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A. Additional Simulation Results and Details
Selection Bias In this setting, the correlations among co-
variates are perturbed through selection bias mechanism.
According to assumption 2.1, we assume X = [Φ∗,Ψ∗]T ∈
Rd and Φ∗ = [Φ∗1,Φ

∗
2, . . . ,Φ

∗
nφ

]T ∈ Rnφ is independent
from Ψ∗ = [Ψ∗1,Ψ

∗
2, . . . ,Ψ

∗
nψ

] ∈ Rnψ while the covari-
ates in Φ∗ are dependent with each other. We assume
Y = f(Φ∗) + ε and P (Y |Φ∗) remains invariant across
environments while P (Y |Ψ∗) can arbitrarily change.

Therefore, we generate training data points with the help of
auxiliary variables Z ∈ Rnφ+1 as following:

Z1, . . . , Znφ+1
iid∼ N (0, 1.0) (1)

Ψ∗1, . . . ,Ψ
∗
nψ

iid∼ N (0, 1.0) (2)

Φ∗i = 0.8 ∗ Zi + 0.2 ∗ Zi+1 for i = 1, . . . , nφ (3)

To induce model misspecification, we generate Y as:

Y = f(Φ∗) + ε = θφ ∗ (Φ∗)T + β ∗ Φ∗1Φ∗2Φ∗3 + ε (4)

where θφ = [12 ,−1, 1,− 1
2 , 1,−1, . . . ] ∈ Rnφ , and ε ∼

N (0, 0.3). As we assume that P (Y |Φ∗) remains unchanged
while P (Y |Ψ∗) can vary across environments, we design a
data selection mechanism to induce this kind of distribution
shifts. For simplicity, we select data points according to a
certain variable set Vb ⊂ Ψ∗:

P̂ = Πvi∈Vb |r|−5∗|f(φ)−sign(r)∗vi| (5)
µ ∼ Uni(0, 1) (6)

M(r; (x, y)) =

{
1, µ ≤ P̂
0, otherwise

(7)
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where |r| > 1 and Vb ∈ Rnb . Given a certain r, a data
point (x, y) is selected if and only if M(r; (x, y)) = 1 (i.e.
if r > 0, a data point whose Vb is close to its Y is more
probably to be selected.)

Intuitively, r eventually controls the strengths and direction
of the spurious correlation between Vb and Y (i.e. if r > 0,
a data point whose Vb is close to its Y is more probably
to be selected.). The larger value of |r| means the stronger
spurious correlation between Vb and Y , and r ≥ 0 means
positive correlation and vice versa. Therefore, here we use
r to define different environments.

In training, we generate sum data points, where κ · sum
points from environment e1 with a predefined r and
(1 − κ)sum points from e2 with r = −1.1. In test-
ing, we generate data points for 10 environments with
r ∈ [−3,−2,−1.7, . . . , 1.7, 2, 3]. β is set to 1.0.

Apart from the two scenarios in main body, we also conduct
scenario 3 and 4 with varying κ, n and nb respectively.

Anti-Causal Effect Inspired by (Arjovsky et al., 2019), in
this setting, we introduce the spurious correlation by using
anti-causal relationship from the target Y to the variant
covariates Ψ∗.

We assume X = [Φ∗,Ψ∗]T ∈ Rd and Φ∗ =
[Φ∗1,Φ

∗
2, . . . ,Φ

∗
nφ

]T ∈ Rnφ , Ψ∗ = [Ψ∗1,Ψ
∗
2, . . . ,Ψ

∗
nψ

] ∈
Rnψ Data Generation process is as following:

Φ∗ ∼
k∑
i=1

zkN (µi, I) (8)

Y = θTφΦ∗ + βΦ∗1Φ∗2Φ∗3 +N (0, 0.3) (9)

Ψ∗ = θψY +N (0, σ(µi)
2) (10)

where
∑k
i=1 zi = 1 & zi >= 0 is the mixture weight of

k Gaussian components, σ(µi) means the Gaussian noise
added to Ψ∗ depends on which component the invariant
covariates Φ∗ belong to and θψ ∈ Rnψ . Intuitively, in
different Gaussian components, the corresponding correla-
tions between Ψ∗ and Y are varying due to the different
value of σ(µi). The larger the σ(µi) is, the weaker correla-
tion between Ψ∗ and Y . We use the mixture weight Z =
[z1, . . . , zk]T to define different environments, where differ-
ent mixture weights represent different overall strength of
the effect Y on Ψ∗. In this experiment, we set β = 0.1 and
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Table 1. Results in selection bias simulation experiments of different methods with varying sample size sum, ratio κ and variant
dimensions nb of training data, and each result is averaged over ten times runs.

Scenario 3: varying ratio κ and sample size sum (d = 10, r = 1.9, nb = 1)
κ, n κ = 0.90, sum = 1000 κ = 0.95, sum = 2000 κ = 0.975, sum = 4000
Methods Mean Error Std Error Max Error Mean Error Std Error Max Error Mean Error Std Error Max Error
ERM 0.477 0.061 0.530 0.510 0.108 0.608 0.547 0.150 0.687
DRO 0.480 0.107 0.597 0.512 0.111 0.625 0.608 0.227 0.838
EIIL 0.476 0.063 0.529 0.507 0.102 0.613 0.539 0.148 0.689
IRM(with Etr label) 0.455 0.015 0.471 0.456 0.015 0.472 0.456 0.015 0.472
HRM 0.450 0.010 0.461 0.447 0.011 0.465 0.447 0.010 0.463

Scenario 4: varying variant dimension nb (d = 10, sum = 2000, κ = 0.95, r = 1.9, nb = 1)
nb nb = 1 nb = 3 nb = 5
Methods Mean Error Std Error Max Error Mean Error Std Error Max Error Mean Error Std Error Max Error
ERM 0.510 0.108 0.608 0.468 0.110 0.583 0.445 0.112 0.567
DRO 0.512 0.111 0.625 0.515 0.107 0.617 0.454 0.122 0.577
EIIL 0.520 0.111 0.613 0.469 0.111 0.581 0.454 0.100 0.557
IRM(with Etr label) 0.456 0.015 0.472 0.432 0.014 0.446 0.414 0.061 0.475
HRM 0.447 0.011 0.465 0.413 0.012 0.431 0.402 0.057 0.462

build 10 environments with varying σ and the dimension of
Φ∗,Ψ∗, the first three for training and the last seven for test-
ing. Specifically, we set β = 0.1, µ1 = [0, 0, 0, 1, 1]T , µ2 =
[0, 0, 0, 1,−1]T , µ2 = [0, 0, 0,−1, 1]T , µ4 = µ5 =
· · · = µ10 = [0, 0, 0,−1,−1]T , σ(µ1) = 0.2, σ(µ2) =
0.5, σ(µ3) = 1.0 and [σ(µ4), σ(µ5), . . . , σ(µ10)] =
[3.0, 5.0, . . . , 15.0]. θφ, θψ are randomly sampled from
N (1, I) andN (0.5, 0.1I) respectively. We run experiments
for 10 times and average the results.

B. Proofs
B.1. Proof of Theorem 2.1

First, we would like to prove that a random variable satisfy-
ing assumption 2.1 is MIP.

Theorem B.1. A representation Φ∗ ∈ I satisfying assump-
tion 2.1 is the maximal invariant predictor.

Proof. →: To prove Φ∗ = arg minZ∈I I(Y ;Z). If
Φ∗ is not the maximal invariant predictor, assume
Φ′ = arg maxZ∈I I(Y ;Z). Using functional repre-
sentation lemma, consider (Φ∗,Φ′), there exists ran-
dom variable Φextra such that Φ

′
= σ(Φ∗,Φextra) and

Φ∗ ⊥ Φextra. Then I(Y ; Φ
′
) = I(Y ; Φ∗,Φextra) =

I(f(Φ∗); Φ∗,Φextra) = I(f(Φ∗); Φ∗).

←: To prove the maximal invariant predictor Φ∗ satisfies
the sufficiency property in assumption 2.1.

The converse-negative proposition is :

Y 6= f(Φ∗) + ε→ Φ∗ 6= arg max
Z∈I

I(Y ;Z) (11)

Suppose Y 6= f(Φ∗) + ε and Φ∗ = arg maxZ∈I I(Y ;Z),
and suppose Y = f(Φ

′
)+ε where Φ

′ 6= Φ∗. Then we have:

I(f(Φ
′
); Φ∗) ≤ I(f(Φ

′
); Φ

′
) (12)

Therefore, Φ
′

= arg maxZ∈I I(Y ;Z)

Then we provide the proof of theorem 2.1.

Theorem B.2. Let g be a strictly convex, differentiable func-
tion and let D be the corresponding Bregman Loss function.
Let Φ∗ is the maximal invariant predictor with respect to IE ,
and put h∗(X) = EY [Y |Φ∗]. Under assumption 2.2, we
have:

h∗ = arg min
h

sup
e∈supp(E)

E[D(h(X), Y )|e] (13)

Proof. Firstly, according to theorem B.1, Φ∗ satisfies as-
sumption 2.1. Consider any function h, we would like to
prove that for each distribution P e(e ∈ E), there exists an
environment e′ such that:

E[D(h(X), Y )|e′] ≥ E[D(h∗(X), Y )|e] (14)

For each e ∈ E with density ([Φ,Ψ], Y ) 7→ P (Φ,Ψ, Y ),
we construct environment e′ with density Q(Φ,Ψ, Y ) that
satisfies: (omit the superscript ∗ of Φ and Ψ for simplicity)

Q(Φ,Ψ, Y ) = P (Φ, Y )Q(Ψ) (15)

Note that such environment e′ exists because of the het-
erogeneity property assumed in assumption 2.2. Then we
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have:∫
D(h(φ, ψ), y)q(φ, ψ, y)dφdψdy (16)

=

∫
ψ

∫
φ,y

D(h(φ, ψ), y)p(φ, y)q(ψ)dφdydψ (17)

=

∫
ψ

∫
φ,y

D(h(φ, ψ), y)p(φ, y)dφdyq(ψ)dψ (18)

≥
∫
ψ

∫
φ,y

D(h∗(φ, ψ), y)p(φ, y)dφdyq(ψ)dψ (19)

=

∫
ψ

∫
φ,y

D(h∗(φ), y)p(φ, y)dφdyq(ψ)dψ (20)

=

∫
φ,y

D(h∗(φ), yp(φ, y)dφdy (21)

=

∫
φ,ψ,y

D(h∗(φ), y)p(φ, ψ, y)dφdψdy (22)

(23)

B.2. Proof of Theorem 2.2

Theorem B.3. IE ⊆ IEtr

Proof. Since Etr ⊆ E , then for any S ∈ IE , S ∈ IEtr .

B.3. Proof of Theorem 2.3

Theorem B.4. Given set of environments supp(Ê), de-
note the corresponding invariance set IÊ and the corre-
sponding maximal invariant predictor Φ̂. For one newly-
added environment enew with distribution Pnew(X,Y ), if
Pnew(Y |Φ̂) = P e(Y |Φ̂) for e ∈ supp(Ê), the invariance
set constrained by supp(Ê) ∪ {enew} is equal to IÊ .

Proof. Denote the invariance set with respect to supp(Ê ∪
{enew}) as Inew, it is easy to prove that ∀S ∈ IÊ , we
have S ∈ Inew, since the newly-added environment cannot
exclude any variables from the original invariance set.

B.4. Proof of Theorem 4.1

Theorem B.5. Given Etr, the learned Φ(X) = M �X is
the maximal invariant predictor of IEtr .

Proof. The objective function forMp is

Lp(M �X,Y ; θ) = EEtr [Le] + λtrace(VarEtr (∇θLe))
(24)

Here we prove that the minimum of objective function can
be achieved when Φ(X) = M �X is the maximal invari-
ant predictor. According to theorem B.1, Φ(X) satisfies
assumption 2.1, which indicates that P e(Y |Φ(X)) stays
invariant.

From the proof in C.2 in (Koyama & Yamaguchi, 2020),
I(Y ; E|Φ(X)) = 0 indicates that trace(VarEtr (∇θLe)) =
0.

Further, from the sufficiency property, the minimum
of Le is achieved with Φ(X). Therefore, EEtr [Le] +
λtrace(VarEtr (∇θLe)) reaches the minimum with Φ(X)
being the MIP.(λ ≥ 0)

B.5. Proof of Theorem 4.2

Theorem B.6. For ei, ej ∈ supp(Etr), assume that
X = [Φ∗,Ψ∗]T satisfying Assumption 2.1, where
Φ∗ is invariant and Ψ∗ variant. Then under As-
sumption 4.1, we have DKL(P ei(Y |X)‖P ej (Y |X)) ≤
DKL(P ei(Y |Ψ∗)‖P ej (Y |Ψ∗))

Proof.

DKL(P ei(Y |X)‖P ej (Y |X)) (25)
= DKL(P ei(Y |Φ∗,Ψ∗)‖P ej (Y |Φ∗,Ψ∗)) (26)

=

∫ ∫ ∫
pi(y, φ, ψ) log

[
pi(y|φ, ψ)

pj(y|φ, ψ)

]
dydφdψ (27)

Therefore, we have

DKL(P ei(Y |Ψ)‖P ej (Y |Ψ))−DKL(P ei(Y |X)‖P ej (Y |X))

(28)

=

∫ ∫ ∫
pi(y, φ, ψ)

(
log

pi(y|ψ)

pj(y|ψ)
− log

pi(y|φ, ψ)

pj(y|φ, ψ)

)
dydφdψ

(29)

=

∫ ∫ ∫
pi(y, φ, ψ)

(
log

pi(y|ψ)

pi(y|φ, ψ)
− log

pj(y|ψ)

pj(y|φ, ψ)

)
dydφdψ

(30)

= Ici,j(Y ; Φ∗|Ψ∗)− Ii(Y ; Φ∗|Ψ∗) (31)

Therefore, we have

DKL(P ei(Y |X)‖P ej (Y |X)) ≤ DKL(P ei(Y |Ψ∗)‖P ej (Y |Ψ∗))
(32)

B.6. Proof of Theorem 4.3

Theorem B.7. Under Assumption 2.1 and 2.2, for the pro-
posedMc andMp, we have the following conclusions: 1.
Given environments Etr such that IE = IEtr , the learned
Φ(X) byMp is the maximal invariant predictor of IE . 2.
Given the maximal invariant predictor Φ∗ of IE , assume the
pooled training data is made up of data from all environ-
ments in supp(E), then the invariance set IEtr regularized
by learned environments Etr is equal to IE .

Proof. For 1, according to theorem B.5, the learned Φ(X)
byMp is the maximal invariant predictor of IEtr . Therefore,
if IE = IEtr , Φ(X) is the real maximal invariant predictor.
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For 2, assume that Ptrain(X,Y ) =
∑
e∈E weP

e(X,Y ),
we would like to prove that DKL(Ptrain(Y |Ψ∗)‖Q)
reaches minimum when the components in the mixture dis-
tribution Q corresponds to distributions for e ∈ E . Since
the learned Φ(X) byMp is the maximal invariant predictor
of IE , the corresponding Ψ(X) is exactly the Ψ∗(X). Then
taking Q∗ =

∑
e∈E weP

e(Y |Ψ∗), we have ∀Q ∈ Q,

DKL(Ptrain(Y |Ψ∗)‖Q∗) ≤ DKL(Ptrain(Y |Ψ∗)‖Q)
(33)

Therefore, the components in Q∗ correspond to P e for e ∈
E , which makes IEtr approaches to IE .
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