0.009)
Pot (C) [0.1] | 0.498(£0.012) 0.733(+0.013) 0.839 (£ 0.009) 0.878 (& 0.009)
Pot (C) [sin] | 0503 (£0.010) 0.691 (+0.009) 0.813(£0.011) 0.857 (& 0.007)
Pot  (C) [pe] | 0.511(£0.010) 0.718 (£0.013) 0.831 (& 0.008) 0.874 (£ 0.010)
Pot  (0) [0.05] [ 0.503 (£0.015) 0.539 (+0.014) 0.727 (£ 0.015) 0.744 (+ 0.014)
Pot (0) [0.1] | 0.495(£0.017) 0.533(+0.012) 0.736 (£ 0.011) 0.748 (+0.011)
Pot  (0) [sin] | 0508 (£0.011) 0.536(+0.014) 0.744 (£0.011) 0.759 (+ 0.012)
Pot  (O) [pe] | 0.524(£0.010) 0.552(£0.011) 0.746 (+0.011) 0.761 (£ 0.011)
Nor (C) [0.05] | 0.506 (£0.013) 0.868 (+0.014) 0.899 (£ 0.013) 0.899 (& 0.013)
Nor (C) [0.1] | 0.494(£0.014) 0.864 (+0.010) 0.890 (£ 0.012) 0.897 (4 0.013)
Nor (C) [sin] | 0.536(£0.012) 0.837(£0.012) 0.858 (+0.014) 0.871 (£ 0.014)
Nor (C) [pc] | 0.524(£0.012) 0.844 (+0.016) 0.884 (+0.014) 0.882 (& 0.013)
Nor (0) [0.05] | 0.506 (£0.023) 0.489 (+0.018) 0.829 (£ 0.013) 0.826 (+ 0.012)
Nor (0) [0.1] | 0.510(£0.010) 0.468 (+0.016) 0.835 (£ 0.010) 0.832 (& 0.009)
Nor (O) [sin] | 0.488(£0.014) 0.462(+£0.013) 0.842(+0.011) 0.837 (£0.011)
Nor (0) [pc] | 0503 (£0.012) 0.476(+0.014) 0.851 (£ 0.011) 0.848 (& 0.010)




