A. Regularizing with variational objective

We provide the full derivation of Equation (2) in the following:

$$I(z_{t}^{a}; \zeta_{t}^{a}, s_{t}) = \mathbb{E}_{s_{t}, z_{t}^{a}, \zeta_{t}^{a}} \left[\log \frac{p(z_{t}^{a} | \zeta_{t}^{a}, s_{t})}{p(z^{a} | s_{t})} \right]$$
 //by the definition of mutual information
$$= \mathbb{E}_{s_{t}, z_{t}^{a}, \zeta_{t}^{a}} \left[\log \frac{q_{\xi}(z_{t}^{a} | \zeta_{t}^{a}, s_{t})}{p(z^{a} | s_{t})} \right] + \text{KL} \left(p(z_{t}^{a} | \zeta_{t}^{a}, s_{t}), q_{\xi}(z_{t}^{a} | \zeta_{t}^{a}, s_{t})) \right)$$

$$\geq \mathbb{E}_{s_{t}, z_{t}^{a}, \zeta_{t}^{a}} \left[\log \frac{q_{\xi}(z_{t}^{a} | \zeta_{t}^{a}, s_{t})}{p(z^{a} | s_{t})} \right]$$
 //since KL(\(\cdot\), \(\cdot\) \geq 0
$$= \mathbb{E}_{s_{t}, z_{t}^{a}, \zeta_{t}^{a}} \left[\log q_{\xi}(z_{t}^{a} | \zeta_{t}^{a}, s_{t}) \right] + H(z_{t}^{a} | s_{t}).$$
 (5)

B. Proof of Theorem 1

In this section we provide the proof for Theorem 1.

Theorem 1. Denote the optimal action-value and value functions by Q_*^{tot} and V_*^{tot} . Denote the action-value and value functions corresponding to receiving new strategies every time from the coach by Q^{tot} and V^{tot} , and thos corresponding to following the strategies distributed according to (3) as \tilde{Q} and \tilde{V} , i.e. $\tilde{V}(\tau_t|\tilde{z}_{\hat{t}};c) = \max_{\boldsymbol{u}} \tilde{Q}(\tau_{\hat{t}},\boldsymbol{u}|\tilde{z}_t;c)$. Assume for any trajectory τ_t , actions \boldsymbol{u}_t , current state s_t , the most recent state the coach distribute strategies $s_{\hat{t}}$, and the players' characteristics c, $||Q^{tot}(\tau_t,\boldsymbol{u}_t,f(s_{\hat{t}});c)-Q_*^{tot}(s_t,\boldsymbol{u}_t;c)||_2 \leq \kappa$, and for any strategies $z_1^a,z_2^a,||Q^{tot}(\tau_t,\boldsymbol{u}_t|z_1^a,z^{-a};c)-Q^{tot}(\tau_t,\boldsymbol{u}_t|z_2^a,z^{-a};c)| \leq \eta ||z_1^a-z_2^a||_2$. If the used team strategies \tilde{z}_t satisfies $\forall a,t,||\tilde{z}_{\hat{t}}^{\hat{t}}-z_{\hat{t}}^{\hat{t}}||_2 \leq \beta$, then we have

$$||V_*^{tot}(\boldsymbol{s}_t; \boldsymbol{c}) - \tilde{V}(\boldsymbol{\tau}_t | \tilde{\boldsymbol{z}}_{\tilde{t}}; \boldsymbol{c})||_{\infty} \le \frac{2(n_a \eta \beta + \kappa)}{1 - \gamma}, \tag{6}$$

where n_a is the number of agents and γ is the discount factor.

To summarize, the assumptions assume that the learned action-value function $Q^{\rm tot}$ approximates the optimal $Q^{\rm tot}_*$ well and has bounded Lipschitz constant with respect to individual action-value functions. Moreover, we assume the individual action-value functions also have bounded Lipschitz constant with respect to the strategies.

Proof. According to Assumption 2, if $||\tilde{z}_t^a - z_{\hat{t}}^a||_2 \leq \beta$ for all a, then

$$|Q^{\text{tot}}(\boldsymbol{\tau}_{t}, \boldsymbol{u}_{t} | \tilde{\boldsymbol{z}}_{t}, \boldsymbol{c}) - Q^{\text{tot}}(\boldsymbol{\tau}_{t}, \boldsymbol{u}_{t} | \boldsymbol{z}_{\hat{t}}, \boldsymbol{c})| \leq \sum_{a_{i}, 1 \leq i \leq n_{a}} \eta_{1} \eta_{2} ||\tilde{z}_{t}^{\tilde{a}} - \tilde{z}_{\hat{t}}^{a}||_{2} \leq n_{a} \eta_{1} \eta_{2} \beta.$$
 (7)

For notation convenience, we ignore the superscript of *tot* and the condition on c. For a state s, denote the action the learned policy take as u^{\dagger} , i.e. $u^{\dagger} \triangleq \operatorname{argmax}_{u} Q(\tau, u)$. Similarly we can define u^{*} and \tilde{u} as the action one would take according to the optimal Q_{*} and the action-value \tilde{Q} estimated using the old strategy. From Assumption 1, we know that

$$Q_*(s, \mathbf{u}^{\dagger}) \ge Q(\tau, \mathbf{u}^{\dagger}) - \kappa \ge Q(\tau, \mathbf{u}^*) - \kappa \ge Q_*(s, \mathbf{u}^*) - 2\kappa.$$
(8)

Therefore taking u^{\dagger} will result in at most 2κ performance drop at this single step. Similarly, denote $\epsilon_0 = n_a \eta_1 \eta_2 \beta$, then

$$Q(\boldsymbol{\tau}, \tilde{\boldsymbol{u}}) \ge \tilde{Q}(\boldsymbol{\tau}, \tilde{\boldsymbol{u}}) - \epsilon_0 \ge \tilde{Q}(\boldsymbol{\tau}, \boldsymbol{u}^{\dagger}) - \epsilon_0 \ge Q(\boldsymbol{\tau}, \boldsymbol{u}^{\dagger}) - 2\epsilon_0. \tag{9}$$

Hence $Q_*(s, \tilde{u}) \geq Q_*(s, u^*) - 2(\epsilon_0 + \kappa)$. Note that this means taking the action \tilde{u} in the place of u^* at state s will result in at most $2(\epsilon_0 + \kappa)$ performance drop. This conclusion generalizes to any step t. Therefore, if at each single step the performance is bounded within $2(\epsilon_0 + \kappa)$, then overall the performance is within $2(\epsilon_0 + \kappa)/(1 - \gamma)$.

C. Training Details

For both Resource Collection and Rescue Game, we set the max total number of training steps to 5 million. Then we use the exponentially decayed ϵ -greedy algorithm as our exploration policy, starting from $\epsilon_0 = 1.0$ to $\epsilon_n = 0.05$. We parallelize the

Coach-Player Multi-Agent Reinforcement Learning

Name	Description	Value
$\overline{ \mathcal{D} }$	replay buffer size	100000
n_{head}	number of heads in multi-head attention	4
$n_{ m thread}$	number of parallel threads for running the environment	8
\overline{dh}	the hidden dimension of all modules	128
γ	the discount factor	0.99
lr	learning rate	0.0003
	optimizer	RMSprop
α	α value in RMSprop	0.99
ϵ	ϵ value in RMSprop	0.00001
$n_{ m batch}$	batch size	256
grad clip	clipping value of gradient	10
target update frequency	how frequent do we update the target network	200 updates
λ_1	λ_1 in variational objective	0.001
λ_2	λ_2 in variational objective	0.0001

Table 3. Hyper-parameters in Resource Collection and Rescue Game.

environment with 8 threads for training. Experiments are run on the GeForce RTX 2080 GPUs. We provide the algorithm hyper-parameters in Table 3.

For StarCraft Micromanagement, we follow the same setup from (Iqbal et al., 2020) and train all methods on the 3-8sz and 3-8MMM maps for 12 millions steps. To regularize the learning, we use $\lambda_1=0.00005$ and $\lambda_2=0.000005$ for both maps. For all experiments, we set the default period before centralization to T=4.