
Cooperative Multi-Agent Exploration

Appendix: Cooperative Exploration
for Multi-Agent Deep Reinforcement
Learning

In this appendix we first provide the proofs for Claim 1

and Claim 2 in Sec. A and Sec. B. We then provide in-

formation regarding the MPE and SMAC environments

(Sec. C, Sec. D), implementation details (Sec. E), and the

absolute metric (Sec. F). Next, we provide additional re-

sults on MPE tasks (Sec. G), additional results of baselines

(Sec. H) and training curves (Sec. I).

A. Proof of Claim 1

Claim 1. Consider the 2-player l-action matrix game

in Example 1. Let m = l2 denote the total number of action

configurations. Let T share
m and T non-share

m denote the number

of steps needed to see all m action configurations at least

once for exploration with shared goal and for exploration

without shared goal respectively. Then we have E[T share
m] =

m and E[T non-share
m] = m

Pm

i=1

1

i
= Θ(m lnm).2

Proof. When exploring without shared goal, the agents

don’t coordinate their behavior. It is equivalent to uni-

formly picking one action configuration from the m con-

figurations. We aim to show after T non-share
m time steps, the

agents tried all m distinct action configurations. Let Ti be

the number of steps to observe the i-th distinct action con-

figuration after seeing i− 1 distinct configurations. Then

E[T non-share
m] = E[T1] + · · ·+ E[Tm]. (8)

In addition, let P (i) denotes the probability of observing

the i-th distinct action configuration after observing i − 1
distinct configurations. We have

P (i) = 1−
i− 1

m
=

m− i+ 1

m
. (9)

Note that Ti follows a geometric distribution with success

probability P (i) = m−i+1

m
. Then the expected number of

timesteps to see the i-th distinct configuration after seeing

i− 1 distinct configurations is

E[Ti] =
m

m− i+ 1
. (10)

Hence, we obtain

E[T non-share
m] = E[T1] + · · ·+ E[Tm]

=

m
X

i=1

m

m− i+ 1

= m
m
X

i=1

1

i
.

(11)

2
Θ(g) means asymptotically bounded above and below by g.

From calculus,
Rm

1

1

x
dx = lnm. Hence we obtain the fol-

lowing inequality

m
X

i=1

1

i+ 1
≤

Z m

1

1

x
dx = lnm ≤

m
X

i=1

1

i
. (12)

From Eq. (12), we obtain
Pm

i=1

1

i
= O(lnm)3 and

Pm

i=1

1

i
= Ω(lnm)4, which implies

m
X

i=1

1

i
= Θ(lnm). (13)

Combining Eq. (11) and Eq. (13), we get E[T non-share
m] =

Θ(m lnm).

When performing exploration with shared-goal, the least

visited action configuration will be chosen as the shared

goal. The two agents coordinate to choose the actions that

achieve the goal at each step. Hence, at each time step, the

agents are able to visit a new action configuration. There-

fore, exploration with shared goal needs m timesteps to

visit all m action configurations, i.e., T share
m = m, which

completes the proof.

B. Proof of Claim 2

Claim 2. Consider a special case of Example 1 where the

payoff matrix depends only on one agent’s action. Let T sub

denote the number of steps needed to discover the maximal

reward when exploring the action space of agent one and

agent two independently. Let T full denote the number of

steps needed to discover the maximal reward when the full

action space is explored. Then, we have T sub = O(l) and

T full = O(l2).

Proof. When we explore the action spaces of agent one and

agent two independently, there are 2l distinct action config-

urations (l action configurations for each agent) to explore.

Since the reward function depends only on one agent’s ac-

tion, one of these 2l action configurations must lead to the

maximal reward. Therefore, by checking distinct action

configurations at each time step, we need at most 2l steps

to receive the maximal reward, i.e., E[T sub] = O(l).

In contrast, when we explore the joint action space of agent

one and agent two. There are l2 distinct action config-

urations. Because the reward function depends only on

one agent’s action, l of these l2 action configurations must

lead to the maximal reward. In the worst case, we choose

the l2 − l action configurations that don’t result in max-

imal reward in the first l2 − l steps and receive maxi-

mal reward at the l2 − l + 1 step. Therefore, we have

3
O(g) means asymptotically bounded above by g.

4
Ω(g) means asymptotically bounded below by g.

Cooperative Multi-Agent Exploration

E[T full] = O(l2 − l + 1) = O(l2), which concludes the

proof.

C. Details Regarding MPE Environments

In this section we provide details regarding the sparse-

reward and dense-reward version of MPE tasks. We first

present the sparse-reward version of MPE:

• Pass-sparse: Two agents operate within two rooms of

a 30 × 30 grid. There is one switch in each room,

the rooms are separated by a door and agents start in

the same room. The door will open only when one

of the switches is occupied. The agents see collective

positive reward and the episode terminates only when

both agents changed to the other room. The task is

considered solved if both agents are in the right room.

• Secret-Room-sparse: Secret-Room-sparse extends

Pass-sparse. There are two agents and four rooms.

One large room on the left and three small rooms on

the right. There is one door between each small room

and the large room. The switch in the large room con-

trols all three doors. The switch in each small room

only controls the room’s door. All agents need to nav-

igate to one of the three small rooms, i.e., target room,

to receive positive reward. The grid size is 25 × 25.

The task is considered solved if both agents are in the

target room.

• Push-Box-sparse: There are two agents and one box in

a 15×15 grid. Agents need to push the box to the wall

to receive positive reward. The box is heavy, so both

agents need to push the box in the same direction at

the same time to move the box. The task is considered

solved if the box is pushed to the wall.

• Island-sparse: Two agents and a wolf operate in a

10 × 10 grid. Agents get a collective reward of 300

when crushing the wolf. The wolf and agents have

maximum energy of eight and five respectively. The

energy will decrease by one when being attacked.

Therefore, one agent cannot crush the wolf. The

agents need to collaborate to complete the task. The

task is considered solved if the wolf’s health reaches

zero.

To study the performance of CMAE and baselines in a

dense-reward setting, we add ‘checkpoints’ to guide the

learning of the agents. Specifically, to add checkpoints, we

draw concentric circles around a landmark, e.g., a switch,

a door, a box. Each circle is a checkpoint region. Then, the

first time an agent steps in each of the checkpoint regions,

the agent receive an additional checkpoint reward of +0.1.

• Pass-dense: Similar to Pass-sparse, but the agents see

dense checkpoint rewards when they move toward the

switches and the door. Specifically, when the door

is open, agents receive up to ten checkpoint rewards

when they move toward the door and the switch in the

right room.

• Secret-Room-dense: Similar to Secret-Room-sparse,

but the checkpoint rewards based on the agents’ dis-

tance to the door and the target room’s switch are

added. Specifically, when the door is open, agents re-

ceive up to ten checkpoint rewards when they move

toward the door and the switch in the target room.

• Push-Box-dense: Similar to Push-Box-sparse, but the

checkpoint rewards based on the ball’s distance to the

wall is added. Specifically, agents receive up to six

checkpoint rewards when they push the box toward

the wall.

• Island-dense: Similar to Island-sparse, but the agent

receives +1 reward when the wolf’s energy decrease.

D. Details of SMAC environments

In this section, we present details for the sparse-reward and

dense-reward versions of the SMAC tasks. We first discuss

the sparse-reward version of the SMAC tasks.

• 3m-sparse: There are three marines in each team.

Agents need to collaboratively take care of the three

marines on the other team. Agents only see a reward

of +1 when all enemies are taken care of.

• 2m vs 1z-sparse: There are two marines on our team

and one Zealot on the opposing team. In 2m vs 1z-

dense, Zealots are stronger than marines. To take care

of the Zealot, the marines need to learn to fire alter-

natingly so as to confuse the Zealot. Agents only see

a reward of +1 when all enemies are taken care of.

• 3s vs 5z-sparse: There are three Stalkers on our team

and five Zealots on the opposing team. Because

Zealots counter Stalkers, the Stalkers have to learn to

force the enemies to scatter around the map and attend

to them one by one. Agents only see a reward of +1
when all enemies are attended to.

The details of the dense-reward version of the SMAC tasks

are as follows.

• 3m-dense: This task is similar to 3m-sparse, but the

reward is dense. An agent sees a reward of +1 when it

causes damage to an enemy’s health. A reward of −1
is received when its health decreases. All the rewards

are collective. A reward of +200 is obtained when all

enemies are taken care of.

Cooperative Multi-Agent Exploration

CMAE with QMIX
QMIX + bonus

Weighted QMIX + bouns

Batch size 32 32

Discounted factor 0.99 0.99

Critic learning rate 0.0005 0.0005

Agent learning rate 0.0005 0.0005

Optimizer RMSProp RMSProp

Replay buffer size 5000 5000

Epsilon anneal step 50000 {50000, 1M}
Exploration bonus coefficient N.A. {1, 10, 50}
Goal bonus (r̂) {0.01, 0.1, 1} N.A.

Table 3. Hyper-parameters of CMAE and baselines for SMAC tasks.

• 2m vs 1z-dense: Similar to 2m vs 1z-sparse, but the

reward is dense. The reward function is similar to 3m-

dense.

• 3s vs 5z-dense: Similar to 3s vs 5z-sparse, but the re-

ward is dense. The reward function follows the one in

the 3m-dense task.

Note that for all SMAC experiments we used StarCraft ver-

sion SC2.4.6.2.69232. The results for different versions are

not directly comparable since the underlying dynamics dif-

fer. Please see Samvelyan et al. (2019)5 for more details

regarding the SMAC environment.

E. Implementation Details

E.1. Normalized Entropy Estimation

As discussed in Sec. 3, we use Eq. (3) to compute the nor-

malized entropy for a restricted space Sk, i.e.,

ηk = Hk/Hmax,k = −

X

s∈Sk

pk(s) log pk(s)

!

/ log(|Sk|).

Note that |Sk| is typically unavailable even in discrete state

spaces. Therefore, we use the number of current observed

distinct outcomes |Ŝk| to estimate |Sk|. For instance, sup-

pose Sk is a one-dimensional restricted state space and we

observe Sk takes values −1, 0, 1. Then |Ŝk| = 3 is used to

estimate |Sk| in Eq. (3). |Ŝk| typically gradually increases

during exploration. In addition, for |Ŝk| = 1, i.e., for a con-

stant restricted space, the normalized entropy will be set to

infinity.

E.2. Architecture and Hyper-Parameters

We present the details of architectures and hyper-

parameters of CMAE and baselines next.

5https://github.com/oxwhirl/smac

MPE environments: We combine CMAE with Q-

learning. For Pass, Secret-room, and Push-box, the Q value

function is represented via a table. The Q-table is initial-

ized to zero. The update step size for exploration policies

and target policies are 0.1 and 0.05 respectively. For Island

we use a DQN (Mnih et al., 2013; 2015). The Q-function is

parameterized by a three-layer perceptron (MLP) with 64

hidden units per layer and ReLU activation function. The

learning rate is 0.0001 and the replay buffer size is 1M . In

all MPE tasks, the bonus r̂ for reaching a goal is 1, and the

discount factor γ is 0.95.

For the baseline EITI and EDTI (Wang et al., 2020), we

use their default architecture and hyper-parameters. The

main reason that EITI and EDTI need a lot of environment

steps for convergence according to our observations: a long

rollout (512 steps × 32 processes) between model updates

is used. In an attempt to optimize the data efficiency of

baselines, we also study shorter rollout length, i.e., {128,

256}, for both EITI and EDTI. However, we didn’t observe

an improvement over the default setting. Specifically, after

more than 500M environment steps of training on Secret-

Room, EITI with 128 and 256 rollout length achieves 0.0%
and 54.8% success rate. EDTI with 128 and 256 rollout

length achieves 0.0% and 59.6% success rate, which is

much lower than the success rate of 80% achieved by using

the default setting.

SMAC environment: We combine CMAE with

QMIX (Rashid et al., 2018). Following their default

setting, for both exploration and target policies, the

agent is a DRQN (Hausknecht & Stone, 2015) with a

GRU (Chung et al., 2014) recurrent layer with a 64-

dimensional hidden state. Before and after the GRU layer

is a fully-connected layer of 64 units. The mix network

has 32 units. The discount factor γ is 0.99. The replay

memory stores the latest 5000 episodes, and the batch size

is 32. RMSProp is used with a learning rate of 5 · 10−4.

The target network is updated every 100 episodes. For

goal bonus r̂ (Alg. 2), we studied {0.01, 0.1, 1} and found

Cooperative Multi-Agent Exploration

CMAE (Ours) Q-learning Q-learning + Bonus EITI EDTI

Pass-sparse
Final 1.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

Absolute 1.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

Secret-Room-sparse
Final 1.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

Absolute 1.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

Push-Box-sparse
Final 1.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

Absolute 1.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

Island-sparse
Final 0.55±0.30 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

Absolute 0.61±0.23 0.00±0.00 0.01±0.01 0.00±0.00 0.00±0.00

Pass-dense
Final 5.00±0.00 1.25±0.02 1.42±0.14 0.00±0.00 0.18±0.01

Absolute 5.00±0.00 1.30±0.03 1.46±0.08 0.00±0.00 0.20±0.01

Secret-Room-dense
Final 4.00±0.57 1.62±0.16 1.53±0.04 0.00±0.00 0.00±0.00

Absolute 4.00±0.57 1.63±0.03 1.57±0.06 0.00±0.00 0.00±0.00

Push-Box-dense
Final 1.38±0.21 1.58±0.14 1.55±0.04 0.10±0.01 0.05±0.03

Absolute 1.38±0.21 1.59±0.04 1.55±0.04 0.00±0.00 0.18±0.01

Island-dense
Final 138.00±74.70 87.03±65.80 110.36±71.99 11.18±0.62 10.45±0.61

Absolute 163.25±68.50 141.60±92.53 170.14±62.10 16.84±0.65 16.42±0.86

Table 4. Final metric and absolute metric of CMAE and baselines on sparse-reward and dense-reward MPE tasks.

CMAE (Ours) Weighted QMIX Weighted QMIX + Bonus QMIX QMIX + Bonus

3m-sparse
Final 47.7±35.1 2.7±5.1 11.5±8.6 0.0±0.0 11.7±16.9

Absolute 62.0±41.0 8.1±4.5 15.6±7.3 0.0±0.0 22.8±18.4

2m vs 1z-sparse
Final 44.3±20.8 0.0±0.0 19.4±18.1 0.0±0.0 19.8±14.1

Absolute 47.7±35.1 0.0±0.0 23.9±16.7 0.0±0.0 30.3±26.7

3s vs 5z-sparse
Final 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

Absolute 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

3m-dense
Final 98.7±1.7 98.3±2.5 98.9±1.7 97.9±3.6 97.3±3.0

Absolute 99.3±1.8 98.8±0.3 99.0±0.3 99.4±2.1 98.5±1.2

2m vs 1z-dense
Final 98.2±0.1 98.5±0.1 96.0±1.8 97.1±2.4 95.8±1.7

Absolute 98.7±0.4 98.6±1.6 99.1±0.9 99.1±0.6 96.0±1.6

3s vs 5z-dense
Final 81.3±16.1 92.2±6.6 95.3±2.2 75.0±17.6 78.1±24.4

Absolute 85.4±22.6 95.4±4.4 95.4±3.2 76.5±24.3 79.1±14.2

Table 5. Final metric and absolute metric of success rate (%) of CMAE and baselines on sparse-reward and dense-reward SMAC tasks.

0.1 to work well in most tasks. Therefore, we use r̂ = 0.1
for all SMAC tasks. The hyper-parameters of CMAE with

QMIX and baselines are summarized in Tab. 3.

F. Absolute Metric and Final Metric

In addition to the final metric reported in Tab. 1 and Tab. 2,

following Henderson et al. (2017); Colas et al. (2018), we

also report the absolute metric. Absolute metric is the

best policies’ average episode reward over 100 evaluation

episodes. The final metric and absolute metric of CMAE

and baselines on MPE and SMAC tasks are summarized

in Tab. 4 and Tab. 5.

G. Additional Results on MPE Task: Island

In addition to the MPE tasks considered in Sec. 4, we con-

sider one more challenging MPE task: Island. The details

of both sparse-reward and dense-reward version of Island,

i.e., Island-sparse and Island-dense are presented in Sec. C.

We compare CMAE to Q-learning, Q-learning with count-

based exploration, EITI, and EDTI on both Island-sparse

and Island-dense. The results are summarized in Tab. 4.

As Tab. 4 shows, in the sparse-reward setting, CMAE is

able to achieve higher than 50% success rate. In contrast,

baselines struggle to solve the task. In the dense-reward

setting, CMAE performs similar to baselines. The training

curves are shown in Fig. 5 and Fig. 6.

Cooperative Multi-Agent Exploration

Task (target success rate) CMAE (Ours) EITI EDTI

Pass-sparse (80%) 2.43M±0.10M 384M±1.2M 381M±2.8M

Secret-Room-sparse (80%) 2.35M±0.05M 448M±10.0M 382M±9.4M

Push-Box-sparse (10%) 0.47M±0.04M 307M±2.3M 160M±12.1M

Push-Box-sparse (80%) 2.26M±0.02M 307M±3.9M 160M±8.2M

Island-sparse (20%) 7.50M±0.12M 480M±5.2M 322M±1.4M

Island-sparse (50%) 13.9M±0.21M > 500M > 500M

Table 6. Environment steps required to achieve the indicated target success rate on Pass-sparse, Secret-Room-sparse, Push-Box-sparse,

and Island-sparse environments.

H. Additional Results of Baselines

Following the setting of EITI and EDTI (Wang et al., 2020),

we train both baselines for 500M environment steps. On

Pass-sparse, Secret-Room-sparse, and Push-Box-sparse,

we observe that EITI and EDTI (Wang et al., 2020) need

more than 300M steps to achieve an 80% success rate. In

contrast, CMAE achieves a 100% success rate within 3M

environment steps. On Island-sparse, EITI and EDTI need

more than 3M environment steps to achieve a 20% success

rate while CMAE needs less than 8M environment steps to

achieve the same success rate. The results are summarized

in Tab. 6.

I. Additional Training Curves

The training curves of CMAE and baselines on both

sparse-reward and dense-reward MPE tasks are shown

in Fig. 5 and Fig. 6. The training curves of CMAE

and baselines on both sparse-reward and dense-reward

SMAC tasks are shown in Fig. 7 and Fig. 8. As shown

in Fig. 5, Fig. 6, Fig. 7, and Fig. 8, in challenging sparse-

reward tasks, CMAE consistently achieves higher success

rate than baselines. In dense-reward tasks, CMAE has sim-

ilar performance to baselines.

Cooperative Multi-Agent Exploration

Figure 5. Training curves on sparse-reward MPE tasks.

Figure 6. Training curves on dense-reward MPE tasks.

Cooperative Multi-Agent Exploration

Figure 7. Training curves on sparse-reward SMAC tasks.

Figure 8. Training curves on dense-reward SMAC tasks.

