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Abstract

Existing late fusion multi-view clustering
(LFMVC) optimally integrates a group of pre-
specified base partition matrices to learn a consen-
sus one. It is then taken as the input of the widely
used k-means to generate the cluster labels. As
observed, the learning of the consensus partition
matrix and the generation of cluster labels are
separately done. These two procedures lack nec-
essary negotiation and can not best serve for each
other, which may adversely affect the clustering
performance. To address this issue, we propose to
unify the aforementioned two learning procedures
into a single optimization, in which the consensus
partition matrix can better serve for the generation
of cluster labels, and the latter is able to guide the
learning of the former. To optimize the resultant
optimization problem, we develop a four-step al-
ternate algorithm with proved convergence. We
theoretically analyze the clustering generalization
error of the proposed algorithm on unseen data.
Comprehensive experiments on multiple bench-
mark datasets demonstrate the superiority of our
algorithm in terms of both clustering accuracy
and computational efficiency. It is expected that
the simplicity and effectiveness of our algorithm
will make it a good option to be considered for
practical multi-view clustering applications.

1. Introduction

Multi-view clustering (MVC) maximally utilizes a group
of pre-calculated complementary views to improve the clus-
tering performance (Peng et al.; Wang et al.). It has been
intensively studied and successfully applied into various
applications (Huang et al.; Wang et al., 2019). According
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to different ways in fusing views, existing MVC can be
roughly grouped into three categories: feature concatena-
tion, multiple kernel clustering and late fusion MVC. The
methods in the first category concatenate features from dif-
ferent views into a high-dimensional representation, which
is then taken as the input of existing single view clustering
algorithms to generate cluster labels. Though simple and
computationally efficient, these methods usually demon-
strate unsatisfying clustering performance since that the
complementary information among different views cannot
be sufficiently exploited.

By following the multiple kernel learning framework, the
second category, i.e., multiple kernel clustering, firstly cal-
culates a similarity (kernel) matrix based on each view, and
then optimally combines these kernel matrices to learn an
optimal kernel matrix for clustering (Zhao et al., 2009).
Along this line, many variants have been developed (Yu
et al., 2012; Gonen & Margolin, 2014; Liu et al., 2016b;
Li et al., 2016). The work in (Yu et al., 2012) proposes a
three-step alternate algorithm to jointly perform kernel clus-
tering, coefficients optimization and dimension reduction.
The work in (Gonen & Margolin, 2014) develops a local-
ized multiple kernel k-means(MKKM) where the kernel
weight for each sample is adaptive. In (Liu et al., 2016b),
a matrix-induced regularization term is incorporated into
existing MKKM to enhance the diversity and reduce the
redundancy of the selected kernel matrices. Furthermore, a
local kernel alignment criterion (Li et al., 2016) has been
applied to multiple kernel learning to enhance the cluster-
ing performance in (Liu et al., 2016b). The methods in the
second category have been intensively studied and shown
superior clustering performance in various applications (Liu
et al., 2017b). However, their computational complexity is
usually cubic of sample number, which prohibits them from
median or large-scale clustering tasks.

To alleviate the computational cost of multiple kernel clus-
tering algorithms, the third category proposes a different
paradigm for MVC, which is termed as late fusion MVC.
Specifically, these methods firstly calculate a clustering par-
tition matrix H,, by performing kernel k-means with K,,
where K, represents pairwise sample similarity of the p-th
view. After that, a consensus matrix is learned from H,,’s
with linear computational complexity (Wang et al., 2019).
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Besides significantly reducing the computational complexity
of MKC, the methods in the last category usually demon-
strate promising clustering performance in various applica-
tions (Wang et al., 2019). These advantages make the late
fusion paradigm a representative in solving MVC.

Though late fusion based MVC algorithms achieve a sig-
nificant improvement in terms of both clustering accuracy
and computational complexity, we observe that the genera-
tion of cluster labels and the learning of consensus partition
matrix are separately performed. Specifically, the learned
consensus partition matrix is usually taken as the input of
k-means to generate cluster labels. As seen, the learned
consensus matrix by existing late fusion MVC methods
may not best serve for the generation of the cluster labels,
leading to unsatisfying clustering performance. This mo-
tivates us to design a novel MVC algorithm which unifies
the learning of consensus matrix and the generation of clus-
ter labels. To fulfill this goal, we propose to integrate the
aforementioned two learning procedures into an unified opti-
mization, in which the consensus partition matrix can better
serve for the generation of cluster labels, and the latter is
more conducive to guide the learning of the former. By
this way, the two learning procedures can be seamlessly
connected to attain a superior solution, leading to improved
clustering performance. To optimize the resultant optimiza-
tion problem, we develop a four-step alternate algorithm
with proved convergence. Furthermore, we theoretically
analyze the clustering generalization error of the proposed
algorithm on unseen samples. Comprehensive experiments
on multiple benchmark datasets demonstrate the superiority
of our algorithm in terms of both clustering accuracy and
computational efficiency.

2. Related Work

In this section, we briefly introduce the most related work to
our study in this paper, including multiple kernel k-means
and late fusion multi-view clustering.

2.1. Multiple kernel £-means (MKKM)

As an important learning paradigm in solving multi-view
clustering, MKKM and its variants have been intensively
studied. It is extended from the the widely used (kernel)
k-means (Liu et al., 2017a). By assuming that the optimal
kernel can be expressed as a linear/nonlinear combination
of a group of pre-calculated kernel matrices, MKKM and
its variants jointly learn the optimal combination coefficient
of kernels and the clustering partition matrix.

Let {x;}}".; C X be a collection of n samples, and ¢, (-) :
x € X — H, be the p-th feature mapping that maps x
onto a reproducing kernel Hilbert space #,, (1 < p < m).
In the multiple kernel setting, each sample is represented

as ¢B(X) = [ﬂl(ﬁl (X)Tv T 7ﬂm¢m(X)T]T’ where 8 =

[B1, -+ ,Bm]" consists of the coefficients of the m base

kernels {r,(-,-)};-;. Based on the definition of ¢(x), a

kernel function can be expressed as

kp(xi X;) = dp(xi) " dp(x;) Z Bokp(Xi, %;)-

(D

A kernel matrix K is then calculated by applying the kernel

function kg(-, -) into {x;}}_;. Based on the kernel matrix

K 3, the objective of MKKM can be written as
ming g Tr(Kg(I, —HH"))

st. HeR* H'H=1,, 8'1,,

(2)

where I}, is an identity matrix with size k X k.

In literature, the optimization problem in Eq. (2) can be
solved by alternately updating H and 3:

i) Optimizing H given 3. With the kernel coefficients
B fixed, H can be obtained by solving a kernel k-means
clustering optimization problem shown in Eq. (3),

maxg Tr(H'KgH), s.t. HER™* H'H=1,.

3)
The optimal H for Eq. (3) can be obtained by taking the
k eigenvectors with respect to the largest k eigenvalues of
Kgs.
ii) Optimizing 3 given H. With H fixed, 3 can be op-
timized via solving the following quadratic programming
with linear constraints,

mlnﬁ Z

s.t. ,6' 1,=1, 8, >0.

B2Tr (K,(I, —HH"))

“4)

As seen from the aforementioned optimization in Eq. (3),
existing MKKM and its variants need to solve a eign-
decomposition at each iteration, suffering from intensive
computational burden.

2.2. Late Fusion Multi-view Clustering

Late fusion multi-view clustering has recently been pro-
posed to reduce the computational complexity. Based on the
assumption that multiple views are expected to share a con-
sensus partition matrix at partition level, it seeks an optimal
partition by combing linearly-transformed base partitions
obtained from single views (Wang et al., 2019). Given n
samples in k clusters among m views, its optimization goal
can be mathematically expressed as,

Maxyg (w,}m .8 TT(HT szl BrH, W)
st. HH=L, W W, =1L, (5
m 2 - .
> B =15p20, i,

:1, 51)207 pr
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where the objective denotes the alignment between the con-
sensus partition matrix H and a group of pre-calculated base
partition matrices {H,,}7" ;, and W, is the p-th transfor-
mation matrix. A three-step optimization procedure with
proved convergence is developed to solve the optimization
in Eq. (5). According to the analysis in (Wang et al., 2019),
the computational complexity of late fusion MVC is linear
in the number of samples, which enables it to handle with
large-scale cluster tasks.

In existing late fusion MVC (Wang et al., 2019), the learned
consensus partition matrix is usually taken into k-means to
generate cluster labels. As seen, both procedures are sepa-
rately done without negotiation, which makes the learned
consensus matrix may not best serve for the generation of
cluster labels. In the following part, we develop the one pass
late fusion multi-view clustering algorithm ( OP-LFMVC)
to address the above issue.

3. One Pass Late Fusion Multi-view
Clustering (OP-LFMVC)

In this section, we first give the objective of the proposed
OP-LFMVC, and then develop a four-step algorithm to
alternately solve the resultant optimization problem. After
that, we discuss the convergence, computational complexity
and extension of the proposed algorithm.

3.1. The Proposed Formulation of OP-LFMVC

Eq. (5) is a widely used criterion in late fusion MVC due to
its simplicity and effectiveness (Wang et al., 2019). Though
demonstrating promising clustering performance in some
applications, we observe that it has to discretize the learned
consensus partition matrix H to generate clustering labels.
This implies that these two procedures lack of negotiation
to achieve optimality. To address the above issue, we pro-
pose an one pass late fusion multi-view clustering algorithm
which directly learns the discrete clustering labels. To do
so, we firstly decompose the consensus clustering partition
matrix H as,

H=YC, (6)

where Y € {0, 1}"*¥ is the cluster label matrix, and C €
R¥*F is the k centroids. Note that each row of Y has one
element as 1 and others 0.

By incorporating Eq. (6) into Eq. (5), we obtain the formu-
lation of our proposed OP-LFMVC as follows,

max

™ (cTY'Y " BHW
Y,C,{Wp};"’zl,ﬂ ( Zle /Bp P p)
st. CTC =1, Wy W, =1, Vp,

Ye {0yt Yy B =1 8,>0,
(7)

where an extra orthogonal constraint is imposed on C to
make the optimization bounded. As seen from Eq. (7),
instead of learning a consensus matrix H as in Eq. (6),
our algorithm optimizes the cluster labels directly. By this
way, the learning of cluster labels and clustering can be
negotiated with each other to achieve optimality, leading to
improved clustering performance.

3.2. Alternate Optimization

There are four variables in Eq. (7) to be optimized. Si-
multaneously optimizing them is difficult. In the following,
we design a four-step optimization procedure to alternately
solve it. In each step, one variable is optimized with others
fixed.

Optimization Y Fixing 8, {W,};., and C, the opti-
mization in Eq. (7) w.r.t Y is transformed to,

maxy Tr(YB') st. Y € {0,1}"*F (8)

where
B = szl 5pHprCT~ )]
Therefore, the optimal Y for Eq. (8) is
Y(i,j) =1, (10)

where j = argmax B(i,:). As a result, the computational
complexity of optimizing Y is O(n).

Optimization C  Fixing 8, {W,}7,

mization in Eq. (7) w.r.t C is reduced to

and Y, the opti-

maxc Tr(CTA) st. CTC=1,, (11)

where

m
A=Y" szl B,H,W,,. (12)

Eq. (11) can be efficiently solved by SVD with computa-

tional complexity O(nk?).

Optimization W, Fixing 3, Y and C, the optimization
in Eq. (7) w.r.t each W, can be rewritten as,
maxw, Tr(W,H]YC) st. W, W, =1I,. (13)

Similar to Eq. (11), it can be efficiently solved via SVD
with computational complexity O(nk?).

Optimization 3 Fixing Y, C and {W,}7,, the opti-
mization in Eq. (7) w.r.t 3 is equivalently rewritten as

m m
maxg szl Bpoy, s.t. szl ﬁg =1, 8,20,
(14)
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Algorithm 1 One Pass Late Fusion Multi-view Clustering
1: Input: {H,}7,, k, t=1.
2: Initialize B = 1/y/m, {Wp}7",, C, flag = 1.
3: while flag do

4:  update Y by optimizing Eq. (8);

5:  update C by optimizing Eq. (11);

6:  update {W,} 7" ; by optimizing Eq. (13);

7:  update 3 by optimizing Eq. (14);

8 if (obj™ — obj* V) /obj¥) < 1e — 3 then
9: flag=0.
10:  endif
: t+«t+1.

12: end while

where

ap=Tr (CTYH,W,). (15)

The optimal solution for Eq. (14) is

By = ay/ /ZL a2, (16)

The whole optimization procedure in solving Eq. (7) is
outlined in Algorithm 1, where ob j(t) indicates the objective

value at the ¢-th iteration.
3.3. Discussion

Convergence Note that the objective value in Eq. (7) is
monotonically increased when one variable is optimized
with the others fixed. Moreover, our objective is upper-
bounded. As a result, the optimization procedure in solving
Eq. (7) is theoretically guaranteed to be (locally) convergent,
as validated by our experimental results in Figure 1.

Computational Complexity According to the optimiza-
tion procedure in Algorithm 1, the computational complex-
ity of our algorithm at each iteration is O(n +nk? +mnk?),
which is linear to the number of samples. Further, optimiz-
ing {W,}7"; can be trivially implemented in a parallel
way since each optimization w.r.t W, is independent. This
could further reduce the computational complexity. The
computational efficiency enables our algorithm to handle
with large-scale clustering tasks.

Extension The idea of learning the cluster labels, instead
of the consensus partition matrix, is not limited to late fusion
MVC. In fact, it can be readily extended to multiple kernel
clustering. Moreover, some prior knowledge could incorpo-
rated into the formulation of OP-LFMVC to further improve
the clustering performance. Our work provides a more effec-
tive paradigm to fuse multi-view data for clustering, which
could trigger novel research on MVC.

4. The Theoretical Results

Generalization error for k-means clustering has been studied
by fixing the centroids obtained in the training process and
computing their generalization to unseen data (Maurer &
Pontil, 2010; Liu et al., 2016a). In this section, we study how
the centroids obtained by the proposed OP-LFMVC gener-
alizes onto test data by deriving its generalization bound.

We now define the error of OP-LFMVC. Let C =
[Cy,-- -, Cg] be the learned matrix composed of the k cen-
troids, 3 the learned kernel weights and {Wp};”:l the trans-
formation matrices learned by the proposed OP-LFMVC. By
defining © = {ey, - - - , e}, effective OP-LFMVC should
make the following error small,

1—Ey [maxye@ <Z;n:1 BPW;hP(X), Cy>} , (A7)

where h,(x) denotes the p-th partition vector corresponding
to the p-th view of x with ||h,(x)|| = 1, and e, -+ , e,
form the orthogonal bases of R¥. Intuitively, it says that
the expected alignment between test points and their clos-
est centroid should be high. We show how the proposed
algorithm achieves this goal.

Let us define a function class first:

F :{f : x— 1 —maxyco <Zp:1 ﬁpWJhP(X), Cy> ‘
S B =1620CecR> cTC=1,
p:

W, e R"* WIW, =1, Vp}.
(18)

We have the following claim on the generalization error
bound for the proposed OP-LFMVC.

Theorem 1. For any § > 0, with probability at least 1 — 6,
the following inequality holds for all f € F,

1 & 2k log1/6
lEx[f(X)]Sgi;f(xiH VR T
(19)

The detailed proof is provided in the appendix due to the
space limit.

According to Theorem 1, for any learned 4, C =
[C1,---,Cy]and {W,} 7|, to achieve a small,

Ex[f()] = 1~ Ex [maxyeo (3 W, hy(x).Cy)|,

(20)
the corresponding £ 3" | f(x;) needs to be as small as
possible. Assume that 3, {W,}7"; and C are obtained by
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Table 1. Datasets used in our experiments.

Dataset Number of
Samples Kernels Clusters

3Sources 169 3 6
Football 248 9 20
Olympics 464 9 29
BBCSport 544 2 5
Cal-20 2386 6 20
Cora 2708 2 7
Citeseer 3312 2 6
SUNRGBD 10335 2 45

minimizing = 37 f(x;), we have,

— i)=1—— e W, h i), C
L3 = 1=k Ssco (34w nix, € )

_ 1 T m T
= 1-maxy ~Tr (YY" 4H,W,CT),
21
where the last equality holds since the optimal y € ©®
for each sample x; is independent. This means that

1 — maxy ~Tr (YT Z;LlﬁpHprCT) is an upper
bound of 23" | f(x;). To minimize the upper bound,
we have to maximize over 3, {W,};1; and C, leading
to maxy ¢, (w,},8 Tr(Y' 30", B,H,W,CT), which
is exactly the objective of the proposed algorithm in Eq.
(7). This well justifies the effectiveness of our objective.

5. Experimental Results

In this section, we conduct a comprehensive experimen-
tal study to evaluate the proposed OP-LFMVC in terms of
overall clustering performance comparison, convergence
analysis, the evolution of the learned Y with iterations and
running time comparison. In addition, we design an abla-
tion experiment to clearly demonstrate the effectiveness of
jointly learning the cluster labels.

5.1. Experimental Settings

We conduct experimental comparison on a number of
publicly available multi-view benchmark datasets, includ-
ing 3Sources', Football?, Olympics®, BBCSport*, Cal-20°,
Cora®, Citeseer’, SUNRGBD?. These dataset information

"http://mlg.ucd.ie/datasets/3sources.html
2http://mlg.ucd.ie/aggregation/
*http://mlg.ucd.ie/aggregation/
*nttp://mlg.ucd.ie/datasets/segment .html
5http://www.vision.caltech.edu/Imaqe_
Datasets/Caltechl101/
®https://lings—data.soe.ucsc.edu/public/
lbc/
"https://lings-data.soe.ucsc.edu/public/
1bc/
8http://rgbd.cs.princeton.edu/

is summarized in Table 1. As observed, the number of
samples, kernels and categories of these datasets show con-
siderable variation, providing a good platform to compare
the performance of different clustering algorithms.

For all datasets, it is assumed that the true number of clusters
k is known and set as the true number of classes. The
clustering performance of all algorithms is evaluated by four
widely used metrics: clustering accuracy (ACC), normalized
mutual information (NMI), purity and rand index. For all
compared algorithms, to alleviate the adverse influence of
randomness by k-means, we repeat each experiment for 50
times and report the average values and the corresponding
standard deviations. The highest and those with no statistical
difference with it are marked in bold.

In our experiments, we compare OP-LFMVC with several
state-of-the-art multi-view clustering methods, including:

¢ Average kernel k-means (Avg-KKM). All kernels
are averagely weighted to construct the optimal kernel,
which is used as the input of kernel k-means algorithm.

e Multiple kernel k-means (MKKM) (Huang et al.,
2012). The algorithm alternatively performs kernel
k-means and updates the kernel coefficients.

¢ Localized multiple kernel A-means(LMKKM)
(Gonen & Margolin, 2014). LMMKM combines the
base kernels by sample-adaptive weights.

¢ Optimal neighborhood kernel clustering (ONKC)
(Liu et al., 2017b). The consensus kernel is chosen
from the neighbor of linearly combined base kernels.

¢ Multiple kernel k-means with matrix-induced reg-
ularization (MKKM-MiR) (Liu et al., 2016b). The
optimal combination weights are learned by introduc-
ing a matrix-induced regularization term to reduce the
redundancy among the base kernels.

e Mulitple kernel clustering with local alignment
maximization (LKAM) (Li et al., 2016). The simi-
larity of a sample to its k-nearest neighbors, instead of
all samples, is aligned with the ideal similarity matrix.

e Multi-view clustering via late fusion alignment
maximization (LF-MVC) (Wang et al., 2019). Base
partitions are first computed within corresponding data
views and then integrated into a consensus partition.

* MKKM-MM (Bang et al., 2018). It proposes a min-
max formulation that combines views in a way to re-
veal high within-cluster variance in the combined ker-
nel space and then updates clusters by minimizing such
variance.

¢ SMKKM (Liu et al., 2020). It extends the widely used
supervised kernel alignment criterion to multiple kernel
clustering, and introduces a novel clustering objective
by minimizing alignment for the kernel coefficient and
maximizing it for the clustering partition matrix.


http://mlg.ucd.ie/datasets/3sources.html
http://mlg.ucd.ie/aggregation/
http://mlg.ucd.ie/aggregation/
http://mlg.ucd.ie/datasets/segment.html
http://www.vision.caltech.edu/Image_Datasets/Caltech101/
http://www.vision.caltech.edu/Image_Datasets/Caltech101/
https://linqs-data.soe.ucsc.edu/public/lbc/
https://linqs-data.soe.ucsc.edu/public/lbc/
https://linqs-data.soe.ucsc.edu/public/lbc/
https://linqs-data.soe.ucsc.edu/public/lbc/
http://rgbd.cs.princeton.edu/
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Table 2. Empirical evaluation and comparison of OP-LFMVC with nine baseline methods on eight datasets in terms of clustering accuracy
(ACC), normalized mutual information (NMI), Purity and rand index (RI). Boldface means no statistical difference from the best one.

Dataset Avg-KKM MKKM LMKKM ONKC MKKM-MiR LKAM LF-MVC MKKM-MM SMKKM OP-LFMVC
ACC
3Sources 405 +2.2 404 +2.3 324+ 1.6 40.8 + 2.1 39.8 £2.2 28.5 £ 0.6 50.5 £ 1.1 405 +22 349 +2.7 60.8 + 5.3
Football 73.6 £ 1.9 73.0 £ 2.8 517434 74.0 £ 3.5 76.1 £ 34 573+23 80.8 + 3.3 73.6 £1.9 704 £2.7 82.2 4.5
Olympics 63.1 £3.2 62.1 £ 3.1 61.1 £24 67.7 £ 2.8 64.8 +2.9 352+ 1.7 68.1 £3.5 63.1 £32 66.2 £ 2.7 74.1 £ 2.5
BBCSport 39.5+0.7 394 +0.7 39.1+£04 39.7+ 0.6 394 +0.7 284+ 0.5 50.2 + 4.7 39.5+ 0.7 394+ 0.7 58.6 £ 4.5
Caltech20 36.2 + 2.2 295+1.2 287+ 1.3 394 +2.7 395+ 1.9 375+ 1.5 39.2 +2.0 36.2 +2.2 389 +24 454 + 2.6
Cora 30.7 £ 0.8 253+£04 225402 352 +£0.1 357 £0.1 264 £0.3 409 £ 0.1 30.7 £ 0.8 357 +£0.1 44.1 £ 3.0
Citeseer 20.8 £ 0.0 20.1 £ 0.0 20.6 = 0.0 403 £23 413 £0.1 23.1 £ 0.0 40.6 £ 0.1 20.8 £ 0.0 405 +24 471 + 1.1
SUNRGBD 182+ 0.5 174 +£ 0.5 - 162+ 0.5 145+04 12.6 £ 0.6 17.8 £ 04 182+ 0.5 192+ 0.5 20.5 £+ 0.7
3Sources 305+ 1.7 309 +24 151 £ 1.1 30.6 £ 1.6 299+ 14 140+ 1.2 489 £ 2.5 305+ 1.7 18.1 £4.7 529 +43
Football 78.6 £ 1.3 789 £ 1.2 594 +2.1 792+ 1.9 79.6 + 1.4 64.1 +2.1 854+ 2.0 78.6 £ 1.3 759 £ 1.2 87.3 £ 2.6
Olympics 73.0+ 14 725+ 14 71.1 £ 1.5 76.0 £ 1.4 73712 499 £+ 1.1 7713 £ 1.6 73.0+ 14 745+ 1.5 80.3 + 1.3
BBCSport 157+£05 157+ 0.5 154+£03 16.1 £ 04 157+ 0.5 31+£02 31.6 £ 42 157+£05 157+£05 433 +3.0
Caltech20 495+ 1.1 379+ 0.6 38.8+0.5 54.6 + 0.8 54.2 + 0.6 52.1 £ 0.8 522 +0.8 495+ 1.1 525+1.2 541+ 1.0
Cora 157+ 1.4 9.5+ 0.2 6.7+ 0.3 169 £+ 0.1 189 +0.2 9.2+ 0.1 26.6 + 0.1 157+ 14 18.8 £0.2 253+21
Citeseer 23+£00 1.9 £0.0 1.6 £ 0.0 186 £1.2 189 £ 0.1 4.040.0 18.9 £ 0.1 23+00 18.1 £ 1.7 22.6 + 0.9
SUNRGBD 22.6 £0.3 21.3+£03 - 19.5+ 0.3 17.8 £0.2 163 £0.3 22.6 £ 0.2 22.6 + 0.3 233 +0.3 212+ 04
Purity
3Sources 559+ 2.1 564 +2.8 484+ 14 55.8+£2.0 553+ 1.5 483+£13 72.0 £2.2 559 +2.1 50.0 £ 3.9 724 +3.2
Football 757 £ 1.7 757+ 19 55.1+£33 75.8 £ 3.0 779 £23 60.3 +2.0 83.6 £ 2.6 757 £ 1.7 723+£19 84.5 +£ 4.0
Olympics 71.1£2.0 70.8 £ 2.1 689+ 1.9 759 +£2.0 733+ 1.7 458 £ 1.4 76.8 £ 2.4 71.1£2.0 74.6 £ 2.1 79.8 + 2.2
BBCSport 489403 489 4+0.2 48.7+0.3 49.1 £ 0.1 48.8 £0.2 35.6 £0.2 62.0 £2.9 489 +0.3 489403 69.7 £+ 2.8
Caltech20 72.0 £ 1.5 62.9 £0.7 63.4 £+ 0.8 75.7 £ 0.8 754 + 0.5 74.0 £ 1.0 740 £ 1.2 720+ 1.5 743 £ 1.1 76.0 + 1.4
Cora 415+ 13 36.1 £ 1.0 350+ 0.2 434 £0.1 47.0 £0.1 35.1+£0.1 51.9 £ 0.0 415+ 13 47.0 £ 0.1 513+25
Citeseer 249+ 0.0 242+ 0.0 23.7+ 0.0 429+25 43.8 £0.1 26.0 + 0.0 44.1 £ 0.1 249 £+ 0.0 428 +£23 49.0 +£ 1.2
SUNRGBD 38.0 +£ 0.7 36.2 £ 0.5 - 342+ 04 323+04 29.0 + 0.6 38.0 £ 0.5 38.0 + 0.7 38.7 £ 0.4 36.6 + 0.6
Rand Index
3Sources 193 +£2.7 20.0 £34 85+1.2 19.6 £2.5 185+ 19 72+£0.8 342+ 1.5 19.3 £2.7 10.6 3.9 442 £+ 6.0
Football 61.1+£22 60.3 +2.2 31.6 £3.5 62.0 £ 3.1 63.5+ 3.0 38.6 £ 3.0 71.0 £3.5 61.1 £2.2 56.8 £2.5 74.6 + 4.8
Olympics 479+30 470431 446+25 554429 521425 205+ 13 570433 479 +3.0 535+27 64.6 + 2.8
BBCSport 9.34+0.3 9.2+0.3 9.1 +£02 9.6 +£0.2 92403 1.5 +0.1 21.5+32 9.3+0.3 9.34+03 32.6 £t 4.4
Caltech20 260+ 1.4 18.6 + 0.8 195+ 1.0 280+ 1.6 28.6 + 1.1 256 + 1.1 273+1.2 260+ 1.4 28.0 + 1.8 33.1+£20
Cora 6.5+ 0.6 3.6+ 0.3 1.7+ 0.1 11.7 £ 0.1 11.4 £0.1 53+£0.1 17.3 £0.1 6.5+ 0.6 114 £ 0.1 18.6 + 2.2
Citeseer 0.6 0.0 0.3+ 0.0 0.1 £0.0 125+ 0.9 13.0 £ 0.1 1.7 £ 0.0 11.7 £ 0.1 0.6 £ 0.0 125+ 1.0 18.3 + 0.9
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Figure 1. The curves of convergence and clustering performance of the proposed OP-LFMVC with the increase of iterations on benchmark
datasets. The results on other datasets are similar and omitted due to space limit.

The implementations of the above algorithms are publicly
available in corresponding papers, and we directly adopt
them without modification in our experiments. Note that
the issue of hyper-parameter tuning in clustering tasks is
still an open problem. The proposed algorithm is free of
hyper-parameter. However, among all compared algorithms,
ONKC (Liu et al., 2017b), MKKM-MIiR (Liu et al., 2016b),
LKAM (Li et al., 2016) and LF-MVC (Wang et al., 2019)
have hyper-parameters to be tuned. By following the same
way in literature, we reuse their released codes and tune the
hyper-parameters by grid search to produce the best possible
results on each dataset. By this way, the reported results

of these algorithms with hyper-parameters would be over-
estimated. As a result, the hyper-parameter tuning would
prohibit these multiple kernel (view) clustering algorithm
from practical applications. It is therefore desired that a
clustering algorithm is parameter-free, as the proposed OP-
LFMVC does.

5.2. Experimental Results

Overall Clustering Performance Comparison Table 2
presents the ACC, NMI, Purity and RI comparison of the
above algorithms. From this table, we have the following
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Figure 2. The kernel weights learned by difterent algorithms. OP-LFMVC maintains reduced sparsity compared to several competitors.
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Figure 3. Run time comparison of different algorithms on eight benchmark datasets (in seconds). The experiments are conducted on a PC
with Intel (R) Core (TM)-i9-10900X 3.7GHz CPU and 64G RAM in MATLAB environment.

observations: is because the output of our algorithm is discrete, which

« LE-MVC (Wang et al., 2019) demonstrates overall avoids the randomness of k-means in generating clus-

better clustering performance when compard with mul- tering labels. This property demonstrates the robust-
tiple kernel clustering algorithms on all benchmark ness of OP-LEMVC.

datasets, indicating the advantage of late fusion over « Our OP-LEMVC achieves better performance than
kernel based fusion. For example, LF-MVC exceeds MKKM-MiR (Liu et al., 2016b), ONKC (Liu et al

SMKKM (Liu et al., 2020) by nearly 10 percents in 2017b), and LE-MVC (Wang et al., 2019), all of which
terms of ACC'on Football dataset. Note that SMKKM have several hyper-parameters to tune due to the incor-
h.as been c0n51dere'd as the s}ate-of-the-art among rn.ul- poration of regularization on the kernel weights. These
tiple kernel clustering algorithms. These results verify algorithms need to take a lot of effort to determine the
the e:ffe.ctiveness (.)f late fusion paradigm in solving best hyper-parameters in practical applications. And
multi-view clustering. parameter tuning may be impossible in real applica-

e The proposed OP-LFMVC further improves LF- tions where there is no ground truth clustering to opti-
MVC and achieves the best clustering performance. mize. In contrast, our OPLF-MVC is parameter-free.
For example, it exceeds the second best one by
5.3%, 8.4%, 9.3%, 3.5%, 22.9%, 9.9%, 7.8% and
2.8% in terms of ACC on all benchmark datasets. The
improvements in terms of other criteria are similar.
These results well demonstrate the superiority of
jointly learning cluster labels.

In summary, OP-LFMVC demonstrates superior clustering
performance over the alternatives on all datasets and has
no hyper-parameter to tune. We expect that the simplicity
and effectiveness of OP-LFMVC makes it a good option
to be considered for practical clustering applications. Note
* The variance of the proposed OP-LFMVC is zero. This that the results of LMKKM (G6nen & Margolin, 2014) on
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Table 3. Clustering performance comparison between OP-LEMVC
and TP-LFMVC on eight datasets in terms of ACC, NMI, Purity
and Rand Index. The results of MKKM are also provided as a
baseline.

Dataset MKKM TP-LEMVC OP-LFMVC
ACC
3Sources 404 +2.3 505+ 1.1 60.8 5.3
Football 73.0 £2.8 80.8 4+ 3.3 82.2 +4.5
Olympics 62.1+£3.1 68.1 £3.5 74.1 £ 2.5
BBCSport 394407 502+47 58.6 + 4.5
Caltech20 2054+12 392420 454 + 2.6
Cora 253+04 409 +£0.1 44.1 + 3.0
Citeseer 20.1 £00 40.6 £0.1 471+ 1.1
SUNRGBD 17.4 4+ 0.5 17.8 £04 20.5 £ 0.7
NMI
3Sources 309+24 489425 529 +4.3
Football 789 +£1.2 85.44+2.0 87.3 + 2.6
Olympics 725+14 773+£1.6 80.3 +1.3
BBCSport 157+ 0.5 31.6 +4.2 43.3 + 3.0
Caltech20 3794+ 0.6 5224038 54.1 +£ 1.0
Cora 954+0.2 26.6 + 0.1 253+2.1
Citeseer 1.9 £0.0 189 £ 0.1 22.6 + 0.9
SUNRGBD 21.3+03 22.6 +0.2 212+04
Purity
3Sources 564 +28 T720+£22 724 +3.2
Football 75.7+19 83.6 £ 2.6 84.5+ 4.0
Olympics 70.8 £ 2.1 76.8 +2.4 79.8 +£2.2
BBCSport 489 +02 620+£29 69.7 + 2.8
Caltech20 629+07 T740+£12 76.0 + 1.4
Cora 36.1 1.0 519+ 0.0 513+£25
Citeseer 242+00 44.1+£0.1 49.0 £ 1.2
SUNRGBD 36.2+0.5 38.0+0.5 36.6 + 0.6
Rand Index
3Sources 20.0 =34 3424+ 1.5 44.2 + 6.0
Football 603+22 T71.0+£35 74.6 + 4.8
Olympics 47.0 £ 3.1 57.0+3.3 64.6 + 2.8
BBCSport 9.2 4+0.3 21.5+3.2 32.6 - 44
Caltech20 186 4+08 273+£1.2 33.1+2.0
Cora 3603 173 £ 0.1 18.6 2.2
Citeseer 0.3 +£0.0 11.7 £ 0.1 18.3 £ 0.9
SUNRGBD 82+03 8.7+£02 99+ 04

Table 4. Running time comparison between OP-LFMVC and TP-
LFMVC on eight datasets (in seconds).

Dataset MKKM TP-LFMVC OP-LFMVC
3Sources 0.13 0.14 0.07
Football 0.23 0.24 0.22
Olympics 0.54 0.58 0.43
BBCSport 0.34 0.27 0.12
Caltech20 15.77 4.40 2.63
Cora 3.40 2.39 0.85
Citeseer 3.74 2.83 1.15
SUNRGBD  104.09 78.34 39.96

some datasets are not reported due to out-of-memory errors,
which are caused by its cubic computational and memory
complexity.

Ablation comparison In this section, we design an ab-
lation study to clearly demonstrate the superiority of the
proposed OP-LFMVC. To do so, we develop an additional
algorithm, which optimizes (7) by alternate optimization to
generate a consensus partition clustering matrix H. H is
then taken as the input of k-means to produce the cluster
labels. We term this algorithm as two pass late fusion MVC
(TP-LFMVC). As seen, the only difference between these
algorithms is the manner of generating cluster labels.

We experimentally compare both algorithms on all bench-
mark datasets and report the results in Table 3. We can
see that OP-LFMVC significantly improves TP-LFMVC in
terms of all clustering criteria. Taking the results on Cite-
seer for example, OPLF-MVC gains 22.9%, 15.1%, 5.9
and 5.6% improvement in terms of ACC, NMI, purity and
rand index compared to LF-MVC, verifying the effective-
ness of sufficient negotiation between consensus partition
matrix learning and cluster labels generation. We can get
similar observations from the results on other datasets.

This ablation study clearly reveals the important difference
between OP-LFMVC and TP-LFMVC: OP-LFMVC is a
goal-directed, making the learned consensus matrix best
serve for the generation of cluster labels. Meanwhile, we
also record the running time of both algorithms in Table 4.
As seen, the proposed OP-LFMVC demonstrates slightly
better computational efficiency on all datasets.

Convergence and Evolution of the Learned Y As dis-
cussed in Section 3.3, OP-LFMVC is theoretically guaran-
teed to converge. To show this point in depth, we plot the
objective of OP-LFMVC with iterations on all datasets, as
shown in Figure 1. From these figures, we observe that
its objective is monotonically increased and the algorithm
usually converges in less than ten iterations on all datasets.
Also, to show the clustering performance of OP-LFMVC
with iterations, we take Y at each iteration to calculate ACC,
NMI, purity and rand index, and report them in Figure 1.
As observed, the clustering performance of OP-LFMVC is
firstly increased with iterations, and then kept stable, which
sufficiently demonstrates the effectiveness of our algorithm.
These results considerably show the effectiveness and ne-
cessity of the learning procedure.

Running Time Comparison To evaluate the computa-
tional efficiency of the proposed algorithms, Fig. 3 reports
the running time of the aforementioned algorithms on all
benchmark datasets. Note that we take logarithm of the
running time of all algorithms for better illustration. As
can be seen, OP-LFMVC has much shorter running time on
all datasets when compared to other multi-view algorithms,
verifying its computational efficiency. In sum, both the theo-
retical and the experimental results have well demonstrated
the computational advantage of the proposed algorithms,
making them efficient to handle practical multi-view clus-
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tering tasks.

6. Conclusion

In this paper, we propose the OP-LFMVC algorithm which
directly optimizes the cluster labels, instead of a consensus
partition matrix. By this way, OP-LFMVC enhances the ne-
gotiation between the generation of clustering labels and the
optimization of clustering. We show that the resultant objec-
tive can be amenable to a solution by the widely used alter-
nate optimization with proved convergence. We derive a gen-
eralization bound for our approach using global Rademacher
complexity analysis. Comprehensive experiments demon-
strate the effectiveness and efficiency of OP-LFMVC. We
expect that the simplicity, free of hyper-parameters, and
effectiveness of OP-LFMVC makes it a go-to solution for
practical multi-view clustering applications in the future.
Future work may aim to extend OP-LFMVC to handle in-
complete views, study further applications, and derive con-
vergence rates using local Rademacher complexity analysis
(Kloft & Blanchard, 2012; Cortes et al., 2013).
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