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Abstract
Recent works apply Graph Neural Networks
(GNNs) to graph matching tasks and show promis-
ing results. Considering that model outputs are
complex matchings, we devise several techniques
to improve the learning of GNNs and obtain a
new model, Stochastic Iterative Graph MAtch-
ing (SIGMA). Our model predicts a distribution
of matchings, instead of a single matching, for
a graph pair so the model can explore several
probable matchings. We further introduce a novel
multi-step matching procedure, which learns how
to refine a graph pair’s matching results incremen-
tally. The model also includes dummy nodes so
that the model does not have to find matchings for
nodes without correspondence. We fit this model
to data via scalable stochastic optimization. We
conduct extensive experiments across synthetic
graph datasets as well as biochemistry and com-
puter vision applications. Across all tasks, our
results show that SIGMA can produce signifi-
cantly improved graph matching results compared
to state-of-the-art models. Ablation studies verify
that each of our components (stochastic training,
iterative matching, and dummy nodes) offers no-
ticeable improvement.

1. Introduction
Graph matching (Livi and Rizzi, 2013; Yan et al., 2016; Sun
et al., 2020) aims to find node correspondence among two
or more graphs. It has a wide range of applications such as
computer vision (Sun et al., 2020), computational biology
(Saraph and Milenković, 2014), and biochemistry (Kotera
et al., 2004). Given that many practical graphs cannot be
perfectly matched, graph matching often maximizes some
matching objective, such as the total number of matched
edges (Yan et al., 2020).
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Learning-based graph matching (Caetano et al., 2009; Zanfir
and Sminchisescu, 2018; Yu et al., 2020; Wang et al., 2019a;
Fey et al., 2018) aims to learn a model that can take a pair
of graphs and directly “predict” a matching between them.
Such models extract information for matching from graph
features and carry learned knowledge to new graph matching
problems. Unlike labels in typical classification problems,
the space of possible matchings is combinatorial, which
poses difficulties for learning such models.

Recently there has been remarkable progress in optimizing
distributions of discrete structures (Maddison et al., 2016;
Paulus et al., 2020). This class of methods approximate
discrete random variables with continuous ones and then
use the reparameterization technique (Kingma and Welling,
2013; Rezende et al., 2014) to optimize the distributions. In
particular, Linderman et al. (2018) and Mena et al. (2018)
use this method to learn distributions of permutations and
achieve good performances in tasks such as solving jigsaw
puzzles. However, learning distributions of matchings is an
area left to explore (Paulus et al., 2020).

In this work we apply the stochastic softmax trick (Paulus
et al., 2020) to the distribution of matchings and then ef-
ficiently learn this distribution through reparameterization.
We then use a learning model to parameterize such a dis-
tribution to address the graph matching problem, so that
the learned model can be applied to any new input graphs.
The model is learned to maximize the expected reward un-
der the matching distribution. Comparing to models that
directly predict only a single matching, this new model that
produces a distribution over matchings is able to explore a
wider range of solutions. Furthermore, the stochasticity of
the predictive distribution increases the robustness of the
learned model, because it is trained to predict a population
of good solutions.

An optimal matching for a graph pair often cannot be dis-
covered in one shot, and some refinement often improves
the quality of the solution. This is particularly true for a
learning model because of the generalization error: it is
even hard to guarantee that the predicted matching is a local
minimum on a new graph pair. Similar observations are also
reported in amortized inference (Marino et al., 2018).

To address this issue, we also design a learnable architec-
ture that can iteratively refine matchings. In addition to
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training the model’s ability to predict matchings, we also
train the model’s ability to refine an existing solution for a
given graph pair. By maintaining the best matching solution
with different refinements, the final prediction will never be
worse than the initial prediction.

In addition to our model design, we also have investigated
the importance of using dummy nodes (Wang et al., 2019b)
in graph matching. Our investigation is motivated by the
intended application of matching reactants in molecular reac-
tions. We have the prior knowledge that some nodes cannot
be matched. Such nodes can find their place by matching
to a dummy node. Our empirical study later indicates the
effectiveness of the dummy node on this problem.

With all these considerations, we develop a unified model,
Stochastic Iterative Graph MAtching (SIGMA). We then
test this new model on three graph matching tasks. The
results indicate that the proposed model produces better
matching results than state-of-the-art models. We also do an
extensive ablation study of the three elements of the model
and show the value of each element in graph matching.

To summarize, our contributions in this work include

• the design of a stochastic softmax trick for learning a
matching distribution;

• the proposal of a graph matching model that defines a
matching distribution;

• the design of iterative refinement for graph matching;

• the premium performances of the proposed model in
three graph matching tasks.

2. Related Work
Graph Matching. Traditionally graph matching has been
treated as an optimization problem and addressed by vari-
ous optimization methods. Livi and Rizzi (2013); Yan et al.
(2016); Sun et al. (2020); Yan et al. (2020) have made exten-
sive surveys on this topic. Among these traditional methods,
the most related works include sampling methods (Lee et al.,
2010; Suh et al., 2012). However, these sampling methods
are usually computationally expensive.

Graph Neural Networks (GNNs) (Wu et al., 2020) were
recently used as learning models for graph matching (Zanfir
and Sminchisescu, 2018; Xu et al., 2019b; Wang et al.,
2019a;b; Yu et al., 2020; Fey et al., 2020; Nowak et al.,
2018; Rolı́nek et al., 2020). The main idea in this class of
work is to use a GNN to encode graph structures into node
representation, then nodes are matched based on their vector
representation.

Distributions of Permutations. Recently Mena et al.
(2018) and Paulus et al. (2020) have developed new methods

of learning distributions of permutations. Sharing the idea
of the Gumbel-softmax trick (Maddison et al., 2016), these
methods devise a continuous sampling procedure that can
approximately draw samples of discrete permutation ma-
trices. The sampling procedure allows reparameterization
(Rezende et al., 2014; Kingma and Welling, 2013), which
enables efficient optimization of the distribution parameters.
This work will develop a new distribution for matching from
these distributions.

Iterative Refinement in Learning Models. Marino et al.
(2018); Krishnan et al. (2018) pointed out that the general-
ization error of an amortized inference model impedes the
inference accuracy on test instances. Then they proposed a
learning model that can iteratively refine its solution. This
idea is further applied to policy optimization (Marino et al.,
2020). Chen et al. (2020) used a similar idea in the task
of matching text to images. We will also incorporate the
refinement mechanism into the model so it can improve
graph matching iteratively.

3. Background
Suppose there are a pair of graphs, Gs = (V s, Es,Xs) and
Gt = (V t, Et,Xt). Here V s = {1, . . . , ns} the node set
of Gs, and Es is the edge set. We assume graph nodes have
known attributes or feature vectors; let Xs ∈ Rns×d denote
these node features. Similarly, V t, Et, Xt, and nt are,
respectively, the node set, the edge set, node features, and
the number of nodes of graphGt. Without loss of generality,
we always assume ns ≤ nt.

Graph matching identifies a set of node correspondences
between V s and V t. Here we add a “dummy node” with id
(ns+1) toGs and one with id (nt+1) toGt: if some nodes
in one graph cannot be matched with a node from the other
graph, they will be matched to the dummy node of the other
graph. The correspondences between nodes from the two
graphs are indicated by a matrix M ∈ {0, 1}(ns+1)×(nt+1),

M =

[
M0 mt

m>s 0

]
,

1>M0 + m>s = 1>, M01 + mt = 1. (1)

Mi,j = 1 indicates node i in Gs is matched to node j in Gt.
The submatrix M0 is the matching between normal nodes
in Gs and normal nodes in Gt. The two equality constraints
say every normal node in Gs or Gt must match exactly one
node (either a normal node or the dummy node) from the
other graph.

Graph matching aims to find a matching M that is optimal
with respect to an objective f(M;Gs, Gt), that is,

arg max
M

f(M;Gs, Gt).
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Figure 1. The model architecture of SIGMA. The model predicts
Θ∗

0 that specifies the initial distribution of matchings. Then each
refinement iteration continues to improve the distribution in terms
of maximizing the expected objective.

In practice, the objective f(·) can be instantiated in many
ways. The Quadratic Assignment Problem (QAP) objective
(Yan et al., 2020) is:

fqap(M;Gs, Gt) =
∑

i,i′∈V s
j,j′∈V t

Ki,j,i′,j′M
0
i,jM

0
i′,j′ . (2)

Here a Ki,j,i′,j′ entry can be viewed as the reward of match-
ing a node pair (i, i′) in Gs to a node pair (j, j′) in Gt.
Different applications may define different reward functions
to emphasize application-specific needs. For example, if
each entry Ki,j,i′,j′ is 1 when (i, i′) ∈ Es and (j, j′) ∈ Et
and 0 otherwise, then the objective count the number of
matched edges.

In the supervised learning task, we assume each training pair
has a known ground truth matching M∗. Then the matching
M0 between normal graph nodes needs to approximate M∗.
Fey et al. (2020) relax M0 to be a continuous variable and
compute the negative cross entropy between M0 and M∗.
Formally, the objective is defined as

fsup(M; M∗) =
∑

(i,j)∈V s×V t
M∗i,j log

(
M0
i,j

)
. (3)

4. Method
The core part of our model is a learnable distribution of the
matching matrix M between two graphs. We first develop an
efficient approach of computing gradients of the distribution
parameters. We then develop a learning architecture that
can iteratively refine a predicted matching. An overview of
the model is given in Figure 1.

4.1. The Matching Distribution

We develop a model that predicts a distribution of matchings,
instead of a single matching, for a training pair of graphs.
Suppose the model is parameterized by γ and specifies
a distribution pγ(M|Gs, Gt), then we train the model by

maximizing the expected matching objective:

max
γ
L = Epγ(M|Gs,Gt) [f(M)] . (4)

In the testing stage, a predicted matching matrix is the MAP
estimate from the distribution.

We specify the model in two steps:

pγ(M|Gs, Gt) = pΘ(M), Θ = nn(Gs, Gt; γ). (5)

In the first step, neural network nn(Gs, Gt; γ) computes a
parameter Θ. In the second step, this parameter defines the
distribution over matchings pΘ. We first consider the form
of pΘ and then design the network nn(·, ·; γ).

We first consider pΘ and the gradient ∂L/∂Θ in the op-
timization (4). Since the integral is often intractable, the
gradient with respect to the distribution parameter Θ (com-
puted from γ) is often estimated through Monte Carlo sam-
ples. Given that pΘ is a discrete probability distribution, an
unbiased estimator of ∂L/∂Θ is the score function estima-
tor (Williams, 1992), which typically has large variances
and often leads to suboptimal results. This work uses the
stochastic softmax trick (Paulus et al., 2020) and derives a
low-variance (though biased) estimator of ∂L/∂Θ.

We will find a continuous distribution p̂Θ(M) to “imitate”
pΘ(M): samples from p̂Θ are approximately samples from
pΘ.1 Then we can compute the expectation in (4) with p̂Θ

and optimize Θ with the reparameterization technique. To
achieve this goal, we leverage the Gumbel-Sinkhorn (GS)
distribution described below.

Discrete distribution over permutations. We can first
view the graph matching problem as finding a good permuta-
tion. Let S ∈ {0, 1}m×m define a valid binary permutation
matrix, which satisfies {S1 = 1,S>1 = 1}. To interpret
S for our problem, we set m = ns + nt. The rows of S
are ordered to represent the nodes of Gs followed by Gt,
while the columns are ordered to represent Gt followed by
Gs. By selecting this ordering, the top left ns × nt block
of S determines the matching M0 between Gs and Gt. The
bottom nt rows of S can be viewed as nt indistinguishable
“dummy nodes” in Gs so that the nt nodes in Gt have some
chance that they all match to these dummy nodes. Similarly
the last ns columns can be considered as ns dummy nodes
in Gt.

We can define a distribution over permutations as

pΦ(S) ∝ exp
(
trace

(
S>Φ

))
. (6)

where Φ ∈ Rm×m is a parameter, and the normalization is
over the set of valid permutations.

1Here we use the same notation M for random variables in
both pΘ and p̂Θ to reduce the load of notations.
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Relaxation to continuous variables. The GS distribution
(Mena et al., 2018) is developed to imitate the discrete dis-
tributions above but uses continuous random variables that
make gradient-based training easier. The GS distribution
p̂Φ(S) is over the space of doubly stochastic matrices of the
same size as S, and it is reparameterizable with standard
i.i.d. Gumbel noise. We can draw samples from p̂Φ(S) by
running a Sinkhorn procedure over a random matrix (Mena
et al., 2018). The resulting samples can accurately approxi-
mate samples from pΦ(S).

We define our own distribution pΘ(M) through pΦ(S): use
Θ to decide Φ, draw samples from pΦ(S), and then trans-
form these samples to samples of pΘ(M). Let’s first con-
sider the transformation, then we can decide Φ in a meaning-
ful way. Suppose S is a permutation matrix of size (ns+nt),
then the transformation M = BSC gives a sample M:

B =

[
Ins

1>nt

]
, C =

[
Int

1ns

]
. (7)

Here I is the identity matrix and 1 is a column vector, with
sizes indicated by subscripts. The rest of the matrix is all
zeros. After applying the transformation M = BSC, the
top-left (ns × nt) block of M0 is the same as in the top-
left block of S, which denotes the correspondence between
normal nodes in Gs and Gt. The last row and column of M
simply condense all dummy nodes to one aggregate dummy
node in each graph.

With this transformation, the matching distribution pΘ(M)
is automatically defined.

pΘ(M) =
∑

S:M=BSC

pΦ(S).

With the same linear transformation M = BSC, we convert
a sample from the continuous distribution p̂Φ(S) to a sample
from p̂Θ(M). Then samples of p̂Θ(M) are approximate
samples from pΘ(M). Because the linear transformation is
constant, the approximation error of p̂Θ is bounded by the
approximation error of p̂Φ by a constant factor.

We now show how to decide the parameter Φ from Θ,

Φ =

[
Θ 0ns×ns

0nt×nt 0nt×ns

]
. (8)

The matrix Θ as a block of Φ mainly affects the top-left
(ns × nt) block of S. Every element Θi,j indicates the pref-
erence of matching i in Gs to j in Gt: a large positive value
favors the matching while a negative value is against the
matching. It is not necessary to differentiate nodes matched
to either dummy node, so their corresponding parameters
are set to zero.

The computation of Θ. Finally we design the neural
network nn(Gs, Gt; γ) that computes Θ. A GNN is a pow-
erful model for encoding graph structures into vector forms.

GNNs have been previously used for graph matching (Fey
et al., 2020). We compute the distribution parameter Θ via
a GNN:

Θ = Hs(Ht)>, Hs = GNN(Gs; γ),

Ht = GNN(Gt; γ). (9)

Here Hs and Ht are node representations of the graph pair.
γ denotes all parameters of the GNN.

Now we have completed the two steps in (5) and have a
learning model pγ(M;Gs, Gt) for graph matching. To sum-
marize, we use the GNN with weights γ to compute Θ
which in turn determines the parameter Φ of the permuta-
tion distribution. Then, we draw samples from p̂Φ(S), and
apply the transformation M = BSC to obtain approximate
samples from pγ(M;Gs, Gt). We can estimate the gradient
of an expectation over this distribution with respect to Φ
using the reparameterization trick.

4.2. Iterative Refinement of the Matching

So far we have a learning model that can predict Θ for a
pair of graphs. However, it is difficult to produce an optimal
matching for two complex graphs in one step. A strategy
in searching algorithms is to match “easy” nodes first and
gradually expand the matching. We want our learning model
to mimic this strategy and refine Θ in multiple steps.

A Refinement Model. We first design a learning model
Θ1 = nnr(Θ0;Gs, Gt) that can refine a prediction Θ0.
The goal for nnr(Θ0;Gs, Gt) is to move Θ0 toward a “bet-
ter” value, that is, increasing the expected objective.

EpΘ1
[f(M)] ≥ EpΘ0

[f(M)] . (10)

The model nnr(Θ;Gs, Gt) and the previous network
nn(Gs, Gt) share the same goal: maximizing the expected
objective. The difference is that nnr(·) can get information
about the previous matching from Θ0, which helps to revise
prior matchings.

Ideally the model nnr(·) should preserve good partial match-
ing and use it to inform further matching of more nodes.
Guided by this principle, we give more weights to nodes that
are better matched in the previous step. We first compute
weight vectors for the two graphs from Θ0. Let M̄ be an
average of ` samples of pΘ0(M), and let

as = M̄1:ns,1:nt1, at = M̄>
1:ns,1:nt1. (11)

Each entry in vector as ∈ [0, 1]ns indicates the probability
that a node in Gs is matched to a normal node in Gt. It is
similar for the vector at ∈ [0, 1]nt .

Then we use the two vectors to reweight the importance of
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node features in the GNN computation.

Θ1 = nn(Gsu, G
t
u), Gsu = (V s, Es, diag(as)X

s),

Gtu = (V t, Et, diag(at)X
t). (12)

Here the neural network nn(·, ·) is the same one in (9). For
simplicity, we train one nn(·, ·) model, but we do make
sure the model capacity is enough in practice (e.g. try large
hidden dimensions and deep models). Putting (11) and (12)
together, we have the refinement model nnr(Θ;Gs, Gt).

In this design, clustered matched nodes tend to have small
changes in their representations so their matching is unlikely
to change in the refinement step. Furthermore, these nodes
encode the matched structure in their messages to their
unmatched neighbors. Note that the message passing in
the first layer of the GNN is as if from a weighted graph
now. Then the refinement can expand the matching using
information from the matched structure. It shares the same
principle as searching algorithms (McCreesh et al., 2017).

Note that the iterative procedure works on the distribution
parameter Θ instead of discrete matchings. The computa-
tion nnr(·) is thus stochastic since M̄ in (11) is the average
of a small number of samples. The stochasticity allows the
model to explore different directions in multiple steps.

Multi-step Refinement. We apply the refinement model to
a multi-step procedure. Let Θ∗0 = nn(Gs, Gt) be the initial
matching distribution. At each step t = 1, . . . , T ,

Θt = nnr(Θ∗t−1;Gs, Gt) (13)

Θ∗t =

{
Θt if EpΘt [f(M)] ≥ EpΘ∗

t−1
[f(M)] ,

Θ∗t−1 otherwise.
(14)

The two expectations are estimated by samples. To train
the refinement model, we need to track gradients for each
Θ∗t . We do not track gradients with respect to the previous
iteration parameter Θ∗t−1 to stabilize the training procedure.

The refinement procedure will not return a solution worse
than the beginning one since the best Θ∗t is always kept.
If the beginning solution is already very good and hard to
improve, then the model will make multiple attempts to
improve it. These attempts will not be the same due to the
randomness of M̄. Differing from DGMC’s deterministic
refinement (Fey et al., 2020), our refinement is stochastic.
Algorithm 1 summarizes our multi-step matching refine-
ment.

4.3. Training and Prediction

The goal of training is to optimize the parameter γ, the
parameters of the GNN used in both the first-step prediction
as well as the refinement procedure.

Algorithm 1 Iterative Refinement
1: Input: Gs, Gt, T , f(·)
2: Initialize Θ∗0 = nn(Gs, Gt)
3: for t = 1 to T do
4: Compute Θt = nnr(Θ∗t−1;Gs, Gt)
5: if EpΘt [f(M)] ≥ EpΘ∗

t−1
[f(M)] then

6: Θ∗t = Θt

7: else
8: Θ∗t = Θ∗t−1

9: end if
10: end for
11: Return {Θ∗0,Θ∗1, . . . ,Θ∗T }

This work considers the following matching objective,

f(M) = fqap(M) + λfsup(M). (15)

Here fqap(M) and fsup(M) are from (2) and (3). It covers
a wide range of applications. In unsupervised problems,
we don’t have the second term; in supervised problems,
the hyperparameter λ balances the importance of the two
objectives. We will give more details in the calculation of
these objectives in the experiment section.

After we have included the refinement procedure, the train-
ing objective of the entire model for one graph pair (Gs, Gt)

becomes
∑T
t=0 EpΘt [f(M)]. Here each Θt is computed

by the GNN with parameter γ. We weigh loss at each step
t equally: the first steps are important because they impact
later steps, while the last steps are also important because
they are likely to give the final solution.

After training, we need to compute a single matching as the
prediction of the model. Our matching model uses the same
principle as a typical classification model: using the mode
of the predictive distribution as the prediction, though it is
harder to find the mode of the matching distribution. The
prediction from the distribution pΘ∗T

(M) is computed from
the following problem,

M = arg max
M

trace(M>pad(Θ∗T )) (16)

= arg max
M=BSC

trace(S>Φ). (17)

Here pad(Θ∗T ) adds a row and a column of zeros to Θ∗T ; Φ
contains Θ∗T as its top-left block as in (8). We use Hungar-
ian algorithm to solve the form in the second line.

Note that when making predictions of the matching, we do
not assume any access to ground truth matchings because
they will not be available at test time. Thus, our iterative re-
finement reward function only includes unsupervised terms.
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Algorithm BA(500)§ BA(500) BA(1000) BA(2000) PPI§ PPI
MCSPLIT 100.0±0.0 (1) 43.7±0.3 (1000) 16.9±8.9 (1000) 33.0±7.3 (1000) 100.0±0.0 (1) 60.3 (1000)

S-GWL 47.5±0.5 (3) 32.0±1.5 (3) 22.9±0.3 (14) 16.2±0.4 (129) 83.1 (50) 81.1 (50)
SIGMA 99.2±0.2 (10) 93.8±0.3 (11) 97.3±0.2 (33) 99.0±0.1 (179) 99.2±0.2 (53) 84.7±0.4 (67)

Table 1. Node correctness (%) and runtime in parenthesis (in seconds). Datasets with § means 0% noises; without § means 5% noises.

Setting BA(500) BA(1000) BA(2000) PPI
T=0 93.5±0.1 97.2±0.1 98.9±0.1 83.1±0.3
T=3 93.7±0.2 97.2±0.3 98.9±0.1 83.8±0.2

T=4 (default) 93.8±0.3 97.3±0.2 99.0±0.1 84.7±0.4
T=9 93.8±0.2 97.3±0.1 99.1±0.1 85.0±0.4

Remove S 93.6±0.1 97.1±0.2 98.9±0.1 84.1±0.4
Remove D 50.3±4.1 75.0±5.9 80.4±3.1 83.2±0.2

Table 2. Ablation results on common graph matching. Results are
reported in node correctness (%). T: the number of refinement
after initial prediction; S: stochastic framework; D: dummy nodes.

5. Experiments
We test our model on three tasks: a common graph match-
ing task, a biochemistry application of matching reaction
centers among molecular reactants, and a computer vision
application of matching keypoints between images.

5.1. Common Graph Matching

Dataset We use two datasets in this task, and follow the
experiment setting from Xu et al. (2019a). In the first dataset,
we use a Barabási-Albert (BA) model to generate graphs of
{500, 1000, 2000} nodes. To create matching graph pairs,
we first sample a source graph from the BA model, then
corrupted the source graph by adding 5% noisy edges as
a target graph2. In the second dataset, we start from the
Protein-Protein Interaction (PPI) network of yeast (1,004
proteins and 4,920 interactions), and align its 5% noisy
version provided in Saraph and Milenković (2014). In both
datasets, each node’s input feature is assigned according to
its node degree. We also include the noise-free versions of
the two datasets to match, where the target graph is the same
as the source graph.

Experiment Setting We compare our model with MC-
SPLIT (McCreesh et al., 2017) and S-GWL (Xu et al.,
2019a). MCSPLIT, which uses branching heuristic to re-
duce the search space, is a state-of-the-art heuristic method
to find an isomorphic subgraph, but it performs poorly when
a few “noise” edges are added to the graph. S-GWL, on the
other hand, solves the matching problem under the Gromov-
Wasserstein discrepancy (Chowdhury and Mémoli, 2019)
and has shown robustness to moderate amount of “noise”

2We follow the script of S-GWL (Xu et al., 2019a): https:
//github.com/HongtengXu/s-gwl.

edges added to a graph. For these baselines, we use the au-
thors’ implementations with their default hyperparameters.
Xu et al. (2019a) shows that S-GWL has outperformed most
heuristic methods on matching noisy graphs.

For our model, we instantiate the GNN as a 5-layer Graph
Isomorphism Network (GIN) (Xu et al., 2018). Each layer
of GIN has a one-layer MLP with hidden dimension of 256
followed by a tanh(·) activation. The model is optimized by
an Adam optimizer (Kingma and Ba, 2014) at a learning rate
10−4 and trains for 100 epochs. For each dataset, the epoch
that produces the best objective is used for testing. We use
10 samples of M. T is set to 4 (1 initial prediction followed
by 4 iterations of refinement). To evaluate, we report node
correctness (NC) as in Xu et al. (2019a), which denotes the
percentage of nodes that have the same matching as ground
truth.

Our model is implemented in PyTorch (Paszke et al., 2017).
Each model runs on a server with 32 cores and an NVIDIA
A100 (40GB) GPU.

Results Results are shown in Table 1. Our model, SIGMA,
outperforms baselines in matching noisy graphs. As ex-
pected, the heuristic method MCSPLIT fails to cope with
noisy graphs. SIGMA outperforms S-GWL on all datasets.
We conjecture our improvement stems from learning a GNN
that can provide discriminative node embeddings suited for
matching. We see comparable matching results between
SIGMA and MCSPLIT when matching noise-free graphs.
SIGMA does not attain a perfect match; we speculate some
nodes lie in symmetric structures in both graphs, and the un-
derlying GNN cannot provide distinguishable embeddings
for them. The runtime of SIGMA is competitive to the other
two baselines.

We provide an ablation study of the three components: multi-
step matching (T), stochastic framework (S), and dummy
nodes (D). The ablation study is conducted on noisy graphs
to show noticeable performance differences. Results are
given in Table 2. By comparing different T , we see more
refinement steps yields noticeable improvements on the PPI
dataset, though minor improvements on the BA datasets. Us-
ing dummy nodes has a clear advantage on this task. When
removing the dummy node, the prediction correctness drops
up to 43% on the BA dataset, and 1.5% on the PPI dataset.
Some “hard” nodes may have been aligned with dummy
nodes and make the matching problem easier. Performance
gain using stochasticity is limited in this task.

https://github.com/HongtengXu/s-gwl
https://github.com/HongtengXu/s-gwl
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Figure 2. An example of matching RDM between C11150 (Trichloroacetate acid) and C00209 (Oxalate acid). Left: DGMC. Right:
SIGMA. In SIGMA, difference atoms (D) are correctly aligned to dummy nodes. SIGMA finds the best match in 3 iterations (1 initial
prediction followed by 2 refinements): SIGMA matched matched atoms (M) and some difference atoms (D) in iteration 1; matched
reaction center (R) in iteration 2; and matched the rest of difference atoms (D) in iteration 3. Dummy nodes are located for the visualization
purpose.

Algorithm Hard Match Soft Match NC
MCSPLIT 36.0±1.5 54.1±1.2 56.0±1.2

DGMC 37.3±1.5 66.0±1.0 66.9±0.9
SIGMAU 39.5±1.5 63.1±1.1 66.2±1.0

SIGMA (T=0) 48.3±1.5 74.8±0.9 76.4±0.8
SIGMA (w/o S) 50.6±1.4 75.1±0.9 76.0±0.8
SIGMA (w/o D) 32.3±1.4 59.7±1.0 63.6±0.9

SIGMA 58.0±1.3 78.2±0.9 78.3±0.8

Table 3. Results (in %) on RDM pattern matching. SIGMAU :
Training SIGMA with the QAP objective only (unsupervised).

5.2. RDM Pattern Matching in KEGG RPAIR

Dataset In the KEGG database3, RDM stands for the re-
action center atom (R), the difference atoms (D), and the
matched atoms (M). RDM patterns record the structural
transformation patterns between a reactant pair in an enzy-
matic reaction (Kotera et al., 2004). The RPAIR database in
KEGG specifies the RDM pattern alignment between two re-
actant molecules. The difference atoms are those connected
to the reaction center that cannot be matched between the
reactants. An example is presented in Figure 2. In this task,
the aim is to predict the RDM pattern given reactant pairs
(and not the overall alignment).

For each reactant in a reactant pair, a graph is constructed
from the corresponding molecular description using data
collected from the KEGG database. Nodes in the graph
represent atoms and edges represent bonds. We set node fea-
tures as the KEGG atom types, which encode for an atomic
species (e.g., Carbon, Oxygen, etc) and its neighboring
atoms (Kotera et al., 2004). The edge features are the bond
types (single, double, or triple bonds – three types in total).
The ground truth RDM pattern for each reactant pair is a
set of node correspondences. These node correspondences
are used as the supervised objective during training (the
calculation of objective is the “soft match” we will define in

3https://www.genome.jp/kegg/reaction

the experiment setting), and used as the label during testing.
We collect 10,366 reactant pairs. On average, each reactant
contains 23 nodes and 48 edges. We split the dataset into
training, validation, testing at ratio 8:1:1.

Experiment Setting We compare with MCSPLIT (unsu-
pervised) and Deep Graph Matching Consensus (DGMC,
supervised) (Fey et al., 2020). As edges have discrete fea-
tures, a 3-layer Relational GCN (RGCN) (Schlichtkrull
et al., 2018) is used as the backbone GNN. We adopt DGMC
to use the same GNN structure as ours for a fair compari-
son. Node features are augmented with a positional feature,
which is the eigenvectors of the Laplacian matrix that cor-
respond to the largest 50 eigenvalues (padding zeros oth-
erwise). We found using the positional features improves
the matching quality. Separate MLPs are used to embed
node’s atom feature and position feature. The concatenation
of the two resultant embeddings are used as GNN’s input.
We apply batch normalization between RGCN layers, and
use dropout at rate 0.5 and L2 regularizer at weight 10−4.
The model is trained for 30 epochs. Other settings remain
the same as in section 5.1.

To evaluate, we consider a hard match, a soft match, and the
node correctness. For each reactant pair, the hard match de-
notes whether the prediction fully matches the RDM pattern;
it takes value 1 or 0. The soft match is a relaxed version of
the hard match; it shows the fraction of node pairs matched
in RDM and takes a value between 0 and 1. During training,
the soft match is the supervised objective.

Results Results are given in Table 3. SIGMA attains the
top performance across all metrics. We also run SIGMA
in an unsupervised setting (denoted as SIGMAU ), where
SIGMA is trained with the QAP objective only. As expected,
the performance degenerates. This result emphasizes the
demand of designing a learning model that supports various
objective function. Ablation results show each of our three
components plays a vital role.

https://www.genome.jp/kegg/reaction
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Algorithm Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse M-Bike Person Plant Sheep Sofa Train TV Mean
GMN 31.1 46.2 58.2 45.9 70.6 76.5 61.2 61.7 35.5 53.7 58.9 57.5 56.9 49.3 34.1 77.5 57.1 53.6 83.2 88.6 57.9

PCA-GM 40.9 55.0 65.8 47.9 76.9 77.9 63.5 67.4 33.7 66.5 63.6 61.3 58.9 62.8 44.9 77.5 67.4 57.5 86.7 90.9 63.8
CIE 51.2 69.2 70.1 55.0 82.8 72.8 69.0 74.2 39.6 68.8 71.8 70.0 71.8 66.8 44.8 85.2 69.9 65.4 85.2 92.4 68.9

DGMC 47.0 65.7 56.8 67.6 86.9 87.7 85.3 72.6 42.9 69.1 84.5 63.8 78.1 55.6 58.4 98.0 68.4 92.2 94.5 85.5 73.0
DGMC* 46.3 64.5 54.9 69.4 85.7 87.8 85.2 73.4 38.2 64.0 92.4 63.6 74.7 60.5 61.6 96.6 63.7 97.6 94.0 86.2 73.0
SIGMAU 26.5 43.1 40.3 66.5 85.3 86.3 73.4 43.8 29.9 40.7 94.5 33.8 61.0 39.8 52.1 95.8 40.9 95.5 92.2 84.6 61.3

SIGMA (T=0) 54.0 69.9 59.9 72.3 87.4 87.9 87.0 74.0 46.2 68.5 92.4 67.9 77.3 66.9 64.4 97.2 71.6 96.7 94.7 84.6 76.0
SIGMA (w/o S) 49.6 65.9 55.0 69.7 86.8 86.4 84.6 71.6 42.0 64.8 91.1 64.8 75.3 60.6 59.8 96.5 66.7 93.7 94.4 83.8 73.1
SIGMA (w/o D) 56.6 71.1 59.6 71.6 87.6 83.9 89.0 74.4 46.9 71.7 86.9 69.2 80.0 69.4 64.1 96.8 71.4 96.7 94.9 87.3 76.5

SIGMA 55.1 70.6 57.8 71.3 88.0 88.6 88.2 75.5 46.8 70.9 90.4 66.5 78.0 67.5 65.0 96.7 68.5 97.9 94.3 86.1 76.2

Table 4. Hits@1 (%) on PASCAL VOC with Berkeley annotations. Compared methods are GMN (Zanfir and Sminchisescu, 2018),
PCA-GM (Wang et al., 2019a), CIE (Yu et al., 2020), and DGMC (Fey et al., 2020).

Figure 3. Qualitative examples of SIGMAU (the first two column) and SIGMA (the last four
columns). In each pair of the images, the left shows the source image and the right shows the
target. Dots with the same color denote matched nodes. Green lines in the first column are edges of
between keypoints. SIGMA correctly identifies keypoints with changed poses.
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Figure 4. Comparison of Hit@1 %
between SIGMA and DGMC over
each category.

In Figure 4, we illustrate a comparison between DGMC and
SIGMA. SIGMA correctly matches the RDM pattern, where
difference atoms are aligned to dummy nodes. The result
further shows the effectiveness of our multi-step refinement:
the refinement process matches the three different RDM
regions in a progressive way.

5.3. Image Keypoints Matching

Dataset In this task, we match keypoints on PASCAL VOC
(Everingham et al., 2010) with Berkeley keypoint annota-
tions (Bourdev and Malik, 2009). The dataset is difficult,
because it contains images of various scales, poses and illu-
minations (Wang et al., 2019a). In total, the dataset contains
20 classes of objects. On average, each class contains 348
training graphs and 84 test graphs, where each graph con-
tains 1 to 12 keypoints and 1 to 27 edges. We follow the
experimental settings as Deep Graph Matching Consensus
(DGMC) (Fey et al., 2020). The original dataset is filtered
to 6,953 images for training and 1,671 images for testing.
Difficult, occluded, and truncated objects are excluded, and
each image has at least one keypoint. For keypoints fea-
tures, we use a concatenation of the output of relu4 2 and
relu5 1 from a pre-trained VGG16 (Simonyan and Zisser-
man, 2014) on ImageNet (Deng et al., 2009). Edge features
are normalized 2D Cartesian coordinates (the anisotropic
setting from DGMC).

Experiment Setting We compare with four state-of-the-art
baselines: GMN (Zanfir and Sminchisescu, 2018), PCA-
GM (Wang et al., 2019a), CIE (Yu et al., 2020), and DGMC
(Fey et al., 2020). Following DGMC, we set our backbone
GNN as a SplineCNN (Fey et al., 2018). Most of the hy-
perparameters are kept the same as DGMC. The kernel size
is 5 in each dimension. We stack 2 convolutional layers,
followed by a dropout layer with probability 0.5, which in
turn is followed by a linear layer that outputs node embed-
dings H. Unlike DGMC, we found a hidden dimension of
512 and a LeakyReLU activation with a negative slope 0.1
work well for our model (DGMC uses 256 hidden layers
and a ReLU activation). For a fair comparison, we also run
DGMC with this setting and name it as DGMC∗. Following
DGMC, the supervised objective is defined as in (3). We
report Hit@1 to evaluate the performance. Hit@1 shows
the percentage of correct matched instances over the whole.

Results Results are given in Table 4. SIGMA significantly
outperforms GMN and PCA-GM by over 10% of average
Hit@1 score, and a 7.3% improvement upon CIE. We also
observe a 3.2% of Hit@1 improvement over the DGMC.
In Figure 4, we further confirm SIGMA produces better
matching over most of the categories. In this dataset, the
stochastic framework brings the most performance gain. Re-
moving the stochasticity, which means optimizing (through
relaxation) a single matching M in (1), drops the Hit@1
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Algorithm PASCAL VOC SPair-71k
BB-GM 80.1±0.6 78.9±0.4
SIGMA 81.2±0.2 79.8±0.2

Table 5. Mean Hits@1 (%) on PASCAL VOC and SPair-71k. Com-
pared method is BB-GM (Rolı́nek et al., 2020). SIGMA results
are reported following BB-GM’s experiment setting.

score by 3.1%. On average, the effectiveness of dummy
nodes and multi-step matching is minor on this task.

Our unsupervised setting, SIGMAU , shows a 3.4% improve-
ment over GMN on the average score and is on par perfor-
mance with PCA-GM. Note that both GMN and PCA-GM
are supervised. The QAP objective determines the predic-
tive capacity of SIGMAU . Once the QAP objective can
recognize the input graph’s topology, SIGMAU has the po-
tential to perform matching well. In the first two columns of
Figure 3, we see SIGMAU successfully matches the bottle
image pair but partially matches the dog image pair. We
guess that the bottle image pair presents a more recognizable
graph structure to the QAP objective (edges in green lines)
than the dog image pair. The last four columns in Figure
3 visualize four correctly matched samples from SIGMA.
SIGMA recovers node correspondences under various pose
changes.

Lastly, we compare SIGMA with recent method BB-GM
(Rolı́nek et al., 2020) using BB-GM’s representation learn-
ing method. Note that BB-GM focuses on learning rep-
resentations and uses a match solver as a blackbox. We
follow BB-GM’s experiment setting, and the main differ-
ences from the previous experiment include: 1) fine-tuning
VGG16’s weights and 2) computing node affinities Θ from
a weighted inner product (the weights of the inner product
are from the final VGG16 layer). Then we evaluate both
models on PASCAL VOC and SPair-71 (Min et al., 2019).
SPair-71k is similar to PASCAL VOC, but contains higher
quality images and richer keypoints annotations. Table 5
shows that SIGMA outperforms BB-GM in terms of mean
Hits@1.

6. Conclusion
We have introduced a new learning model, SIGMA, that
addresses graph matching problems. We presented two in-
novations in the design of this new model. First, the model
learns a distribution of matchings, instead of a single match-
ing, between a pair of graphs. Second, the model learns
to refine matchings through attending to matched nodes.
SIGMA consistently shows better performance than other
methods in terms of the matching quality, and at the same
time, retains a comparable running speed as the baselines.

SIGMA opens many possible directions. Since matchings

sampled from SIGMA are still like discrete variables, high-
level graph structure can still be well defined on these sam-
ples. Therefore, SIGMA can be applied to match high-order
graph structures such as paths and hyper-edges. With slight
modification, SIGMA can be applied to matching problems
beyond graph matching, such as matching tabular data to
knowledge graphs. We hope that this work not only brings
a new tool for graph matching but also inspires further re-
search in this direction.
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